
Monte-Carlo tree search

Robert Klassert

June 4, 2019

Abstract

This report explains a class of algorithms known as Monte-Carlo tree

search (MCTS). The concept of upper-confidence bound based action se-

lection is explained in the context of UCT search and a simple Python

implementation is presented. Finally, the algorithm’s behaviour is studied

in a number of examples.

1 Introduction

In this report the idea of Monte-Carlo based tree search is reviewed in the

context of game AI. MCTS was officially introduced as a class of algorithms

in Chaslot et al., 2008 [1]. The method especially took off due its effectiveness

in computer Go and is still being used in DeepMind’s AlphaGoZero the most

advanced Go AI to date.

Back then people essentially still tried to conquer Go by game tree search with

fancy heuristics. But due to the relatively large branching factor (≈ 250) of Go

(19 × 19) in comparison to chess (≈ 35), the maximum tree depth that can be

analyzed by α − β search is very limited (One would need about 10d/2-times

as many evaluations to reach the same tree depth in Go as in Chess). This

huge complexity encountered in Go could - at the time - not be captured in an

evaluation function good enough for producing respectable play.

MCTS skips these problems by

1. avoiding the need of an evaluation function all together (although it can

help to have one)

2. being an anytime algorithm, meaning that it can be stopped at any point

without wasting computing time

1



Figure 1: Increase in Go playing strength since the onset of MCTS [2]

3. growing the search tree dynamically and asymmetrically, thereby focusing

on the most promising moves

One might now ask: How does MCTS know about the quality of moves without

an evaluation function? - This is where the ”Monte-Carlo” part comes in:

By random rollouts of the game starting with the variation to be evaluated.

Each time the game has been randomly played out in such a way, the result

(current player won/lost) is used to update the weights of each node that was

involved in the variation. Iteration of this process yields an estimation of the

win rate for each node which is always a good heuristic for good moves. In

Go, for example, a move with high win rate can be interpreted as a stone with

large influence, because many random variations were not able to ”disturb” the

position afterwards.

MCTS is not limited to games. It can also be employed for decision making

in the general framework of Markov decision processes. In this context the win

rate in games corresponds to the so-called expected reward.

2 Vanilla MCTS

In this section the most basic version of MCTS is presented. Starting from the

current game position it consists of 4 steps (see fig. 2) that are repeated until a

2



computational or time constraint is met.

1. Selection: The selection phase traverses the tree level by level, each time

selecting a node based on stored statistics like ”number of visits” or ”total

reward”. The rule by which the algorithm selects is called the tree policy.

Selection stops when a node is reached that is not fully explored yet, i.e.

not all possible moves have been expanded to new nodes yet.

2. Expansion: The expansion step consists of adding one or multiple new

child nodes to the final selected node.

3. Rollout: A rollout is initiated from each of these added nodes. Depending

on the mean depth of the tree, rollout is done until the end of the game or

as deep as possible before performing an evaluation. When dealing with

terminal states in games the evaluation is done based on the win condition

and usually yields 0 (loss), 0.5 (draw) or 1 (win).

In the original algorithm the rollout is performed at random, but in general

the so-called default policy can be enhanced by heuristics. For example,

in the case of AlphaGoZero the rollout step was completely replaced by a

neural network evaluation function.

4. Backup: The outcome of the rollout step is backed up to the nodes involved

in the selection phase by updating their respective statistics.

After the algorithm has stopped, the final move selection is done based on the

statistics gathered in the resulting tree.

The two key items of MCTS are the tree and rollout policies. Together they

determine how the tree is built and thus what moves the algorithm focuses its

efforts on.

As an example: a bad tree policy would be one that solely selects the node with

the highest win rate. This would lead to a lock in of a particular move that by

chance happened to end in a few wins while others did not. This is referred to

as a greedy policy in the sense that it only cares about the reward estimate but

does not account for the uncertainty involved in the estimates.

The desired behaviour is one, where it balances between gathering knowledge

about the different possible actions (exploration) and, if sufficient, acts based

on it (exploitation).

3



Figure 2: 4 steps of the vanilla MCTS algorithm

3 Exploration & Exploitation

To find a tree policy that can solve the exploration/exploitation dilemma it is

instructive to look at the simplest example where it occurs: the multi-armed

bandit problem.

In this problem a slot-machine similar to those found in real casinos is imagined.

It offers k actions at every step, that yield payoffs Xa , a ∈ 1, ..., k. The payoffs

are random variables and their underlying distributions unknown. The task is

to maximize the payoff within some number of steps using an appropriate policy.

The easiest way to maximize the reward while incorporating the uncertainty of

the payoff estimates is to use an upper confidence bound for the expected payoff

(UCB action selection).

Let µa and σ2
a be the mean and variance of the reward distributions. Then a

reasonable policy would be

â = argmaxa(µi + σi) (1)

On the one hand actions with large variance would be selected to improve the

mean estimate, hence exploring them. On the other hand, actions with small

uncertainty and large means would be selected to obtain the payoff, hence ex-

ploiting them.

It seems the dilemma has been resolved, however, the standard UCB only offers

an arbitrary balance between exploring and exploiting. Given enough time the

4



Figure 3: Reward distributions of a 5-armed bandit, taken from Sutton [3]

policy should always end up selecting the optimal action in the majority of times.

In other words the difference between the optimal payoff and the expected payoff

due to our UCB should be minimal. This difference is referred to as the regret

of the policy.

Auer et al. [4] found different UCB’s which are within a constant factor of the

optimal bound thus minimizing the regret. The most popular bound is UCB1:

UCB1 = µa +

√
2 lnN

Na
(2)

where N is the total number of steps and Na is the number of times action arm

a has been selected. The first term is identical to eq. (1) and the second term

is also proportional to σa ∝ 1/Na. The important difference to the non-optimal

policy is the term ∝
√

lnN .

4 Implementation of the UCT algorithm

With the UCB1 solution of the multi-armed bandit problem the tree policy in

MCTS can also be made asymptotically optimal. This means, that with growing

number of iterations the game tree built by the algorithm will approach the

”true” minimax tree.

5



Each arm is identified with a possible move and the expected payoffs correspond

to the win rates Qa/Na. Since UCB is only within a constant factor C of

the optimal bound, it is added as a domain-dependent parameter that can be

optimized:

â = argmaxa

(
Qa

Na
+ C ·

√
2 lnN

Na

)
(3)

The UCT algorithm (upper confidence bounds for trees) is thus nothing but

MCTS with a tree policy according to UCB1.

The Python implementation below allows the execution of the UCT algorithm

for arbitrary games and decision environments by passing a set of rules to the

MCTS object. Although, performance-wise it is far from optimized, the algo-

rithm can be easily tested on simple games and the impact of different enhance-

ments can be studied.

1 import numpy as np

2 from random import randint

3

4 # Game tree node

5 class Node:

6 def __init__(self , state , parent=None , statistics ={}):

7 self.state = state

8 self.parent = parent

9 self.children = {}

10 self.statistics = statistics

11

12 def expand(self , action , next_state ):

13 child = Node(next_state , parent=self)

14 self.children[action] = child

15 return child

16

17 class MCTS_with_UCT:

18 def __init__(self , state , gamerules , C=1):

19 self.game = gamerules

20 self.C = C

21 self.root = Node(state , statistics ={" visits ": 0,

22 "reward ": np.zeros(self.game.num_players ())})

23

24 def is_fully_expanded(self , node):

25 return len(self.game.get_actions(node.state))

26 == len(list(node.children ))

27

28

6



29 def best_action(self , node):

30 children = list(node.children.values ())

31 visits = np.array (([ child.statistics [" visits "]

32 for child in children ]))

33 rewards = np.array (([ child.statistics [" reward "]

34 for child in children ]))

35 total_rollouts = node.statistics [" visits "]

36 pid = self.game.get_current_player_id(node.state)

37

38 # calculate UCB1 value for all child nodes

39 ucb = (rewards[:,pid]/ visits +

40 self.C*np.sqrt (2*np.log(total_rollouts )/ visits ))

41

42 best_ucb_ind = np.random.choice(

43 np.flatnonzero(ucb == ucb.max ()))

44 return list(node.children.keys ())[ best_ucb_ind]

45

46 def tree_policy(self , node):

47 while not self.game.is_terminal(node.state):

48 if not self.is_fully_expanded(node):

49 act_set = np.setdiff1d(

50 self.game.get_actions(node.state),

51 list(node.children.keys ()))

52 action = act_set[randint(0, len(act_set) - 1)]

53 newstate = self.game.perform_action(

54 action , node.state)

55 childnode = node.expand(action , newstate) # <- expansion

56 childnode.statistics = {" visits ": 0,

57 "reward ": np.zeros(self.game.num_players ())}

58 return childnode

59 else:

60 node = node.children[self.best_action(node)] # <- selection

61 return node

62

63

64 def rollout(self , node):

65 roll_state = node.state.copy()

66 while not self.game.is_terminal(roll_state ):

67 act_set = self.game.get_actions(roll_state)

68 action = act_set[randint(0, len(act_set) - 1)]

69 roll_state = self.game.perform_action(action , roll_state)

70 return self.game.reward(roll_state)

71

72 def backup(self , node , reward ):

73 while not node is None:

74 node.statistics [" visits "] += 1

75 node.statistics [" reward "] += reward

76 node = node.parent

77

78 def run_iter(self , iterations ):

7



79 # Vanilla MCTS loop

80 for i in range(iterations ):

81 selected_node = self.tree_policy(self.root) # selection + expansion

82 reward = self.rollout(selected_node) # rollout

83 self.backup(selected_node , reward) # backup

84 return self.best_action(self.root)

5 Examples

I applied the above implementation of MCTS to explore some basic problems:

A grid world, where a single player has to find the exit square, classical Tic-

Tac-Toe and Go on a smaller board.

5.1 Grid world

The player is trapped in a two-dimensional square grid world with periodic

boundaries. A square can either be empty, a hole or the magical key to a higher

dimension. For testing 3 holes, 1 magic key and the player were randomly placed

into a 4× 4 grid at the start of the game.

At each time step the player can move in the four cardinal directions. The goal

of the game is to leave as fast as possible by moving to the key. When moving

to a hole the game ends with a loss for the player.

Fig. 4 shows two histograms of a series of 100 games each. While for the left

histogram the number of MCTS iterations was 10, the second series shown on

the right had 150 iterations per move. Consequently, of the first series the agent

won 79 games, while it won all games in the second series.

From the histograms it is also clear that the MCTS player got a lot better in

finding the shortest routes to the key when comparing 10 to 150 iterations. Due

to the geometry of the grid world the distribution of path lengths is peaked at

3 moves.

5.2 Tic-Tac-Toe

Here, I wanted to test if my implementation worked correctly by playing Tic-

Tac-Toe against itself on the usual 3 × 3 board. Since it is a theoretical draw,

games should also end in a draw with increasing frequency when increasing the

playing strength (iterations) of the MCTS agents.

8



Figure 4: Histogram of move number of won grid world games

As shown in table 1 this is indeed what is observed. It can also be seen that

player 1 always wields an advantage over player 2, as expected.

In generalized Tic-Tac-Toe, MCTS could actually be used as a tool for analyzing

if a certain geometry and win condition would be a theoretical draw or not.

iterations 100 1000 10000
1st player win 4 2 0
2nd player win 2 0 0
draw 4 8 10

Table 1: 10 match series between two MCTS agents

5.3 Go

Since MCTS is supposed to be good at Go I had to also test my MCTS imple-

mentation on it. Also I was curious if the algorithm would actually be able to

beat me, as I have no experience in Go besides knowing the rules.

For dealing with the Go positions and rules I used a publicly available Go imple-

mentation in Python: https://github.com/brilee/go_implementation [5].

However, I quickly found out, that my MCTS code was too slow for more than

1000 iterations on the full 19 × 19 board. So I scaled down to a mini-Go with

5× 5.

Initial experiments between two MCTS agents showed that black is winning

more often than white as is to be expected. In tournament Go rules this disad-

9

https://github.com/brilee/go_implementation


vantage is actually compensated by granting white a fixed value of points for at

the end of the game (komi).

Testing agents with increasing iteration number against myself showed that a

basic knowledge of the rules was sufficient to easily defeat the program until

about 5000 iterations. Of course, I kept on increasing the number of iterations

and... I actually lost a game at 9000 iterations! (Though I was quite tired at

that point :))

6 Conclusion & Outlook

In this report the basic idea of Monte-Carlo tree search was presented. The UCB

solution to the exploration/exploitation dilemma was discussed and applied to

MCTS by means of the UCT algorithm.

A simple Python implementation of MCTS served as the test bed for a number

of simple tasks. Although the functionality of the algorithm could be verified,

it was found to be lacking performance-wise in more complex scenarios like Go.

Future work might include improving the performance by switching completely

to numpy based computation and parallel execution on GPUs.

References

[1] Guillaume Chaslot, Sander Bakkes, István Szita, and Pieter Spronck. Monte-

Carlo Tree Search: A New Framework for Game AI. 2008.

[2] Mciura [CC BY-SA 3.0 (https://creativecommons.org/licenses/by sa/3.0)].

Historical kgs ratings of the best computer go programs, 2012.

[3] Richard S. Sutton, Andrew Barto, and Andrew G. Barto. Reinforcement

Learning. Adaptive computation and machine learning. MIT Press, Cam-

bridge, Mass. [u.a.], 3. printing edition, 2000.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis

of the multiarmed bandit problem. Machine Learning, 47(2):235–256, May

2002.

[5] Brian Lee. Implementing the game of go, 2016.

10



[6] C. B Browne, E Powley, D Whitehouse, S. M Lucas, P. I Cowling, P Rohlf-

shagen, S Tavener, D Perez, S Samothrakis, and S Colton. A Survey of

Monte Carlo Tree Search Methods. IEEE Transactions on Computational

Intelligence and AI in Games, 4(1):1–43, 2012.

[7] Guillaume Chaslot, Jahn takeshi Saito, Jos W. H. M. Uiterwijk, Bruno

Bouzy, and H. Jaap Herik. Monte-Carlo Strategies for Computer Go.

[8] Istvan Szita, Guillaume Chaslot, and Pieter Spronck. Monte-Carlo Tree

Search in Settlers of Catan. Ethical Theory and Moral Practice, 6048:21–32,

05 2009.

[9] Levente Kocsis and Csaba Szepesvri. Bandit based Monte-Carlo Planning.

pages 282–293, 2006.

11


	Introduction
	Vanilla MCTS
	Exploration & Exploitation
	Implementation of the UCT algorithm
	Examples
	Grid world
	Tic-Tac-Toe
	Go

	Conclusion & Outlook

