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Abstract. Traditionally, quadrature filters and derivatives have been
considered as alternative approaches to low-level image analysis. In this
paper we show that there actually exist close connections: We define
the quadrature-based boundary tensor and the derivative-based gradient
energy tensor which exhibit very similar behavior. We analyse the reason
for this and determine how to minimize the difference. These insights
lead to a simple and very efficient integrated feature detection algorithm.

1 Introduction

Image features such as edges and corners can be detected by analysing the image
in the neighborhood of every (candidate) point. A compact representation of
the low-order characteristics of these neighborhoods is given by the first few
derivatives at every point (the n-jet [9]). Numerous feature descriptors for edges,
lines, blobs, corners and so on have been defined by various combinations of low-
order derivatives (see e.g. [5,12]). However, these descriptors are usually only
valid for a single feature type, and give no or wrong responses at points where the
underlying feature model is violated. Improvements can be achieved by moving
from scalar feature descriptors to tensor based ones. Second order tensors cannot
only represent feature strength, but also allow to distinguish between intrinsically
1- and 2-dimensional features (edges vs. corners) and measure orientation.

The most common derivative-based tensor is the structure tensor [1,6] which
is obtained by spatial averaging of the outer product of the gradient. It can rep-
resent step edges and their corners/junctions but is less suitable for the detection
of lines and other second order features. All these feature types are covered by
the energy tensor [3], which includes higher order derivatives (details below).

A different approach to feature detection is taken by the quadrature filter
method [7,8] where derivatives are replaced with filters that are related to each
other by the Hilbert transform. These operators react, by design, uniformely to
both edges and lines. This property is called phase invariance because edges and
lines can be interpreted as arising from the same magnitude spectrum, but at
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different (namely odd and even) phase. In 2D it is common to apply a number of
1D quadrature filters at different orientations. The filter responses can then be
combined into an orientation tensor [8]. However, the orientation tensor reacts
in a well-defined way only to 1-dimensional features. This probem is solved by
means of the boundary tensor [10], which uses truly 2-dimensional quadrature
filters to also model certain 2D feature types (details also given below).

When we experimented with both the energy and the boundary tensors, we
observed a striking similarity of their behavior – qualitatively, their results are
almost indistinguishable. This paper is devoted to a more detailed analysis of
the relationship of the two approaches. We pursue this analysis on three levels:
First, we establish a formal similarity between the derivative and quadrature
filter methods by basing the latter on (first and second order) Riesz transform
operators [2] which closely resemble derivatives. Second, we show that the spec-
tral properties of the two tensors are very similar when optimal scales ratios are
chosen. Third, we report on experiments illustrating the similarity in practice.

2 Tensor Definitions

The structure tensor is the most common derivative based tensor. It is defined
as the spatial average of the outer product of the gradient ∇f with itself [1,6]:

S = g ? (∇f)(∇f)T (1)

where g is a smoothing filter (usually Gaussian), f the original image, and deriva-
tives are always understood to operate at a particular scale. For the purpose of
our analysis, it is advantegous to approximate the gradient with a taylor series:

∇f(x) ≈ ∇f
∣

∣

x=x0

+ ∇∇T f
∣

∣

x=x0

(x − x0) (2)

where ∇∇T f = Hf is the Hessian matrix. Inserting this into (1), we can
execute the convolution analytically. If g is radially symmetric, the odd powers
of x cancel out, whereas the even ones give a constant. We get:

S ≈ (∇f)(∇f)T + λ(Hf)(Hf)T (3)

where the parameter λ depends on g’s shape and scale. This operator is very
good at detecting step edges and their corners, but often shows multi-modal
or no responses at second-order features such as line edges and junctions. By
adjusting λ, the behavior can be somewhat improved, but it is usually impossible
to find a λ that works equally well on the entire image.

A richer signal model can be employed with the energy tensor [3]:

E = (∇b)(∇b)T − b(Hb) (4)

where b is the signal to be analyzed. This is structurally similar to (3), but the
square of the Hessian has been replaced with the negative product of the function
b and its Hessian. We’ll show later that the energy tensor achieves better feature



detection results when different scales are used for different derivative orders. In
a strict sense, the name “energy tensor” may not be justified because E is not in
general positive semi-definite. But it has this property under certain conditions
and degrades gracefully if these conditions are slightly violated (cf. figure 4, see
[4] for an in-depth discussion of this issue). In image analysis, the energy tensor
cannot be used in its pure form, because images are not DC free, so the energy
would be dominated by the DC magnitude (average gray level) if b were the
image f itself. Instead one computes E from a bandpass filtered version of the
image, for example one defines b = ∇T∇g?f when the bandpass is the Laplacian
of Gaussian. Since the Laplacian is a second order derivative, E is effectively
calculated from second, third and fourth order derivatives.

Unfortunately, this means that the important first order image structure is
not considered at all. Therefore, we developed a variant called gradient energy

tensor, or GET operator [4]. Here, b = ∇g ? f , so b is the Gaussian gradient
vector. The gradient of b is then the Hessian of f , whereas the Hessian of b gives
a third order tensor. Since the energy tensor is only a second order tensor, two
indices of this third order tensor are immediately contracted, giving:

(T f)i =

N
∑

j=1

∂3f

∂xi∂x2
j

= ∇(∇T∇f) i.e. in 2D: T f =

(

fxxx + fxyy

fxxy + fyyy

)

(5)

(N is the space dimension). T f is equivalent to the gradient of the Laplacian
of f , as can be seen by switching the order of differentiation and contraction.
Since the outer product of two different tensors is not commutative, the gradient
energy tensor must be symmetrized. This results in the following definition:

G = G
even + G

odd = (Hf)(Hf)T − 1

2

(

(∇f)(T f)T + (T f)(∇f)T
)

(6)

The boundary tensor was introduced in [10] using circular harmonics. Here we
base its definition on the Riesz transform [2] to emphasize the formal similarity
of quadrature filters to derivatives. The Riesz transform is the N -dimensional
generalization of the Hilbert transform. It is defined in the Fourier domain as:

R c s − � u

|u| (7)

where u is the frequency vector. Since the derivative is defined as ∇ c s − �
u,

the two operators differ only by a factor of |u| in the Fourier domain. The differ-

ence becomes clearer in polar coordinates where R c s− �
(cos(φ), sin(φ))T and

∇ c s − �
ρ (cos(φ), sin(φ))T . Both operators have the same angular behavior.

But the derivative operator also acts as a high-pass filter, whereas the Riesz
transform leaves the radial shape of the spectrum unaltered. This property is
responsible for the desirable phase invariance of the boundary tensor.

The spatial domain Riesz transform operator decays only as O(|x|−N ), where
N is the space dimension. Therefore one applies Riesz transforms to a bandpass
filtered version b of the image f . The boundary tensor is then defined as

B = B
even + B

odd = (Qb)(Qb)T + (Rb)(Rb)T (8)



where Q = RRT denotes the second order Riesz transform resulting in a matrix
analogous to the Hessian (In contrast to the 1D Hilbert transform, which repro-
duces the negated original signal if applied twice, higher order Riesz transforms
are useful because they create tensors when N ≥ 2). Eq. (8) is formally equiva-
lent to (3) when we set λ = 1 and replace derivatives with Riesz transforms. It
should also be noted that the boundary tensor is always positive semi-definite
by construction. Various bandpass filters can be used to obtain b. In [10], we
used |u| exp(−|u|2σ2/2), but in this paper we choose the Laplacian of Gaussian
|u|2 exp(−|u|2σ2/2) because this allows us to establish a very strong functional

relationship between the gradient energy tensor (6) and the boundary tensor.

3 Analysis of the Tensors

In order to analyse the behavior of the tensors, it is beneficial to express the
convolution operation explicitly with integrals. For simplicity, we assume that
the coordinate origin is at the center of the current window. Due to Parseval’s
theorem we can then express the integral in either the spatial or Fourier domains.
We must only take into account that the kernels are reflected in the spatial
domain expressions, which has no effect for even kernels but requires a sign-
change for odd kernels. Since we are always taking products of two odd filter
responses, this sign also cancels out. Using the Laplacian of Gaussian bandpass,
the boundary tensor components can be expressed in the Fourier domain as

Bij =

∫

−uiuke−|u|2σ2/2F (u) du

∫

−ujuke−|u|2σ2/2F (u) du

+

∫

− �
ui|u|e−|u|2σ2/2F (u) du

∫

− �
uj |u|e−|u|2σ2/2F (u) du (9)

where F (u) is the image spectrum, and we use Einstein’s summation convention
(for index k). The components of the gradient energy tensor are

Gij =

∫

−uiuke−|u|2σ2

2
/2F (u) du

∫

−ujuke−|u|2σ2

2
/2F (u) du

−1

2

(
∫

− �
uie

−|u|2σ2

1
/2F (u) du

∫

�
ujukuke−|u|2σ2

3
/2F (u) du

+

∫

− �
uje

−|u|2σ2

1
/2F (u) du

∫

�
uiukuke−|u|2σ2

3
/2F (u) du

)

(10)

where we allow the derivatives of different order to be applied at different scales
σ1, σ2, σ3. If we equate σ and σ2, the even parts of B and G become equal, so
we will require this from now on. We analyse at first how the two tensors react
to intrinsically 1-dimensional images, that is when F (u) = F (tn) holds along a
particular direction n, and F (u) = 0 otherwise. Then the ui reduce to nit, and
the 2D integrals become 1D ones. The even part of both tensors is:

B
even
ij = G

even
ij = ninj

(
∫

t2e−t2σ2

2
/2<(F (t)) dt

)2

(11)



and the odd parts are:

B
odd
ij = ninj

(
∫

− �
t|t|e−t2σ2

2
/2 � =(F (t)) dt

)2

(12)

G
odd
ij = −ninj

∫

− �
t e−t2σ2

1
/2 � =(F (t)) dt

∫

�
t3e−t2σ2

3
/2 � =(F (t)) dt (13)

where we took advantage of the fact that the spectra of real signals have even real
and odd imaginary components. It can be seen that B is indeed a quadrature
filter: The kernels of the even and odd tensor parts are related by the Hilbert
transform − �

sign(t). Thus, if we shift the signal phase by π/2 (i.e. if we swap real
and imaginary signal components, with the appropriate adjustment of spectrum
symmetries), even and odd tensor parts are simply exchanged, but their sum
remains unaltered. This is precisely the requirement of phase invariance. That
requirement is not fulfilled by the GET operator: It has the same even part as
the boundary tensor, but the odd parts differ. Detailed analysis of the odd parts
reveals that the difference can actually be made very small. Consider at first a
simple sine signal, i.e. F (t) =

� a
2 (δ(t − ωa) − δ(t + ωa)). We get

B
odd
ij = ninj a2ω4

a e−ω2

a
σ2

2

G
odd
ij = ninj a2ω4

a e−ω2

a
(σ2

1
+σ2

3
)/2

These expressions are equal when σ2
2 = (σ2

1 + σ2
3)/2 which we will require from

now on. A more complicated case is the superposition of two sine waves F (t) =
� a
2 (δ(t − ωa) − δ(t + ωa)) +

� b
2 (δ(t − ωb) − δ(t + ωb)). Then we get

B
odd
ij = ninj

(

a ω2
ae

−ω2

a
σ2

2
/2 + b ω2

be
−ω2

b
σ2

2
/2

)2

G
odd
ij = B

odd
ij + ninj a b ωaωb

(

ωae
−(ω2

a
σ2

3
+ω2

b
σ2

1
)/4 − ωbe

−(ω2

a
σ2

1
+ω2

b
σ2

3
)/4

)2

The eigenvalue of B
odd (which we obtain by simply dropping ninj) is always

positive, as required for a signal energy. However, the eigenvalue of G
odd can

become negative if a and b have opposite signs, i.e. if the two sines have opposite
phase. This counters the intuition that the energy tensor G indeed represents
signal energy. However, due to the statistical properties of natural images the
situation is not so bad in practice: High energy in the derivatives typically occurs
at object boundaries (edges and corners/junctions). At these points the signal
components have the same phase over many frequencies (phase congruency, [11]).
Then the error term in G is positive, and the measured energy becomes too large
rather than too small. Negative energy typically occurs only in flat, but noisy
areas, where it is safe to simply truncate negative eigenvalues to zero.

In addition, we can try to adjust the ratio σ3/σ1 so that the magnitude of the
error term becomes as small as possible. It is necessary to use a scale-normalized
error measure, because one could otherwise make the error arbitrarily small by
taking σ3 → ∞. The natural scale normalization for the Laplacian of Gaussian



is σ2
2 [= (σ2

1 + σ2
3)/2] [12], so that B has to be multiplied with σ4

2 . To make
the response of G comparable, we normalize it with the same factor. Then we
integrate over ωa and ωb to calculate the average error over all frequency pairs:

ε =
(σ2

1 + σ2
3)2

4

∫∫

ωaωb

(

ωae−(ω2

a
σ2

3
+ω2

b
σ2

1
)/4 − ωbe

−(ω2

a
σ2

1
+ω2

b
σ2

3
)/4

)2

dωa dωb

=
1

σ2
1

+
2

σ2
3

+
σ2

1

σ4
3

− 2π

σ2
1 + σ2

3

(14)

(we dropped the factor ninj a b not depending on the ratio). The error is mini-

mized for σ3/σ1 = 1/
√

π1/3 − 1 ≈ 1.47. It is interesting to compare the optimal
error with the error obtained for other ratios: If σ1 = σ2 = σ3, the error becomes
more than 5 times as big! If σ3/σ1 =

√
3 and σ2/σ1 =

√
2 (which means that the

same first derivative filter is applied repeatedly for the higher order derivatives,
resulting in a very efficient algorithm), the error is only 36% bigger.

Another possibility to find an optimal scale ratio is to start directly from
(12) and (13). We transform the products of integrals in these equations into
2-dimensional integrals over the product of the integrands. Then we interpret
terms not depending on the signal spectrum as quadratic filter kernels [13]:

(
∫

− �
t|t| e−t2σ2

2
/2F (t) dt

)2

= −
∫∫

B(t1, t2)F (t1)F (t2) dt1 dt2
∫

− �
t e−t2σ2

1
/2F (t) dt

∫

�
t3e−t2σ2

3
/2F (t) dt

=

∫∫

G(t1, t2)F (t1)F (t2) dt1 dt2

with (note that G is symmetric due to the symmetrization of G)

B(t1, t2) = t1t2 |t1t2| e−(t2
1
+t2

2
) σ2

2
/2 (15)

G(t1, t2) =
1

2

(

t1 t32 e−(t2
1
σ2

1
+t2

2
σ2

3
)/2 + t31 t2 e−(t2

1
σ2

3
+t2

2
σ2

1
)/2

)

(16)

We choose the ratio σ3/σ1 so that the scale-normalized mean squared difference
between the two kernels is minimized:

ε2 = σ8
2

∫∫

(B(t1, t2) − G(t1, t2))
2 dt1 dt2 (17)

The minimum is achieved for σ3/σ1 ≈ 1.55. The choice σ1 = σ2 = σ3 gives again
a 5 times higher residual (see fig. 1), whereas it increases by only 23% for σ3/σ1 =√

3. We also repeated the two optimizations while weighting the importance
of the frequencies according to 1/ω, which better reflects the situation in real
images. After modifying (14) and (17) accordingly, we got optimal σ3/σ1 ratios
of

√
3 and 1.8 respectively, and the dependency of the residual on the ratio was

reduced. Consequently, scale ratios between 1.5 and 1.8 give reasonable results,
whereas it appears to be a bad idea to apply all derivatives at the same scale.



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Fig. 1. Left: B(t1, t2) (for t1, t2 > 0, σ2 = 1); center: G(t1, t2) with σ3/σ1 = 1.55 and
(σ2

1 + σ2

3)/2 = 1; right: G(t1, t2) for σ3/σ1 = 1: the deviation from B is much higher.

Now we analyse the response of the tensors to intrinsically 2-dimensional
structures. To simplify we consider points x where the spectrum F (u) computed
with x as coordinate origin is (appproximately) polar separable within the pass
band of the tensor filters. In case of the boundary tensor, the pass band is deter-
mined by the Laplacian of Gaussian, and we require |u|2 exp(−|u|2σ2/2)F (u) ≈
ρ2 exp(−ρ2σ2/2)Fr(ρ)Fa(φ). Then the integrals over u can be separated into
products of two integrals over the radial and angular coordinates:

Bij =

∫

ei(φ)Fa(φ)dφ

∫

ej(φ)Fa(φ)dφ

(
∫

ρ2e−ρ2σ2/2Fr(ρ) ρ dρ

)2

(18)

+

∫

ei(φ)ek(φ)Fa(φ)dφ

∫

ej(φ)ek(φ)Fa(φ)dφ

(
∫

ρ2e−ρ2σ2/2Fr(ρ) ρ dρ

)2

with e(φ) = (cos(φ), sin(φ))T . When we define the Fourier coefficients of Fa(φ)
by cm =

∫

cos(mφ)Fa(φ) dφ and sm =
∫

sin(mφ)Fa(φ) dφ, the trace of the
boundary tensor becomes:

tr(B) =
c2
0 + 2c2

1 + 2s2
1 + c2

2 + s2
2

2

∫∫

B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (19)

where the kernel B simplifies to B(ρ1, ρ2) = ρ2
1ρ

2
2 exp(−(ρ2

1+ρ2
2)σ

2
2/2) because ρ1

and ρ2 are non-negative. The trace is determined by two local image properties:
by the local contrast (as given by the radial integrals), and by how well the
angular shape variation is captured with low-order circular harmonics (as given
by the magnitude of the first five Fourier coefficients). It is interesting to compare
this with the gradient at a polar separable location:

(∇f)2 = (c2
1 + s2

1)

∫∫

S(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (20)

where S(ρ1, ρ2) = ρ1ρ2 exp(−(ρ2
1 + ρ2

2)σ
2
1/2). Again we obtain an expression of

the form “contrast times Fourier coefficients”. Since all Fourier coefficients in
(19) and (20) are weighted by only one radial integral, the form of this integral
is not crucial (gradients can be defined with many filters, the boundary tensor
originally used the kernel S above, see [10]). Thus, the key difference between
the boundary tensor and the gradient squared is that the former includes three



Fig. 2. Top: original images; bottom: reconstruction obtained by a weighted sum of
the boundary tensor filter kernels, where the weights correspond to the normalized
filter responses at the center pixel.

additional Fourier coefficients: The boundary tensor can be interpreted as a
natural generalization of the gradient towards a more sophisticated local signal
model. Fig. 2 illustrates this generalization by means of a local image recon-
struction from the filter responses that constitute the boundary tensor. This
reconstruction essentially shows how the boundary tensor “sees” certain shapes.
Obviously large part of the shape information is already contained in five filter
responses (only the first two patterns could be reconstructed from the gradient
filters). A similar generalization to five Fourier coefficients is achieved by the
structure tensor (3). At a polar separable point, its trace can be written as:

tr(S) = λ
c2
0 + c2

2 + s2
2

2

∫∫

B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

+(c2
1 + s2

1)

∫∫

S(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (21)

But here the even and odd Fourier coefficients are weighted by different radial
integrals. One can try to optimize λ and σ2/σ1 in order to minimize the difference
between B and S, but it turns out that good agreement can only be achieved
for a few frequencies at a time. This means in practice that at many image
locations the contributions of even and odd tensor parts are not well balanced,
which results in multiple responses for a single boundary or boundary gaps.
Fortunately, the trace of the GET operator shows much better behavior:

tr(G) =
c2
0 + c2

2 + s2
2

2

∫∫

B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

+(c2
1 + s2

1)

∫∫

G(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (22)

Although even and odd Fourier coefficients are still weighted differently, we have
shown above (see fig. 1) that the kernels B and G can be made extremely similar,
so that the GET operator G can be considered a very good approximation of
the boundary tensor B. Strictly speaking this applies only at polar separable
image locations, but we have found experimentally that this desirable behavior
carries over to many interesting images features.



Fig. 3. Top left: original image; col. 2: tensor trace (row 1: boundary tensor, row 2:
GET operator, Gaussian derivatives, row 3: GET operator, 3×3 filter); col. 3: junction
strength; col. 4: locations with negative junction strength; col. 5: edge orientation
(hatched: not a 1D feature, black/white: horizontal edge, gray: vertical edge).

4 Experimental Comparison of

Tensor Based Feature Detectors

The local shape information represented by the gradient energy and boundary
tensors can be extracted in the usual way. The most important tensor char-
acteristic in this context is the tensor trace which indicates the local contrast
independently of feature type (edge, line, corner, or junction) and thus acts as
a general boundary indicator. Intrinsically 1- and 2-dimensional parts of the
boundary can be distinguished by the tensors’ eigenvalues: The smaller eigen-
value indicates corner and junction strength, whereas the difference of the two
eigenvalues represents edge and line strength. If the eigenvalues indicate a 1D
structure, the eigenvector corresponding to the large eigenvalue points in the
direction perpendicular to the edge or line. In all experiments we compare the
following tensors: (i) the boundary tensor computed with the Laplacian of Gaus-
sian at σ = 0.9, (ii) the gradient energy tensor computed from Gaussian deriva-
tives with σ2 = 0.9 and various ratios σ3/σ1 (images are shown for σ3/σ1 = 1.5),
and (iii) the gradient energy tensor computed by applying Scharr’s optimal 3×3
derivative filter (3, 10, 3)T (1, 0,−1)/32 one, two and three times [14].

In the first experiment, we computed the tensors for simple test images.
Fig. 3 shows typical results. We found that all tensor variants have very similar
trace (boundary strength) and small eigenvalue (corner strength). The trace
is phase invariant (to very good approximation in case of the GET operator),
i.e. responds uniformly to step edges and lines. The step edge response of the
GET operator is slightly narrower than that of the boundary tensor, which may
be desirable in practice as it reduces the likelihood that nearby edges blend
into each other. On the other hand, there are several locations where the small
eigenvalues of the GET operators are negative, but this only occurs away from
junctions. The large eigenvalues are always positive.



Fig. 4. Rows 1 and 3: original image, negative small eigenvalues of GET operator
with σ3/σ1 = 1.5, negative small eigenvalues of GET operator with Scharr filter; rows
2 and 4: square root of tensor trace for boundary tensor and the two GET operators.



Fig. 5. Integrated boundary detection from boundary tensor, GET operator (σ3/σ1 =
1.5) and GET operator (Scharr filter).

The second experiment illustrates the same properties on real images (fig. 4).
Again the traces are almost indistinguishable. The small eigenvalue is negative
at about 10...35% of the pixels, but never at corners or junctions (we checked this
against the corner locations detected with the boundary tensor). Negative values
in the trace occur much less frequently (about 1...10% of the pixels, and never on
edges) because the large eigenvalue was never negative in the experiments (formal
proof of this fact is subject to further research). Gaussian derivatives and the
Scharr filter perform similarly, with the exception of derivatives at σ3/σ1 = 1,
where the number of negative pixels increases 1.5...3-fold.

In the last experiment we show that the three tensors can be used for in-
tegrated edge and junction detection as described in [10]. The tensor at each
image location is decomposed into its corner/junction (small eigenvalue) and
edge/line (difference of eigenvalues times main eigenvector) parts. Then local
maxima above a certain threshold are detected in the corner/junction map, and
oriented non-maxima supression and thresholding is performed in the edge/line
map. The resulting boundaries are overlayed over the original image, see fig. 5.
Again, the results are extremely similar.

5 Conclusions

Traditionally, quadrature filters and derivatives have been used by what might
be considered different schools of low-level image analysis. In this paper we
demonstrated a very close relationship between two typical methods from both
camps: the boundary tensor and the GET operator. It turned out that these
operators behave almost identically in experiments. Theoretical analysis sup-
ports this finding: We established a close formal relationship by giving a new
boundary tensor definition using Riesz transforms. And we showed for typical
1- and 2-dimensional image structures that the resulting integral expressions are
very similar for the two methods, if suitable operator scales are chosen.

Boundary tensor and GET operator can be interpreted as natural general-
izations of the gradient, which uses filters whose angular behaviour corresponds
to the first two odd circular harmonics: they add filters representing the first



three even circular harmonics. It should be stressed that the feature detection
capability depends mainly on this angular behavior – the radial filter shape can
be altered considerably, as long as it remains approximately equal for all filters
(in the Fourier domain): The boundary tensor can be defined with other band-
pass filters, and slightly different radial shapes for even and odd filters can be
tolerated in the GET operator. But the angular behavior has to be equal.

Some differences remain: The boundary tensor is always positive semi-definite
by construction, whereas the GET operator sometimes measures negative corner
strength. Since this does not occur at true corners, it is safe to truncate negative
values at zero. On the other hand, the filters constituting the GET operator are
simpler then the ones for the boundary tensor (in the spatial domain). The GET
operator can already be computed accurately with a 3× 3 filter mask, and only
seven convolutions with this mask are needed. This is roughly the same effort as
needed for the structure tensor, but the underlying feature model is much richer,
containing not only edges but also lines, corners, and junctions. Extension to
3D and to multiple scales will likely be easier for the GET operator due to the
huge existing body of established analysis for derivative filters.
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4. M. Felsberg, U. Köthe: GET: The Connection Between Monogenic Scale-Space

and Gaussian Derivatives, in: ScaleSpace 2005 (this volume)
5. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever:

Cartesian differential invariants in scale-space, J. of Mathematical Imaging and
Vision, 3(4), pp. 327-348, 1993

6. W. Förstner: A Feature Based Correspondence Algorithm for Image Matching,
Intl. Arch. of Photogrammetry and Remote Sensing, vol. 26, pp. 150-166, 1986

7. W.T. Freeman, E.H. Adelson, The Design and Use of Steerable Filters, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 13(9), pp. 891-906, 1991

8. G. Granlund, H. Knutsson: Signal Processing for Computer Vision, Kluwer, 1995
9. J.J. Koenderink: The Structure of Images, Biological Cybernetics, 50:363-370, 1984
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