METRIC LEARNING WITH ADAPTIVE DENSITY DISCRIMINATION

[OREN RIPPEL, MANOHAR PALURI, PIOTR DOLLAR, LUBOMIR BOURDEV 2016]

PRESENTATION BY PHILIPP REISER

INTRODUCTION

- Color similarity with color histograms
- Distance measure: L1, L2, ...
- Problems:
 - Not robust
 - Works only with toy datasets

INTRODUCTION

• Metric Learning:

INTRODUCTION

- Recipe for metric learning:
 - Choose parametric distance/similarity function $D_M(x, x')$
 - Collect sets of data pairs/triplets with similarity information:
 - $S = \{(x_i, x_j): x_i \text{ and } x_j \text{ are similar}\}$
 - $D = \{(x_i, x_j): x_i \text{ and } x_j \text{ are dissimilar}\}$
 - $R = \{(x_i, x_j, x_R): x_i \text{ is more similar to } x_j \text{ than to } x_R\}$
 - Estimate best parameters:
 - $\widehat{M} = \arg \min_{M} [L(M, S, D, R) + l reg(M)]$

MOTIVATION

- Zero-shot learning
- Information retrieval

Most similar documents

MOTIVATION

- Visualization of high-dimensional data
- Graceful scaling to instances with millions of classes
- Finetuning looses information and destroys intra- and inter-class variation

CHALLENGES

- Issue #I (predefined target neighborhood structure):
 - Semantic similarity cluster classes together
 - Local similarity: target neighbors in same class (in prior)
 - Problem: similarity is defined in original input space
 - \rightarrow Adaptive definition of similarity

CHALLENGES

- **Issue #2** (objective formulation):
 - Popular class of DML: Triplet Loss

$$\mathscr{L}_{\text{triplet}}\left(\boldsymbol{\Theta}\right) = \frac{1}{M} \sum_{m=1}^{M} \left\{ \left\| \mathbf{r}_{m} - \mathbf{r}_{m}^{-} \right\|_{2}^{2} - \left\| \mathbf{r}_{m} - \mathbf{r}_{m}^{+} \right\|_{2}^{2} + \alpha \right\}_{+}$$

(b) Triplet: after.

Alternative: inform algorithm about distribution of different classes \rightarrow Magnet Loss

(c) Magnet: before.

(d) Magnet: after.

MODEL

Parameterized map to representation space

$$\mathbf{r}_n = \mathbf{f}(\mathbf{x}_n; \mathbf{\Theta})$$

Cluster dataset (K-Means)

$$egin{array}{rll} \mathcal{I}_1^c,\ldots,\mathcal{I}_K^c &=& rg\min_{I_1^c,\ldots,I_K^c}\sum_{k=1}^K\sum_{\mathbf{r}\in I_k^c}\|\mathbf{r}-\boldsymbol{\mu}_k^c\|_2^2 \ , \ \mu_k^c &=& rac{1}{|I_k^c|}\sum_{\mathbf{r}\in I_k^c}\mathbf{r} \ . \end{array}$$

$$\mathscr{L}(\boldsymbol{\Theta}) = \frac{1}{N} \sum_{n=1}^{N} \left\{ -\log \frac{e^{-\frac{1}{2\sigma^2} \|\mathbf{r}_n - \boldsymbol{\mu}(\mathbf{r}_n)\|_2^2 - \alpha}}{\sum_{c \neq C(\mathbf{r}_n)} \sum_{k=1}^{K} e^{-\frac{1}{2\sigma^2} \|\mathbf{r}_n - \boldsymbol{\mu}_k^c\|_2^2}} \right\}_+$$

MAGNET LOSS

TRAINING

Component #I:

- Sample initial cluster
- Get nearest clusters
- Compute Loss
- Backpropagate

- Component #2:
- Stop training
- Compute forward pass
- Index representations by clusters
- \rightarrow Representations Space is changed during training

EXPERIMENTS

- Fine grained classification
 - Datasets with similar classes
 - Comparison of Magnet Loss, Triplet Loss and Softmax
 - kNN for Triplet Loss evaluation
 - kNC for Magnet Loss evaluation

RESULTS

Approach	Error
Angelova & Long	51.7%
Gavves et al.	49.9%
Xie et al.	43.0%
Gavves et al.	43.0%
Qian et al.	30.9%
Softmax	26.6%
Triplet	35.8%
Magnet	24.9%

(a) Stanford Dogs.

Approach	Error
Angelova & Zhu	23.3%
Angelova & Long	19.6%
Murray & Perronnin	15.4%
Sharif Razavian et al.	13.2%
Qian et al.	11.6%
Softmax	11.2%
Triplet	17.0%
Magnet	8.6%

(b) Oxford 102 Flowers.

Approach	Error
Angelova & Zhu	49.2%
Parkhi et al.	46.0%
Angelova & Long	44.6%
Murray & Perronnin	43.2%
Qian et al.	19.6%
Softmax	11.3%
Triplet	13.5%
Magnet	10.6%

(c) Oxford-IIIT Pet.

EXPERIMENTS

Hierarchy recovery

- Collapse finer grained classes to one class for training
- Test performance in discovering intra-class variances

Approach	Error@1	Error@5
Softmax	30.9%	15.0%
Triplet	44.6%	23.4%
Magnet	28.6%	7.8%

-

(f) Hierarchy recovery on ImageNet Attributes.

RESULTS

SOURCES

- Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adaptive density discrimination. International Conference on Learning Representations, 2016
- Weinberger, Kilian Q. and Saul, Lawrence K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244, June 2009. ISSN 1532-4435.
- <u>http://www.is.informatik.uni-</u> <u>duisburg.de/courses/ir_ss05/folien/colorsearch-ho.pdf</u>
- <u>http://researchers.lille.inria.fr/abellet/talks/metric_learning</u> <u>tutorial_ECML_PKDD.pdf</u>

- Image sources:
- <u>https://en.wikipedia.org/wiki/File:Sunset_2007-I.jpg</u>
- https://www.atlantisbahamas.com/thingstodo/waterpark/be aches
- <u>http://researchers.lille.inria.fr/abellet/talks/metric_learning</u> <u>tutorial_ECML_PKDD.pdf</u>
- "Metric Learning with Adaptive Density Discrimination" by Oren Rippel, Manohar Paluri, Piotr Dollar, Lubomir Bourdev in 2016, p.3, 4, 8, 11, 12