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Abstract—In light of the task set out by the seminar to present
the latest research of methods, that try to understand the decision
making process of a neural network, the paper called ’Generating
Visual Explanations’ opted for an automatic sentence generation,
that justifies the classification of birds species. By combining deep
fine-grained classifiers and LSTM models, the authors were able
to generate sentences that justify the decision using features from
the image that are both image relevant and also class discerning.
An analysis using the latest linguistic metrics shows the strength
of the model with respect to being image relevant as well as
class relevant. With respect to the class relevance, the main
contribution of the paper lies in the introduction of a novel
loss function enforcing class discerning quality, i.e the quality of
producing sentences that use features more unique to the label
at hand.

I. INTRODUCTION

WHEN the topic of neural networks is discussed, it is
easy to point out the effectiveness of these machines.

We are now able to create software that can categorize
images to high accuracy, detect specific patterns in videos,
learn to play games and much more. Especially the task of
classification in the field of visual recognition is a great success
story, albeit arguably among the easier of the supervised tasks.
However, the question of how such a system comes to its
conclusions is far from understood, thus they lack the much
needed credibility. Without said credibility, we remain hesitant
to apply these relatively new systems in sensitive areas - any
clinical application comes to mind, military equipment and
maybe even more futuristic applications to softer sciences such
as judicial sentencing - where wrong labeling, incorrect image
segmentation, and lack of understanding of the underlying
problem can have drastic, even fatal, consequences. It is
therefore obvious, that any such system that can provide ex-
planations, while also performing outstandingly, is preferable
to inexplicable systems.

In the following to come, it is important to understand,
what aspects the term explanation encapsulates, as there are
different forms. The coarse distinction chosen for this setup is
the division into the two parts of introspection and justification.
An introspection seeks to explain outputs by referring to the
specific state the network was in and subsequently how the
input traversed the network in terms of its layer activations.
For example, an explanation for the classification of an image
as ’car’ might read: ’The input aggregated to the value x,
the activation of layer 1 equated to y, and the highest class
probability in the output layer was found for the class ’car’.
It is clear that such explanations address only people with

technical knowledge. On the other hand, a justification tries
to correlate the visual evidence with the output, thereby also
allowing laymen to understand the explanation. An example
of this, again with the ’car’ classification, might read: ’The
image showed the feature of a bonnet, four wheels, a steering
wheel, and windows. It’s thus most likely a ’car’. The latter
is the approach the authors desired to study.

II. CLASS AND IMAGE RELEVANCE OF SENTENCES

Each sentence has unique properties that qualify it. It is
proposed for sentences to have the two qualities of being image
relevant and class relevant in order to be seen as explaining.
Image relevant sentences are descriptions of the image, that

Fig. 1. An explaining sentence should incorporate aspects of both the image
and the class.

address the visual evidence at hand by picking specific parts
that represent the whole best. Such a sentence can thus only
apply to its respective image, if detailed enough. A class
relevant sentence on the other hand is a definition of the class
itself and by virtue of its nature does not necessarily need to
address any part of the image at all. This type of sentence
should be applicable to all images of birds belonging to the
same class. Logically an explanation entails both dimensions
and is graded by its capability of distinguishing with respect
to both at the same time.

III. THE ARCHITECTURE OF THE MODEL

The paper proposed a combination of two pipelines to
achieve their goal of generating explaining sentences. Input
images are forwarded to a pre-trained deep-fine-grained clas-
sifier. Its job is to select detailed features from the images.
The architecture used in the paper is that of [2]. One of
the issues of fine-grained features is the high dimensionality,
usually residing in the hundreds of thousands to the millions.
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Fig. 2. The model pipeline. The input data is run through a deep fine-
grained classifier picking out nuanced details of the image and classifying it.
The features and the label are then forwarded to the LSTM stack to produce
an explaining sentence.

In order to reduce the dimensionality the features are being
approximated by a representation containing negligibly less
amount of information at the low cost of merely a few
thousand dimensions.

A. Bilinear Models

Following [4], a bilinear model is defined as the quadruple
(fA, fB , P, C), with fA, fB being feature extractors of the
form f : L× I 7→ Rc×D, taking in a location L and image I
and returning features of size feature dimension times image
dimensions. In the case of this paper, fA, fB are two convo-
lutional neural networks from VGG (pretrained). P refers to
a pooling operation, and C to a classification. The bilinear
feature is the outer matrix product of the two functions at
position l, namely bi(l, I, fA, fB) := fA(l, I)

T fB(l, I). A
pooling operator is then applied onto the bilinear features,
which can be any known pooling operation, such as max
pooling or aggregating, i.e. φ(I) =

∑
l∈L bi(l, I, fA, fB) for

example. This pooling operator was chosen to be among the
compact pooling operators of [2], i.e. Random Maclaurin
(RM) and Tensor Sketch (TS) algorithm. Both produce low
dimensional feature vectors.

Based on these features a classification takes place. The pro-
posed class, as well as the features are afterwards forwarded to
a Long Short Term Memory (LSTM) model, whose unrolled
structure can be seen in figure 2.

B. LSTM Models

An LSTM is a variant of the network structure called
recurrent neural network (RNN). These structures are meant
for sequential data (xt)t∈I such as language, as it reuses its
output implicitly from step ti in step ti+k for k > 0. This
allows for the modeling of dependencies between the various
inputs xi and xi+k. Its logical structure is depicted in figure
3 with its unrolled structure, which shows the inner working
more clearly, in 4.

The attractiveness of such a model lies precisely in its
capability to recognize the dependency of the data, may it
be contextual, syntactical or semantical. It can thus learn the
complex and somewhat mathematically hard to grasp nature
of language in a natural manner. How this is achieved can
be credited to its internal nature of separating the task of
forgetting, adding, and outputting into three different parts,
called gates. Before diving into the exact mechanism, it is
necessary to state the preliminaries for which we follow [5]:

Fig. 3. The logical structure of a recurrent neural network[5]. The neural
network A feeds at each timestep t its output back into itself and adds new
input xt.

Fig. 4. The unrolled structure of a recurrent neural network[5]. The
dependency of the data is incorporated in the parameters of the model and
can be detected even across longer steps, hence the name Long Short Term
Memory.

The LSTM maintains a data stream as the so called memory
stream, or cell state denoted by (Ct)t. This stream incorporates
the whole information learned so far, all the dependencies that
have been recognized. It is also this stream that is constantly
manipulated with new input xt+1 in order to learn and adapt to
new information, and from which the LSTM chooses its output
ht+1 at each time-step. Jumping into the finer details of the

Fig. 5. The internal structure of an LSTM neural network[5]. The manip-
ulation of the memory stream (here the upper line connecting the As) and
the output stream (here the lower line, where also the new input xt is fed
in) is visualized. This manipulation is logically separated into three different
segments. In the diagram the layer wise activation is denoted by a yellow box
operation, e.g. σ (sigmoid), and element wise operations by a pink box with
the operation symbol inside (× for multiplication, + for addition).

system, one now needs to understand the aforementioned gate
structure1:

1) Forget gate. In this gate, the decision of which parts of
the existing data in the memory Ct−1 should be forgot-
ten is made. An example for why this is necessary can
be found in the change of the subject in a sentence. The
operation performed is that of a weight multiplication
Wf onto the previous output concatenated with the new

1It is worthwhile to note, that the explanation in this report is just one of
the many possible variations proposed and may differ from what the reader
may know as an LSTM build. Notable additions to the core structure are so
called ’peepholes’, which won’t be covered by this segment.
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input xt (e.g. the next word in the sentence) followed by
a sigmoid activation. Afterwards we multiply the output
onto the cell state element-wise. As the sigmoid renders
the values onto the range of [0, 1], it directly performs
a weighting of the importance of the values, when
one associates 0 as unimportant, and 1 as absolutely
necessary.

Fig. 6. Forgetting of previous values visualized and the update formula that
it begets.

2) Input gate. After having selected which values are no
longer needed, the second step is to include the new
information into our existing memory. Another sigmoid
activation of previous output and current input selects
which values we want to replace, while on the side a
tanh, which renders the data into the range of [−1, 1],
creates candidate values to be added. After element-
wise multiplication, an element-wise addition onto the
memory stream finalizes the change in values.

Fig. 7. The input of new values visualized and the update formula that it
begets.

3) Output gate. Lastly, after forgetting and adding of
values, the system needs to decide its output at the
current step. The cell state undergoes a tanh activation
and multiplies the outcome with the sigmoid activation
of the previous output and input, resulting in ht, which
is passed onto the next iteration, as well as returned.

Fig. 8. The output generation visualized and the formula that it begets.

In the model of the paper there is however not just one LSTM
network, but two. For why this is, will become clearer when
the training of the model is discussed. However with this
system at hand, the model is capable of producing sentences,
whose quality depends on the training data at hand. For the

Fig. 9. Example output sentences of the final model.

purpose of the study, the sentences only needed to fulfill
a templatized form that reads: This is a CLASS, because
argument 1 and argument 2 and..., which can be seen in
some output examples in figure 9.

IV. TRAINING THE MODEL

With the basics in mind, it is now time to examine how
to train such a model combination to produce sentences
as outlined in the examples. As we have discussed in the
beginning of this report, we need to ensure both qualities
of image and class relevance. One of the possible ways to
achieve this task lies in splitting the loss function up into
two separate parts as well. The one part, called the relevance
loss will ensure the image relevance, while the other, called
discriminative loss provides the class discerning property. The
general training schedule sees first to the feature detection
and subsequent classification of the image. These two parts of
information are then passed onto the LSTM, together with a
target sentence. Here is where the fact of two LSTM structures
comes into play: The first LSTM, as seen as the left one in
figure 10, is given only the target sentence as input. At time t it
is thus provided the word wt of the target sentence and passes
its output, the hidden output ht, on to the second LSTM, and
itself to be used in the next timestep. This second LSTM hence
receives the output of the first LSTM, but on top of that also
the features of the image and its class. Its own hidden output
h′t in turn is then provided to itself for the timestep t+1 and
also stored as conditional probability of the word at time t
given the previous t− 1 words, the image, and the class, i. e.
p (wt | w0:t−1, I, C).

A. Relevance Loss

As mentioned, there are sample sentences attached to each
image, that describe it. As such, one would want the generated
sentences to coalesce with these target sentences. Naturally,
this resembles the task of picking the most likely next word
wt, given the previous chain of words w0:t−1, the image I ,
and the designated class C, if the probabilities of the words
have been correctly adjusted. in other words, one can try to
approach the ’true’ distribution of the words to come and
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Fig. 10. The training setup for the model. A target sentence is provided
with the image, that the LSTM given the features and the class label should
aim to incorporate. Afterwards, the posterior probabilities from the LSTMs
are check against a Cross-Entropy-Loss, while a sampled sentence from the
LSTMs will provide the basis for calculating the Discriminative Loss.

pick the likeliest accordingly. This scheme is captured by
the Cross-Entropy-Loss. The paper however merely states that
said approach has simply worked best for them to achieve the
image relevance, and thus chosen it, without truly explaining
their motive behind it. Nevertheless, the form of the loss is
given as

LR :=
1

N

N−1∑
n=0

T−1∑
t=0

log p (wt | w0:t−1, I, C) (1)

with N being the batch size, thus overall an averaging of the
log hidden states of the LSTM, which is the approach for
a Cross-Entropy-Loss, when the ground truth distribution is
unknown and needs to be estimated.

The curious downside of this loss is the fact that any descrip-
tion that describes the image well enough, will ensure a low
relevance loss, and thus be seen as a good sentence. However,
it is implied that any probability distribution that favours
descriptions using class discerning features are equally good
to descriptions applying more general features. Therefore, one
needs to employ another loss to enforce this quality.

B. Discriminative Loss

Exactly this second loss function will provide the needed
quality. Its computation, however, is not as straightforward
as the Cross-Entropy-Loss. The idea stems from the branch
of Reinforcement-Learning, that utilizes a reward function to
assess the worth of an action. The specific form of the reward
function is thus tailored to each specific problem. In this case,
the discriminator reward RD of a description w̃ is chosen to be
the posterior probability of the bird class given the description,
i.e.

RD(w̃) := p (C | w̃) (2)

with C being the class. This probability is given by a pre-
trained sentence classifier, i.e. a classifier that produces pos-
terior probabilities over bird species (classes) for a given de-
scription sentence w̃. Note, that this classifier has an accuracy
of only 22% on test sets, yet this doesn’t prove cumbersome to
the task. Since such sentences need to come from our model in
order to produce a meaningful loss, they are sampled from the
LSTM. The sampled description is passed onto the sentence
classifier returning the reward. This value in itself isn’t very
meaningful as a loss, since it is simply a value ∈ [0, 1] for one

single description, implying it doesn’t establish a meaningful
connection between the discerning quality of the sentences and
the computed value. One measure that does however is the
expectation of the class given description, i.e. the expectation
of p (C | w̃) with respect to w̃, which is also used as the
final, discriminative loss. Finally, the overall loss function is
combined by means of adding the two single losses together
and multiplying by a hyperparameter λ, resulting in

L := LR − λEw̃∼p(w|I,C)(RD(w̃)). (3)

Note, that the expectation is an intractable one, as there
are effectively infinitely many descriptions that need to be
considered. As alleviation of this problem, the paper suggests
Monte-Carlo sampling from the LSTM model at each timestep
to generate descriptions, through which the expectation could
be approximated. Having established the loss, one needs to see
how to train using it, meaning how to compute the gradient.
The paper now argues ’As a discrete distribution, the sampling
operation for the categorical distribution is non-smooth in the
distribution’s parameters {pi}, so the gradient ∇WRD(w̃) of
the reward RD for a given sample w̃ with respect to the
weights W is undefined.’ [3], and goes on to propose a solution
to this issue exploiting the relationship of (suppressing the
conditional of the probabilities for readability)

∇WEw̃∼p(w)[RD(w̃)] = ∇W

∫
RD(w̃)p(w̃)dλ (4)

=

∫
∇WRD(w̃)p(w̃)dλ (5)

=

∫
RD(w̃)∇W p(w̃)dλ (6)

=

∫
RD(w̃)

1

p(w̃)
(∇W p(w̃))p(w̃)dλ

(7)

=

∫
RD(w̃)∇W log p(w̃))dλ (8)

= Ew̃∼p(w) [RD(w̃)∇W log p(w̃)] (9)

which has been more thoroughly shown in [9]. There is an
unresolved flaw in this argumentation though. First of all,
if the gradient of RD with respect to the weights W is
undefined, one would need an argument for why the gradient
of RD(w̃)p(w̃) is well defined in turn. Hence the legitimacy
of this approach appears to be unclear and a more in depth
explanation would be welcome, yet the success grants validity.
However, with the important gradient relationship stated, the
update rule for the model can be stated, which then becomes

∇WLR − λEw̃∼p(w) [RD(w̃)∇W log p(w̃)] (10)

In comparison, one will find the paper to state the update rule
to be

∇WLR − λRD(w̃)∇W log p(w̃) (11)

which represents stochastic gradient descent with a batch size
of 1.

V. EVALUATION PRELIMINARIES

Turning to the quantitative and qualitative evaluation of the
proposed model, it is necessary to state the setup, data, and
metrics used.
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A. Data

As has constantly been mentioned, the data in question is the
so called ’Caltech UCSD Birds 200-2011 (CUB)’ dataset [8].
Within this set, one will find 200 classes of North American
bird species and 11788 images thereof, with each image, due to
a recent extension by [6], containing five detailed description
sentences of the form visible in figure 10. Since each image
belongs to only one class, and each example sentence being a
description of the same and only of the same, this dataset
stands out as being unique for the visual explanation task
[3]. Note, that the sentences provided do not explain why
the bird belongs to its class. Therefore one cannot conclude
that the model is trained directly to simply copy explanatory
sentences, but rather has to learn this feature itself. As far as
the image features are concerned, 8,192 dimensional features
are extracted from the penultimate layer of the compact
bilinear fine-grained classification model, which has been pre-
trained on the CUB dataset and achieves an accuracy of
84%. The words are encoded as one-hot-vectors and a 1000-
dimensional embedding is learned before inputting each word
into the 1000-dimensional LSTM [3]. Model hyperparameters
are chosen by means of the standard CUB validation set before
evaluating on the respective test set. All reported results are
on the standard CUB test set.

B. Comparison Models

In order to measure the performance, the model is tested
against itself with various parts taken out to highlight their
effect, an ablation comparison. Two models are to be seen
as baseline, as they should show how each dimension of
image and class relevance is independent and necessary to
incorporate. The models in question are the
• Definition model: Training the model to generate explain-

ing sentences only using the image label as input.
• Description model: Training the model by conditioning

only on the image features as input.
Furthermore, two key differences to the baseline of the de-
scription model, i.e. the addition of the label to condition on
and the discriminative loss, are highlighted by comparing the
results to two more ablations:
• Explanation-Label model: The model trained without the

discriminative loss.
• Explanation-discriminative model: The model trained

without the class label.

C. Metrics

As sentences are to be evaluated, linguistic metrics are
needed. Standard comparison tools in this field are given by
the metrics called
• CIDEr [7]: Measures similarity by accounting for match-

ing n-grams, a contiguous sequence of n items from text
or speech, that are TF-IDF weighted2.

2TF-IDF, text frequency - inverse document frequency, means that words
that are naturally more common (high document frequency), such as ’the’,
will need a higher text frequency in order to have a big weight.

• METEOR [1]: Computed by matching words in two
sentences, while also accounting for synonyms.

These measures accurately report the image relevance of
sentences as they need to pick out the displayed attributes
within the sentence and check it against the templates. If
the attributes match, the score needs to be high. Measuring
complex properties such as class relevance, and the class
discerning quality of sentences proves to be more difficult
though. As such, the authors proposed their own composite
metrics3:
• Class Similarity: If a sentence fits the definition of a

class well, it would have to score high when matched
with the target sentences belonging to its label. Therefore,
the CIDEr score of this sentence computed against each
target sentence in its class and then added together will
provide a measure for the similarity with respect to its
own class.

• Class Rank: A sentence fitting its class well, doesn’t
imply that it wouldn’t also fit another. Therefore, a class
discerning sentence should return low values, when its
CIDEr scores against all available sentences of all classes
is accumulated. This measure will be called class rank.

• Human Experts: A team of bird experts was hired to
evaluate the sentences with regards to their explanatory
power for the determined bird class.

VI. EVALUATION

Table I and II show the results measured by the previously
mentioned metrics. In summary, the full model proves to
be superior to both baselines in image relevance and class
relevance, as well as showing the importance of conditioning
on the labels and using the discriminative loss to produce
better results overall, demonstrated by its surpassing of both
explanation ablations. Columns 1 and 2 show a curious, slight
edge the definition model seems to have over the description
model in terms of image relevance. Also the Explanation-
Label fairs only marginally better than the definition model,
whereas the Explanation-Discriminative achieves convincingly
higher values in contrast. With respect to class relevance, the
definition model trumps the description model as expected,
and any addition working with class information improves
the model, as seen in the consistently better values from
both ablation models. Adding the discriminative loss however
doesn’t discern between classes as well as when adding the
label to the baseline models, as can be seen in column 4
row 4 being worse than row 3. Also surprising is that the
raw definition baseline comes second best to the grand model,
showing that adding the label and discriminative loss works
better in tandem than each alone. The human evaluation by
the bird experts again presents a rather stunning verdict as the
ablation model with the discriminative loss scores the worst
out of all models, even decidingly worse than the definition
baseline.

The authors of the paper also present a qualitative analysis
of the results using about 18 examples to showcase various

3Note, that CIDEr was used for these metrics, because it includes the TF-
IDF weighting.
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Image Relevance Class Relevance
METEOR CIDEr Similarity Rank (1-200)

Better is... higher higher higher lower

Definition 27.9 43.8 42.60 15.82
Description 27.7 42.0 35.3 24.43

Explanation - Label 28.1 44.7 40.86 17.69
Explanation - Discr. 28.8 51.9 43.61 19.80
Explanation (FULL) 29.2 56.7 52.25 13.12

TABLE I
RESULTS OF THE EVALUATION WITH THE METRICS STATED IN CHAPTER

V-C, WITHOUT THE BIRD EXPERT RANK. THE WHOLE MODEL
OUTPERFORMS ALL ABLATION MODELS IN THESE CATEGORIES.

Best Explanation
Bird Expert Rank (1-5)

Better is... lower
Definition 2.92
Description 3.11

Explanation - Label 2.97
Explanation - Discr. 3.22
Explanation (FULL) 2.78

TABLE II
RESULTS OF THE EVALUATION WITH THE METRIC OF BIRD EXPERTS AS

STATED IN CHAPTER V-C. AGAIN, THE GRAND MODEL STANDS OUT
AGAINST ABLATION MODELS.

differences in the production of the models. The highlights
entail a comparison

1) between explanation, ablations, and baseline models in
figure 14.

2) of definitions and explanations in figure 13.
3) of descriptions and explanations in figure 11.
4) of the effect of conditioning the model on a different

label in figure 12.
With respect to 1) it is noticeable how in all six examples
the explanation model picked out correct attributes, with the
definition of correct and wrong having been deemed by the
authors. None of the other models was capable of being this
consistent and seemed to pick sometimes wrong characteris-
tics. As for 2) it is unsurprising that the definition model has
not changed its output when given a different image with the
same label. This is expected, since the definition model is
only given the class information. The inclusion of the image
relevance by the explanation model is seen in the adaptation of
different attributes given a different image. In 3) the strength of
class information is visible in the form of more relevant class
attributes in the explanation sentences. The descriptions fail to
address more important features in comparison. Lastly in 4)
the value of information within the class label becomes visible.
When conditioned on a different label the model appears to
be picking out almost the same ideas of features regardless of
the image. This means, that the label itself can have a strong
influence over the features that need to be chosen.

VII. CONCLUSION

The authors have set out to produce explaining sentences
that require no technical knowledge of computer science to
be understood and succeeded. Related works have produced

Fig. 11. Comparison of sentences generated using description and
explanation-discriminative models. The paper argues that while both are ca-
pable of accurately describing visual attributes, the explanation-discriminative
model captures more ’class-specific’ attributes. These features are emphasized
in bold.

Fig. 12. An example set for the effect of a forced label change on the
produced explanation. For some bird classes, such as ’Painted Bunting’, the
label carries valuable information that impacts the explanation.

explanations that are either rule-based, require filling in a pre-
determined template or required expert level knowledge of the
design of the system. The main contribution, the introduction
of a reinforcement-learning reward function to build a loss
function around has also been novel up to the release date
of the paper. Through the analysis of the quantitative results
an either slightly better, or convincingly better performance
of the full model compared to ablations and baselines could
be shown, when checked by modern linguistic metrics. The
qualitative results indicate some more nuanced details, as seen
by the authors. However, it remains uncertain, whether these
examples have been cherry-picked to fit the narrative or are
simply anecdotal, as is the case for implying a major attribute
on merely 18 examples of 200 classes and 11788 images. The
performance of the model can’t be denied though, and it has
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Fig. 13. A comparison of generated explanations and definitions. Each
explanation on the top mentions an attribute which is not present in the image
on the bottom corresponding to it. In contrast to definitions, the explanation
model adjusts its output based on visual evidence.

Fig. 14. Example sentences generated by the baseline models, ablation
models, and full explanation model. Correct attributes are highlighted in
green, mostly correct attributes in yellow, and incorrect attributes in red. The
explanation model discusses image relevant and class relevant features in these
examples seemingly consistently.

definitely proved to be another step towards more explainable
neural network systems. It would surely be helpful if future
research were to look further into the introspection of such an
approach, covering both grounds of explanations for a system.
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