Network Dissection: Quantifying Interpretability of Deep Visual Representation

Bolei Zhou*

MIT

Joint work with David Bau*, Aditya Khosla, Aude Oliva, Antonio Torralba

Seminar/SS18: Explainable Machine Learning

21.06.2018

Presenter: Pingchuan Ma

1. Motivation

2. Definition, Dataset and Method

3. Experiments

4. Conclusion

Motivation – Why we study interpretable units?

Motivation – Why we study interpretable units?

1. High performance but black boxes lack interpretability

2. Human want to understand things, especially those tools that we count on

 Interpretable units hint that deep network may not be completely black boxes

Fig.1 by Matt Scherer

Motivation – Previous and related work

Zeiler et al., ECCV 2014.

Back-propagation

bell pepper

Simonyan et al., ICLR 2015

Top activated images

Girshick et al., CVPR 2014

Explainable Machine Learning - SS18 - Network Dissection Inceptionism. Google Blog. June 2015

Definition – Disentangled representation

1. CNNs may be learning spontaneously the *disentangled representation*, which aligns its variables with a meaningful factorization of the underlying problem structure.

2. Partly disentangled for economical use of hidden variables.

3. To detect those disentangled structure and simply read out the separated factors

Fig.2 Early artificial neural network, at the Cornell Aeronautical Laboratory in Buffalo, New York

Definition – Network Dissection, a tool kit

Definition – Steps to Quantify Interpretability

Step 1. Identify a broad set of human-labeled visual concepts. (Broden Dataset)

Step 2. Gather hidden variables' response to known concepts. (Distribution of individual unit activation beyond a certain threshold)

Step 3. Quantify alignment of hidden variable-concept pairs. (Calculate the IoU of them) Single hidden units in network and single concepts in Broden

Broadly and **Den**sely Labeled Dataset, namely Broden, unifies several densely labeled datasets.

Purpose: to provide a ground truth set of exemplars of visual concepts, which are normalized and cleaned.

Total = 63,305 images 1,197 visual concepts

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma

street (scene)

headboard (part)

metal (material)

flower (object)

pink (color)

Table 1. Statistics of each label type included in the data set.

ſ	Category	Classes	Sources	Avg sample
ſ	scene	468	ADE 43	38
	object	584	ADE [43], Pascal-Context [19]	491
	part	234	ADE [43], Pascal-Part [6]	854
	material	32	OpenSurfaces [4]	1,703
	texture	47	DTD [7]	140
	color	11	Generated	59,250
-				9

Step 2: Method – Distribution of Activation

Step 3: Method – IoU

Unit 1 Top activated images

Lamp Intersection over Union (IoU)= 0.12

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma

Method – Scoring Unit Interpretability

Experiments – Recap

6

units

72 concepts with IoU > 0.04

25 textures 1 color

Experiments – Recap

Freeze trained network weights Upsample target layer Evaluate on segmentation tasks

Experiments – Structure

Steps:

- 1. Human evaluation
- 2. Axis-independent
- 3. Layer levels
- 4. Architectures and supervisions
- 5. Training conditions
- 6. Discrimination vs. Interpretability
- 7. Layer Width vs. Interpretability
- 8. Fine-tuning

Training	Network	Data set or task		
none	AlexNet	random		
Supervised	AlexNet	ImageNet, Places205, Places365, Hybrid.		
	GoogLeNet	ImageNet, Places205, Places365.		
	VGG-16	ImageNet, Places205, Places365, Hybrid.		
	ResNet-152	ImageNet, Places365.		
	AlexNet	context, puzzle, egomotion,		
Self		tracking, moving, videoorder,		
Sell		audio, crosschannel,colorization.		
		objectcentric.		

*Baseline Model: AlexNet trained on Places205

Experiments – 1. Human evaluation

Evaluation: Amazon Mechanical Turk (AMT)

Method: Rater are shown images patches and are asked yes/no

	conv1	conv2	conv3	conv4	conv5
Interpretable units	57/96	126/256	247/384	258/384	194/256
Human consistency	82%	76%	83%	82%	91%
Network Dissection	37%	56%	54%	59%	71%

Experiments – 2. Axis-independent

Two Hypothesis:

- 1. The overall level of interpretability should not be affected by a change in rotation.
- 2. The overall level of interpretability is expected to drop under this change.

Method:

Apply random changes Q in basis to a representation f(x) learned by AlexNet, compare unique detectors

Unique detectors in Qf(x) is much fewer than in f(x)

However each rotated representation has exactly the same discriminative power as the original one.

Experiments – 2. Axis-independent

Conclusion:

The interpretability of CNNs is not an axis-independent property, and it is neither an inevitable/ necessary result of the discriminative power of a representation, nor is a prerequisite to discriminative power.

Instead, the interpretability is more likely to be a different quality from discriminative power that must be measured separately to be understood.

Experiments – 3. Layer levels

Experiments – 4. Architectures and supervisions

The unique detectors in last conv layer of each Networks

1. Interpretability of ResNet > VGPlaces205 G > GoogLeNet > AlexNet, and in terms of primary training tasks, we find Places365 > > ImageNet.

2. Interpretability varies widely under a range of self-supervised tasks, and none approaches interpretability from supervision by ImageNet or Places.

Experiments – 4. Architectures and supervisions

Places.

Experiments – 5. Training conditions vs. Interpretability

Experiments – 6. Discrimination vs. Interpretability

Experiments – 7. Layer Width vs. Interpretability

AlexNet-GAP-Wide: Remove FC-layers, triple the number of units in conv5, i.e. 256 to 768 units, finally put a global average pooling layer after conv5 and fully connect the pooled 768-features activations to the final class prediction.

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma

Experiments – 8. Fine-tuning

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma

Experiments – 8. Fine-tuning

Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma

Conclusion

- 1. Interpretability is not an axis-indepedent phenomenon
- 2. Deeper CNNs architectures appear to allow a greater interpretability, which also increases with the concepts that training set contains
- 3. Representation at different layers of CNNs disentangle different categories of meaning
- 4. Different training techniques and condition lead to a significant change of interpretability of representation learned by hidden units.
- 5. Interpretability and discriminative power are two qualities that need to be measured separately, though they have a positive correlation.

Reference

Papers:

[1]. D. Bau, B. Zhou. 2017. Network Dissection: Quantifying Interpretability of Deep Visual Representations

[2]. B. Zhou, A. Khosla, 2015. Object detectors emerge in deep scene cnns. International Conference on Learning Representations, 2015.

Figures & Tables:

Fig 1. https://futureoflife.org/2017/05/30/on-ai-prescription-drugs-and-managing-the-risks-of-things-we-dont-understand/

Fig 2. <u>https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/</u>

* All the figures and tables without number are taken from the original paper and their presentation slides, available on: http://netdissect.csail.mit.edu/

Thank you!

Pingchuan Ma Contact: *P.Ma@stud.uni-heidelberg.de*