Kann man verstehen, wie intelligente Algorithmen entscheiden?

Ist künstliche Intelligenz gefährlich?

Andreas Haller

Universität Heidelberg

24. Mai 2017

- Vertrauen in Entscheidungen
- 2 Gefahren
- 3 Erklärungen zu Entscheidungen
 - lokale Approximation
 - VQA Visuell Fragen beantworten
- 4 Täuschung
- 5 Zusammenfassung

Andreas Haller 24. Mai 2017 1 / 34

Vertrauen in Entscheidungen Entscheidungen treffen

Mensch

- Sinneseindrücke seperat verarbeiten
- linke Gehirnhälfte nutzt Erfahrung zur Vereinheitlichung
- Unterbewusste Entscheidung wird von Interpreter zu Geschichte verarbeitet

Andreas Haller 24. Mai 2017 2 / 34

Mensch

- Sinneseindrücke seperat verarbeiten
- linke Gehirnhälfte nutzt Erfahrung zur Vereinheitlichung
- Unterbewusste Entscheidung wird von Interpreter zu Geschichte verarbeitet

Computer

- Input (Wort, Bild) in hidden Layers verarbeitet
- mehrere letzte Layer vereinheitlichen
- Begründung der Entscheidung?

Andreas Haller 24. Mai 2017 2 / 34

Vertrauen:

- Performance des Modells
- Robustheit
- Modell wird verstanden
- ⇒ Konsens der Anwender & Entwickler: Interpretierbarkeit ist Grundlage für Vertrauen

Andreas Haller 24. Mai 2017 3 / 34

Vertrauen in Entscheidungen Interpretierbarkeit

- 1. Transparenz vs. Black-Box
- Konvergenz, eine Lösung,
 Oberfläche des Fehlers
- Repräsentation von Parametern
- komplett nachvollziehbar
- Ergebnis wiederholbar durch Mensch in annehmbarer Zeit

Andreas Haller 24. Mai 2017 4 / 34

Vertrauen in Entscheidungen Interpretierbarkeit

- 1. Transparenz vs. Black-Box
- Konvergenz, eine Lösung,
 Oberfläche des Fehlers
- Repräsentation von Parametern
- komplett nachvollziehbar
- Ergebnis wiederholbar durch Mensch in annehmbarer Zeit

- 2. nachträgliche Erklärungen
- natürliche Sprache (Merkmale, Bildunterschriften, "Sieht aus wie . . . ")
- Visualisierungen (Repräsentationen, Aufmerksamkeiten)

?Transparent $\Rightarrow \Leftarrow$ Intelligent?

⇒ Fokus auf Erklärungen

Andreas Haller 24. Mai 2017 4 / 34

Gefahren

- 1 Vertrauen in Entscheidunger
- 2 Gefahren
- 3 Erklärungen zu Entscheidungen
 - lokale Approximation
 - VQA Visuell Fragen beantworten
- 4 Täuschung
- 5 Zusammenfassung

Andreas Haller 24. Mai 2017 5 / 34

Grenzen Maschinellem Lernens

- Ziel: Minimierung des Errors ⇒ ← Komplexität der Realität
- Verallgemeinerung $\hat{=} \mathcal{L}oss(Test) \mathcal{L}oss(Training)$ aber Test und Trainings-Set aus gemeinsamer Distribution
- übertriebenes Vertrauen in Performance des Modells wegen Erfolg auf Validierungs-Set und nicht auf Realität
- ohne Hintergrundinformationen können Prognosen irreführend sein

Andreas Haller 24. Mai 2017 6 / 34

Diskriminierung

- 1. Problem: Datensätze mit sozialem Bezug
- Lösung:
 - -Löschen von Features mit direktem Bezug zur Diskriminierung

Problem: Korrelationen bleiben erhalten

-Löschen aller korrelierenden Features

Problem: Es bleiben keine sinnvollen Features übrig

- 2. Problem: Randgruppen wegen erhöhter Unsicherheit benachteiligt
- Lösung: Repräsentation von Randgruppen erhöhen

Andreas Haller 24. Mai 2017 7 / 34

Diskriminierung

- 1. Problem: Datensätze mit sozialem Bezug
- Lösung:
 - -Löschen von Features mit direktem Bezug zur Diskriminierung

Problem: Korrelationen bleiben erhalten

-Löschen aller korrelierenden Features

Problem: Es bleiben keine sinnvollen Features übrig

- 2. Problem: Randgruppen wegen erhöhter Unsicherheit benachteiligt
- Lösung: Repräsentation von Randgruppen erhöhen

Wichtig:

- Wahl des Datensatzes
- Erklärungen, um Diskriminierung im Entscheidungsprozess auschließen zu können

Andreas Haller 24. Mai 2017 7 / 34

Erklärungen zu Entscheidungen

- 1 Vertrauen in Entscheidunger
- 2 Gefahren
- 3 Erklärungen zu Entscheidungen
 - lokale Approximation
 - VQA Visuell Fragen beantworten
- 4 Täuschung
- 5 Zusammenfassung

Andreas Haller 24. Mai 2017 8 / 34

LIME - Lokale interpretierbare, modellunabhängige Erklärungen

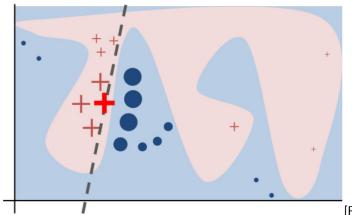
Ziel: lokale Approximation von Black-Box Modellfunktionen f durch interpretierbare Funktionen G mit Abstandsfunktion Π_x

$$\xi(x) = \arg \min_{g \in G} \underbrace{\mathcal{L}(f, g, \Pi_x)}_{\text{Loss der Approx.}} + \underbrace{\Omega(g)}_{\text{Komplexität}}$$
(1)

z. B.
$$\Omega(g) = \begin{cases} \infty & \#\text{words} > K \\ 0 & \#\text{words} \le K \end{cases}$$
 (2)

Andreas Haller 24. Mai 2017 9 / 34

Erklärungen zu Entscheidungen lokale Approximation



[Ribeiro et al.(2016)]

$$\mathcal{L}(f,g,\Pi_x) = \sum_{z,z' \in Z} \Pi_x(z) (f(z) - g(z'))^2$$
 (3)

$$mit z' \in N_{eigh.}(x')$$
 (4)

und
$$t_{rafo}(z') = z$$
 (5)

und mit einer Definitionsbereichstransformation $t_{rafo}: D(g) \rightarrow D(f)$

Andreas Haller 24. Mai 2017 10 / 34

Nachteil

- nicht komplex genug Superpixel $\Rightarrow f(Sepia) = Retro$
- f in Umgebung von x komplett nicht-linear
 ⇒ g ist Müll

Andreas Haller 24. Mai 2017 11 / 34

Nachteil

- nicht komplex genug Superpixel $\Rightarrow f(Sepia) = Retro$
- f in Umgebung von x komplett nicht-linear \Rightarrow g ist Müll

Vorteil

- modellunabhängig
- Erklärung vorhanden
 - Fokus auf Wörter
 - Fokus auf Bildbereiche

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Top-3-Prognosen: Elektische Gitarre (p=0,32), Akustische Gitarre (p=0,24) & Labrador (p=0.21). Das Griffbrett erklärt die falsche Prognose für Elektrische Gitarre. Entnommen aus [Ribeiro et al.(2016)]

Andreas Haller 24. Mai 2017 11 / 34

VQA - Visuell Fragen beantworten

[Goyal et al.(2016)]

Question: Is this a whole orange? Predicted Answer: no **Human:** Why? Evidence/Support from Input Question IS this a whole orange?

Andreas Haller 24. Mai 2017 12 / 34

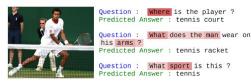
Wörter löschen

Superpixel mit $\varnothing Farbe$ ersetzen


```
Question: What vegetable is on the plate?
Predicted Answer: broccoli

Question: What color is the plate?
Predicted Answer: white

Question: Is there meat in this dish?
Predicted Answer: no
```



(a)

Question : What kind of bird is perched on the sill? Predicted Answer : parrot

Question : What type of fruit is the plate?

Predicted Answer : banana

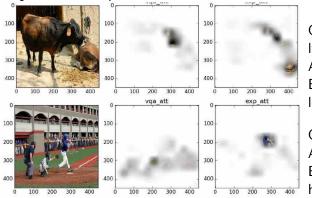
(b)

[Goyal et al.(2016)] Wh-Wörter, Adjektive & Substantive besonders wichtig

Andreas Haller 24. Mai 2017 13 / 34

Antwort & Erklärung

jeweils in Sprache und mit Aufmerksamkeitsabblindung



Q: What kind of animal is lying on the ground?

A: Cow. (correct)

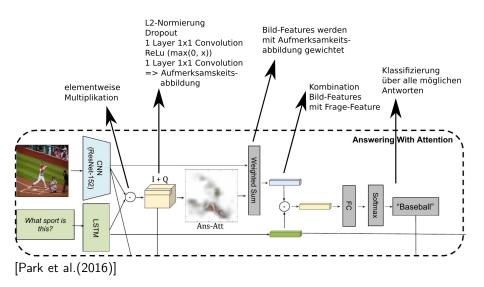
E: Because it has four legs and looks like a cow.

Q: What game is this?
A: Baseball. (correct)

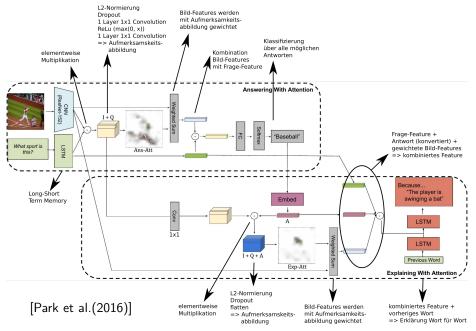
E: Because the player is holding a bat.

[Park et al.(2016)]

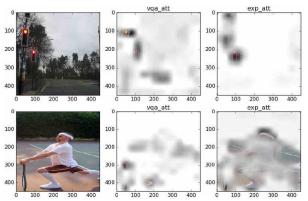
Andreas Haller 24. Mai 2017 14 / 34



Andreas Haller 24. Mai 2017 15 / 34



Andreas Haller 24. Mai 2017 16 / 34



[Park et al.(2016)]

Q: Should we stop? A: No. (wrong: Yes) E: Because the light is green.

Q: What is the person doing?

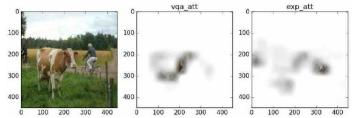
A: Playing tennis. (wrong: Streching)

E: Because he is holding a tennis racket.

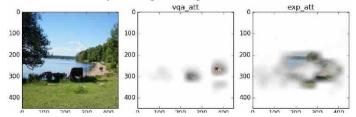
Andreas Haller 24. Mai 2017 17 / 34

What kind of animal is this? Cow.

Because it has four legs and looks like a cow.

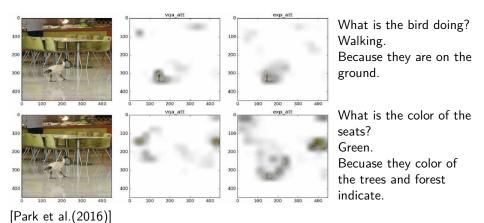


Because they are grazing in a field like cows.



Zwei Bilder, gleiche Antwort, unterschiedliche Begründungen [Park et al.(2016)]

Andreas Haller 24. Mai 2017 18 / 34



Ein Bilder, zwei unterschiedliche Fragen

Andreas Haller 24. Mai 2017 19 / 34

Verbesserungen von neuronalen Netzen aufgrund von Erklärungen bei Fehlprognosen

- Mehr Instanzen hinzufügen
- Klassifikator ungeeignet ⇒ Klassifikator/Modell neu
- Datensatz ungeeignet ⇒ Ersatz
- Mensch entscheidet & Erklärung ist Unterstützung

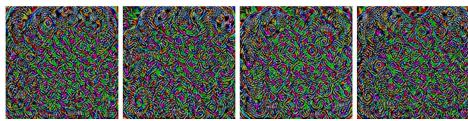
Andreas Haller 24. Mai 2017 20 / 34

Täuschung

- 1 Vertrauen in Entscheidunger
- 2 Gefahren
- 3 Erklärungen zu Entscheidungen
 - lokale Approximation
 - VQA Visuell Fragen beantworten
- 4 Täuschung
- 5 Zusammenfassung

Andreas Haller 24. Mai 2017 21 / 34

Bisher: individuell pro Bild ein Optimierungsproblem Jetzt: eine Störung für alle Bilder eines Netzwerks



4 universelle Störungen eines Netzwerks [Moosavi-Dezfooli et al.(2016)]

Andreas Haller 24. Mai 2017 22 / 34

Algorithmus 4.1 : Computation of universal perturbations from [Moosavi-Dezfooli et al.(2016)]

```
1 Data: Data points X,
             classifier \hat{k}.
             desired l_p norm of the perturbation \xi,
             desired accuracy on perturbed samples \delta
  Result: Universal perturbation vector v
   Initialize v \leftarrow 0.
  while Err(X_v) \leq 1 - \delta do
        for x_i in X do
5
             if \hat{k}(x_i + v) = \hat{k}(x_i) then
6
                 \Delta v_i \leftarrow \arg\min ||r||_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i)
7
                 v \leftarrow \arg\min ||v + \Delta v_i - v'||_2 subject to ||v'||_p \le \xi
8
             end
        end
   end
```

Andreas Haller 24. Mai 2017 23 / 34

		CaffeNet [8]	VGG-F [2]	VGG-16 [17]	VGG-19 [17]	GoogLeNet [18]	ResNet-152 [6]
ℓ_2	X	85.4%	85.9%	90.7%	86.9%	82.9%	89.7%
	Val.	85.6	87.0%	90.3%	84.5%	82.0%	88.5%
ℓ_{∞}	X	93.1%	93.8%	78.5%	77.8%	80.8%	85.4%
	Val.	93.3%	93.7%	78.3%	77.8%	78.9%	84.0%

Fehlklassifizierungsraten universeller Störungen auf unterschiedlichen neuronalen Netzwerken.

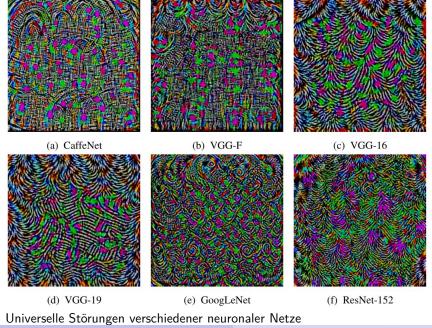
	VGG-F	CaffeNet	GoogLeNet	VGG-16	VGG-19	ResNet-152				
VGG-F	93.7%	71.8%	48.4%	42.1%	42.1%	47.4 %				
CaffeNet	74.0%	93.3%	47.7%	39.9%	39.9%	48.0%				
GoogLeNet	46.2%	43.8%	78.9%	39.2%	39.8%	45.5%				
VGG-16	63.4%	55.8%	56.5%	78.3%	73.1%	63.4%				
VGG-19	64.0%	57.2%	53.6%	73.5%	77.8%	58.0%				
ResNet-152	46.3%	46.3%	50.5%	47.0%	45.5%	84.0%				

Spalte: universelle Störung aus gegebenem Netzwerk

Zeile: Ergebnis für dieses Netzwerk mit gegebenen Störungen

[Moosavi-Dezfooli et al.(2016)]

Andreas Haller 24. Mai 2017 24 / 34



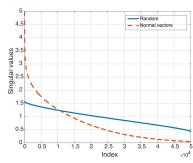
Andreas Haller

24. Mai 2017

25 / 34

Mathematische Erklärung:

- Viele Instanzen fehlklassifiziert zu dominanten Labels mit großer Fläche im Bildraum; genauer:
- binärer Klassifikator hat 1 Normalvektor
- Matrix aus Normalvektoren aus Umgebung von n Instanzen zur Entscheidungsgrenze: $N = \left[\frac{r(x_1)}{||r(x_1)||_2} \cdots \frac{r(x_n)}{||r(x_n)||_2}\right]$
- Singularwerte von N nehmen stark ab
 ⇒ große Korrelation & Redundanzen im
 Netz
 ⇒ Unterraum U' mit d' << d enthält
 meisten Normalvektoren
- Vektor aus U' erzielt 38%
 Fehlklassifizierungsrate
 (10% für zufälligen Vektor)
- Robustheit durch Lernen auf Störungsbildern: VGG-F 93,7% \rightarrow 76,8%



[Moosavi-Dezfooli et al.(2016)]

- Vertrauen in Entscheidunger
- 2 Gefahren
- 3 Erklärungen zu Entscheidungen
 - lokale Approximation
 - VQA Visuell Fragen beantworten
- 4 Täuschung
- 5 Zusammenfassung

Andreas Haller 24. Mai 2017 27 / 34

Nutzung intelligenter Algorithmen:

- Verbrechensbekämpfung
- Personenerkennung
- militärische KI
- gefährliche Aufgaben
- Qualitätssicherung
- Gewinnmaximierung
- o etc.

Andreas Haller 24. Mai 2017 28 / 34

Gefahren:

- Diskriminierung
- Vortäuschung falscher Tatsachen
- falsche Beratung bis hin zum Tod (Arzt)
- Überwachung und Schrittverfolgung
- Verurteilung im Gericht aufgrund von schlechten Datensätzen

Andreas Haller 24. Mai 2017 29 / 34

Chancen durch besseres Verständnis:

- Vertrauenssteigerung
- Verbesserung der Algorithmen und Datensätze
- Beratung für Ärzte
- Automatisierung von Prozessen (da Vertrauen)
- Problemlösung durch ungehinderten Fortschritt
- Prozesse sind gerechter wg. größerer Datenbank und Vergleichen

Andreas Haller 24. Mai 2017 30 / 34

Probleme im Verständnis:

- nicht Open-Source
- Ottonormalverbraucher versteht Code nicht
- Multi-dim. mathematische Begründung
 ⇒ ← menschliches Denken

Andreas Haller 24. Mai 2017 31 / 34

Verbesserung der Erklärung seitens der Politik:

- Verbraucherzentrale des Bundesverbandes: TÜV für Algorithmen
- Ab April 2018: General Data Protection Regulation (GDPR) EU-weit Pflicht zu nicht-diskriminierenden Algorithmen & Recht auf Erklärung:
 - dass und was an Daten gesammelt wird
 - wie eine Entscheidung zustande kommt
 - Möglichkeit, Prognosen korrigieren zu können

Strafen von bis zu 4% des Umsatzes

Andreas Haller 24. Mai 2017 32 / 34

Schlussplädoyer

Veständnis? - Nein, da nicht transparent. Vertrauen? - Ja, aber nur bis zu einem gewissen Grad.

Verlust der Kontrolle ist gefährlich, da Entscheidungsfindungsprozess nicht bekannt ist.

Andreas Haller 24. Mai 2017 33 / 34

Literatur

Michael S Gazzaniga. The ethical brain.

Dana press, 2005

Bryce Goodman and Seth Flaxman.
European union regulations on algorithmic decision-making and a"right to explanation".

arXiv preprint arXiv:1606.08813, 2016.

Yash Goyal, Akrit Mohapatra, Devi Parikh, and Dhruv Batra. Towards transparent ai systems: Interpreting visual question answering models.

arXiv preprint arXiv:1608.08974, 2016.

Zachary C Lipton.

The mythos of model interpretability. arXiv preprint arXiv:1606.03490, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

Universal adversarial perturbations. arXiv preprint arXiv:1610.08401, 2016.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Bernt Schiele, Trevor Darrell, and Marcus Rohrbach.

Attentive explanations: Justifying decisions and pointing to the evidence.

arXiv preprint arXiv:1612.04757, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.

Why should i trust you?: Explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM, 2016.