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Motivation — Why we study interpretable units?
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Motivation — Why we study interpretable units?

1. High performance but black | T DONT UNDERSTRND || BUT My BRAIN 1S IS THAT A PROBLEM?

boxes lack interpretability HOW MY BRAIN WORKS. | | WHAT T RELY ON TM NOT SURE
TO UNDERSTAND HOU TO TELL
HOW THINGS WORK. ) '

2. Human want to understand \

things, especially those tools

that we count on

3. Interpretable units hint that deep oy M e
network may not be completely black
boxes



Motivation — Previous and related work

Deconvolution Back-propagation Top activated i |mages

bell pepper lemon

Simonyan et al., ICLR 2015

- . 4

Horizon Trees Leaves

husky

Zeiler et al., ECCV 2014. Girshick et al., CVPR 2014

Towers & Pagodas Buildings Birds & Inects
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Definition — Disentangled representation

1. CNNs may be learning spontaneously the
disentangled representation, which aligns its
variables with a meaningful factorization of the
underlying problem structure.

2. Partly disentangled for economical use of
hidden variables.

3. To detect those disentangled structure and
simply read out the separated factors

Fig.2
Early artificial neural network,
at the Cornell Aeronautical Laboratory
in Buffalo, New York
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Definition — Network Dissection, a tool kit

*The report is the 5 conv layer from a
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Definition — Steps to Quantify Interpretability

Step 1. Identify a broad set of human-labeled visual concepts. (Broden Dataset)

Step 2. Gather hidden variables' response to known concepts. (Distribution of
individual unit activation beyond a certain threshold)

Step 3. Quantify alignment of hidden variable-concept pairs. (Calculate the loU of
them) Single hidden units in network and single concepts in Broden



Step 1: Dataset — Broden wimsse

street (scene) flower (object)

Broadly and Densely Labeled
Dataset, namely Broden, unifies
several densely labeled datasets.

Purpose: to provide a ground truth
set of exemplars of visual concepts,
which are normalized and cleaned.
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Total = 63’305 images Table 1. Statistics of each label type included in the data set.
. Category | Classes Sources Avg sample
1,197 visual Concepts scene 168 ADE [43] 33
object 584 ADE [43], Pascal-Context [19] 491
part 234 ADE |43], Pascal-Part [6] 854
material 32 OpenSurfaces [4] 1,703
texture 47 DTD [7] 140
color 11 Generated 59,250
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Step 2: Method — Distribution of Activation

Pre-trained model
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Top Activated Images *Interpretation: lamp  *Score: 0.15

Unit 1 ' »

Top Activated Images *Interpretation: car *Score: 0.02
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Step 3: Method — loU

Unit 1 Top activated images

Lamp Intersection over Union (loU)=0.12



Method — Scoring Unit Interpretability

Images from Broden Single unit k in CNN Top activated images
segmented by feature map
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1. Calculate the IoUy . data-
set-wide for every pair of

(k, c)

2. If IoUy . exceeds a
threshold, we consider unit
k as a concept c detector.
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Experiments — Recap

units

Input image Network being probed Pixel-wise segmentation
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... Now We are good to go!



Experiments — Structure

Steps:

. Human evaluation

. Axis-independent

. Layer levels

. Architectures and supervisions

. Training conditions

. Discrimination vs. Interpretability

. Layer Width vs. Interpretability

cOo N o U B W N B

. Fine-tuning
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Training Network Data set or task

none AlexNet random

AlexNet ImageNet, Places203, Places365, Hybrid.
GoogLleNet  ImageNet, Places203, Places365.

Supervised ) . i _ o .
pe VGG-16 ImageNet, Places2035, Places3635, Hybrid.
ResNet-152  ImageNet. Places363.
context, puzzle, egomotion,
Self AlexNet tracking, moving, videoorder,

audio, crosschannel.colorization.
objectcentric.

*Baseline Model: AlexNet trained on Places205
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Experiments — 1. Human evaluation

Evaluation: Amazon Mechanical Turk (AMT)

Method: Rater are shown images patches and are asked yes/no

convl conv?2 convi conv4 convs

Interpretable units 57196  126/256 247/384 258/384 194/256

Human consistency  82% 76% 83% 82% 91%
Network Dissection  37% 56% 34% 59% T1%
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Experiments — 2. Axis-independent

Two Hypothesis:

1. The overall level of interpretability
should not be affected by a change
In rotation.

2. The overall level of interpretability
is expected to drop under this
change.

Method:

Apply random changes Q in basis to a
representation f(x) learned by
AlexNet, compare unique detectors
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Unique detectors in conv5 layer
of Baseline AlexNet
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baseline rotate 0.2 rotate 0.4 rotate 0.6 rotate 0.8 rotate 1

Unique detectors in Qf (x) is much fewer than in f(x)

However each rotated representation has exactly the
same discriminative power as the original one.
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Experiments — 2. Axis-independent

Conclusion:

The interpretability of CNNs is not an axis-independent property, and it
is neither an inevitable/ necessary result of the discriminative power
of a representation, nor is a prerequisite to discriminative power.

Instead, the interpretability is more likely to be a different quality from
discriminative power that must be measured separately to be
understood.



Experiments — 3. Layer levels

Number of unique detectors

Number of unique detectors
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40
=0- objact ®
35¢ =0 part a
scene /’
30T|=0- material 7
_ | |9 texture /
25 color /
/
20 sl
~ = = mlo- ="
ls I o /V
7’
10F 1
” oY
5 & .
---= Feva A )

0 =—8 D S ——
conv1 conv2 conv3 conv4 convs
i AlexNet on ImageNet

=0~ gbject
35|=0~ part
scane
30 [|=o0~ matarial
25 = 0= faxture
- color o \
L y
20 =
0o ”
15+ -7
o 2 e
10 ST ]
_ =

S(i’ = = > o o = = -,

=== BEC =" g - b
convl conv2 conv3 corv4 convS

hiree car (object) h:car

h:grid pattern perforated (texture) h:patte
o EE

hrred woven (texture) hyellow food (material) h:orange muzzle (part)

!11

hyellow banded (texture)

yellow (color) h:striped sky (object)

h:animal face wheel (part) hwheels

h:round

o

sky (object)

convi

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma 19



Experiments — 4. Architectures and supervisions

The unique detectors in last conv layer of each Networks
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2. Interpretability varies widely under a range of self-supervised tasks,
and none approaches interpretability from supervision by ImageNet or
Places.

1. Interpretability of ResNet > VGPlaces205 G > GooglLeNet > AlexNet,
and in terms of primary training tasks, we find Places365 > > ImageNet.
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Experiments — 4. Architectures and supervisions

GooglLeNet ResNet-152

VGG-16

House Dog Train Plant Airplane
resdc¢ unit 1410 loU=0.142 res5c unit 1573 loU=0.216 res5c unit 924 loU=0.293 res5c unit 264 loU=0.126 res5c unit 1243
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loU=0.172
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Experiments — 5. Training conditions vs. Interpretability

Number of unique detectors
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Experiments — 6. Discrimination vs. Interpretability
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Experiments — 7. Layer Width vs. Interpretability

AlexNet-GAP-Wide: Remove FC-layers, triple the number of units in conv5, i.e. 256 to 768 units,
finally put a global average pooling layer after conv5 and fully connect the pooled 768-features
activations to the final class prediction.
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Experiments — 8. Fine-tuning

Places365 to ImageNet
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ImageNet to Places365
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Experiments — 8. Fine-tuning

dog: 0.024

Training iteration
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Conclusion

1. Interpretability is not an axis-indepedent phenomenon

2. Deeper CNNs architectures appear to allow a greater interpretability, which also
increases with the concepts that training set contains

3. Representation at different layers of CNNs disentangle different categories of
meaning

4. Different training techniques and condition lead to a significant change of
interpretability of representation learned by hidden units.

5. Interpretability and discriminative power are two qualities that need to be
measured separately, though they have a positive correlation.
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Thank you!

Pingchuan Ma
Contact: PMa@stud.uni-heidelberg.de



