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Outline
● Timeline
● AlphaGo Zero

– Training Pipeline
– Modified MCTS
– Reasons for better performance

● AlphaZero
– Generalization to Chess/Shogi
– AlphaZero vs Stockfish

● Conclusion
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● 2012: Crazy Stone
– MCTS search with handcrafted heuristic
– Professional level play

● 2015: AlphaGo Fan
– MCTS with Value and Policy Network
– Defeated European Go champion Fan Hui (2-dan)

● 2016: AlphaGo Lee
– Larger networks than AlphaGo Fan
– Added selfplay of policy network
– Won 3/1 against Lee Sedol (9-dan)

● 2017: AlphaGo Master
– Use single network for both policy and value
– Using ResNet instead of Convolutional NN
– Won 60/0 against team of professional players

● 2018 AlphaGo Zero
– Trained from scratch

● 2018 AlphaZero
– Generalized to Chess & Shogi
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AlphaGo Zero: learning from scratch
● No human knowledge

– Trained by self-play reinforcement learning from scratch
– Only raw board as input

● Single neural network
– Policy and value networks are combined into single NN

● Simpler (cheaper) search during gameplay
– Instead of Monte-Carlo rollouts, only uses NN to evaluate

Less complex and more general => AlphaZero (also plays Chess, Shogi, ...)
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Policy/Value-Network

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0
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Modified MCTS
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Select

● Select action according to PUCT
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Expand

● Evaluate NN at leaf node:

● Insert new edge:

● Backup value  
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Backup

● Increment visit counts

● Add value to action value

● Update Mean action value  
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Play
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Why is it better?
● MCTS search in training loop provides stable 

gradient for training
– Augmented policy is always better at predicting the 

best move
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Supervised vs Reinforcement 
learning
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Why is it better?
● MCTS search in training loop provides stable gradient for 

training
– Augmented policy is always better at predicting the best move

● ResNets instead of ConvNets
– Ability to train even deeper models

● Same network for Policy and Value
– Multi-task learning with hard parameter sharing regularizes training 

and prevents overfitting 
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● 2012: Crazy Stone
– MCTS search with handcrafted heuristic
– Professional level play

● 2015: AlphaGo Fan
– MCTS with Value and Policy Network
– Defeated European Go champion Fan Hui (2-dan)

● 2016: AlphaGo Lee
– Larger networks than AlphaGo Fan
– Added selfplay of policy network
– Won 3/1 against Lee Sedol (9-dan)

● 2017: AlphaGo Master
– Use single network for both policy and value
– Using ResNet instead of Convolutional NN
– Won 60/0 against team of proffessional players

● 2018 AlphaGo Zero
– Trained from scratch

● 2018 AlphaZero
– Generalized to Chess & Shogi
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Comparison to human play
● Superhuman performance
● Learned to play human Joseki
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AlphaGo Zero vs AlphaZero
● Absence of human knowledge made transfer to 

Shogi and Chess very easy
● No change to NN architecture
● Only raw board states as input
● No evaluator → Continuous update of NN 
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Go vs Chess/Shogi
Rules Go Chess/Shogi

Translation invariance Yes Partial

Locality Yes No

Symmetry Yes No

Action space Simple Compound

Game outcomes Probability of winning Win / Loss / Draw
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Performance of AlphaZero
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AlphaZero vs Stockfish
● Stockfish: Alpha Beta Pruning with handcrafted 

heuristics, endplay-tables, opening book, etc…
● Stockfish 60’000’000 Moves/Second
● AlphaZero 60’000 Moves/Second
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Conclusion
● Playing smart is better than brute-force
● Generality is better than handcrafting features
● Not injecting human knowledge promotes 

generality
● Multitask learning prevents overfitting
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