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INTRODUCTION

 Color similarity with color histograms

 Distance measure: L1, L2, …

 Problems: 

 Not robust

 Works only with toy datasets
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INTRODUCTION

 Metric Learning:
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INTRODUCTION

 Recipe for metric learning:

 Choose parametric distance/similarity function 𝐷𝑀 𝑥, 𝑥′

 Collect sets of data pairs/triplets with similarity information:

 𝑆 = { 𝑥𝑖 , 𝑥𝑗 : 𝑥𝑖 and 𝑥𝑗 are similar}

 𝐷 = { 𝑥𝑖 , 𝑥𝑗 : 𝑥𝑖 and 𝑥𝑗 are dissimilar}

 𝑅 = { 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑅 : 𝑥𝑖 is more similar to 𝑥𝑗 than to 𝑥𝑅}

 Estimate best parameters:

 ෡𝑀 = 𝑎𝑟𝑔 min
𝑀

[𝐿 𝑀, 𝑆, 𝐷, 𝑅 + 𝑙 𝑟𝑒𝑔(𝑀)]
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MOTIVATION

 Zero-shot learning

 Information retrieval
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MOTIVATION

 Visualization of high-dimensional data

 Graceful scaling to instances with millions of classes

 Finetuning looses information and destroys intra- and inter-class variation
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CHALLENGES

 Issue #1 (predefined target neighborhood structure):

 Semantic similarity  cluster classes together

 Local similarity: target neighbors in same class (in prior)

 Problem: similarity is defined in original input space 

 Adaptive definition of similarity 
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CHALLENGES

 Issue #2 (objective formulation):

 Popular class of DML: Triplet Loss  Alternative: inform algorithm about distribution of 

different classes  Magnet Loss
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MODEL

 Parameterized map to representation space

 Cluster dataset (K-Means)

 Objective function:
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MAGNET LOSS
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TRAINING

 Component #1:

 Sample initial cluster

 Get nearest clusters

 Compute Loss

 Backpropagate

 Component #2:

 Stop training

 Compute forward pass

 Index representations by clusters

  Representations Space is changed during training
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EXPERIMENTS

 Fine grained classification

 Datasets with similar classes

 Comparison of Magnet Loss, Triplet Loss and Softmax

 kNN for Triplet Loss evaluation

 kNC for Magnet Loss evaluation 
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RESULTS
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EXPERIMENTS

 Hierarchy recovery

 Collapse finer grained classes to one class for training

 Test performance in discovering intra-class variances
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RESULTS
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