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1 Lecture 15/04

1.1 Goals

• Find a function Y = f (X ), where X ∈ RD
:

– Y ∈ R or RM
: Regression,

– Y ∈ {1, ...,C}1: Classi�cation2

and learn the desired function f from training data:

– {(Xi ,Yi )}
N
i=1

: Supervised (correct answer known),

– {Xi }
N
i=1

: Unsupervised (must infer interesting categories).

• The function f stems from a model class (prede�ned, parameterized by θ ), i.e.

f (X |θ ). The optimal θ are de�ned by the loss function Loss (Xi ,Yi |θ ) → R:

choose θ such that

∑
i

Loss (Xi ,Yi |θ ) is minimized.
3

• loss/gain are selected according to the application

• generalization vs. over�tting: Loss on independent data (test set) may be much

bigger than loss on training data.

• predict generalization error:

– theoretical models (e.g. (Vapnik-Chervonenkis) VC dimension)

– empirical on independent test data or via cross-validation

• use models that generalize well:

– simple models (|θ | < N )
4

– regularization (restrict the search space for θ )
5

– ensembles (combine several classi�ers)
6

– randomization

1C: class count

2
We will mainly concentrate on classi�cation.

3
...or a gain is maximized.

4
e.g. linear regression

5
e.g. Lasso

6
e.g. random forests, boosting

1



1 Lecture 15/04

1.2 Notation

feature matrix X of dimension N × D 7

instance index i (i′,i1,i2), i = 1, ...,N and Xi is a row of X

feature index j (j′, j1, j2), j = 1, ...,D and X j is a column of X

class index k = 1, ...,C Depending on the algorithm/context we also use k ∈ {0,1} or

k ∈ {−1,1}.

1.3 Linear Models for Classification

• Assume that the elements contained in the training data are i.i.d
8,9

, i.e. (Xi ,Yi ) ⊥⊥
(Xi ′,Yi ′ ), i , i

′
.

• in general, there are 3 approaches:

1. Learn a decision function: Ŷ = f (X |θ ), f : RD → {1, ...,C}.

This gives us a hard decision on class membership with no con�dence estimate.

2. Learn class posterior probabilities: p (Y = k |X ;θ ) for all k : RD → [0,1], s.t.∑
k p (Y = k |X ;θ ) = 1

10
.

This approach always implies 1. with

f (x ) = arg max

k
p (Y = k |X ;θ ) = Ŷ

, “winner takes all” but with an added con�dence:

p (Ŷ |X ;θ ) −maxk,Ŷ p (Y = k |X ;θ )11

giving us a soft class membership.

3. Generative model (can be used to generate new data): learn the per class

likelihood + prior probability with Bayes’ theorem

p (Y |X ) =
p (X |Y )p (Y )

p (X )
where p (X ) =

∑
k

p (X |Y = k )p (Y = k )

.

– Learn p (Y = k ) = Nk
N with Nk : Number of class k instances in training

data.

7
With N the instance count and D the feature count.

8
Independent, identically distributed

9
If this assumption is violated probabilistic graphical models are a possibility.

10
Special case C = 2: p (Y = 1|X ;θ ) = 1 − p (Y = 0|X ;θ )

11
for C = 2:

p (Ŷ |X ) − (1 − p (Ŷ |X )) = 2p (Ŷ |X ) − 1⇔ p (Ŷ |X ) − 1

2

2



1.3 Linear Models for Classi�cation

– Learn data likelihood per class ∀k : p (X |Y = k ;θk ). How are the instances

of class k distributed in feature space (= density estimation problem)?

This approach implies 2. via Bayes’ rule and 1. via “winner takes all”.

• 1. and 2. are called discriminative models.

Application to linear models:
12

1.3.1 LDA

• Assume that p (X |Y = k ,θk ) is a Gaussian distribution for all k with a single joint

covariance
13

(otherwise: QDA (see ML1)).

Figure 1.1: Two examples for linear decision boundaries in 2D for the 2 class case of LDA.

• Fit the Gaussians with:

k di�erent means: µk =
1

Nk

∑
i:Yi=k Xi

Total mean: µ = 1

N

∑
i Xi

One joint covariance matrix: Σ = 1

N

∑
i (Xi − µYi )

T(Xi − µYi ).

• Per class likelihood is given by:

p (X |Y = k ) =
1√

(2π )D |Σ|
exp

(
−1

2
(X − µk )Σ

−1(X − µk )
T
)

.

12
in the order 3. (linear discriminant analysis (LDA)) 1. (perceptron, linear support vector machine) 2.
(logistic regression)

13
It means classes di�er only by their location and not by their shape. In the picture we also see an example

with varying covariances.

3



1 Lecture 15/04

• This leads to a linear posterior if C = 2:

p (Y = 1|X ) = σ (Xβ + b)

with the logistic function σ (t ) = (1 + exp(−t ))−1
and

β = Σ−1(µT
1
− µT−1

), b = −µβ .

⇒ Decision rule is de�ned by:

arg max

k
p (Y = k |X ) ⇔ Ŷ = f (x ) =




1, Xβ + b > 0

−1 Xβ + b < 0

where Xβ + b = 0 is called the decision boundary.

• This is a very good model if Gaussian assumption holds (approximately).

1.3.2 Directly learn the decision function

• For simplicity, we augment the data matrix X with a column of 1s⇒ thereby we

can absorb b into β .

• we consider C = 2, Y ∈ {−1,1}

Perceptron (Rosenblatt, 1958)

– If the classi�er is always correct, we have ∀i : YiXiβ > 0. ⇒We should

pay a penalty, when YiXiβ < 0

Loss (Xiβ ,Yi ) =



−YiXiβ , YiXiβ < 0

0, YiXiβ ≥ 0

= (−YiXiβ )+

Loss (β ) =
∑

i:Yi,Ŷi

−YiXiβ =
∑
i

(−YiXiβ )+

.

– Perceptron algorithm: gradient descent on loss function

∂Loss

∂β
=

∑
i:Yi,Ŷi

−YiXi

∗ choose β (0) randomly, learning rate τ

∗ repeat until convergence (t = 1, ...,Tmax)

β (t ) = β (t − 1) + τ
∑

i:Yi,sign(Xiβ (t−1) )

YiXi

– Converges in �nitely many steps if training data are linearly separable

(zero training error).

4



2 Lecture 17/04

• example generative model: LDA

• example decision function: Perceptron

– better: linear support vector machine (SVM)

– disadvantages Perceptron:

∗ solution not unique if data are separable, but most solutions generalize

badly

∗ may not converge if data non-separable (oscillation)

– solution: require “safety margin” around the decision plane and maximize its

size⇒ hinge loss: already pay penalty if classi�cation is correct, but with low

Figure 2.1: Depiction of perceptron loss (max(0,−YiXiβ )) and hinge loss (max(0,1 − YiXiβ ))
functions as well as the squared hinge loss (max(0,1 − YiXiβ )

2
) for comparison.

con�dence

∗ The maximum margin plane is found by minimizing | |β | |2 = βTβ under

hinge loss if data are separable.

∗ For non-separable data: minimization of loss and of | |β | |2 cannot be

achieved simultaneously. ⇒ control trade-o� by regularization parameter

λ

5



2 Lecture 17/04

∗ SVM objective function

ˆβ = arg min

β

βTβ

2

+
λ

N

∑
i

max(0,1 − YiXiβ )

many algorithms

· standard solver for quadratic programming

· primal space algorithm: (stochastic) gradient descent, e.g. Pegasos

· dual space algorithms: sequential minimal optimization (SMO, LIB-
SVM); dual coordinate ascent (LIBLINEAR)

∗ Advantages:

· good practical performance, relatively easy training (choose λ by cross-

validation)

· dual formulation can be kernelized (non-linear classi�er)

∗ Disadvantage: con�dence is |Xiβ |, but this cannot be interpreted as proba-

bility of being correct

• alternative: learn the posterior probability p (Y |X ; β ) ⇒ if C = 2: con�dence

2p (Ŷ |X ) − 1

• The posterior probability of LDA is the logistic function (σ (z) = (1 + exp(−z))−1
),

p (Yi = 1|X ; β ) = σ (Xiβ ).

• choose β according to maximum likelihood rule: maximize likelihood of training

data
1

p ({Xi ,Yi }; β ) =
∏
i

p (Yi |Xi ; β ) =
∏
i

σ (YiXiβ )

de�ne loss negative log-likelihood:

− logp ({Xi ,Yi }; β ) = −
∑
i

logσ (YiXiβ ) =
∑
i

log(1 + exp(−YiXiβ ))

• Performance improves if we combine the loss with a regularization of β . ⇒ regular-

ized logistic regression (LR) objective:

ˆβ = arg min

β

βTβ

2

+
λ

N

∑
i

log(1 + exp(−YiXiβ ))

λ → ∞ gives us the traditional LR without regularization

• Many algorithms can solve this (see Minka 2003/2007, Bottou 2007 ), but since there

is no closed-form solution, iterative algorithms are needed.

1
use 1 − σ (z) = σ (−z)

6



1. gradient descent-type algorithms: work well because objective is convex

∂loss (Xi ,Yi ,β )

∂β
=
∂

∂β
log(1 + exp(−YiXiβ ))

=
1

1 + exp(−YiXiβ )
exp(−YiXiβ ) (−YiX

T
i )

=
(−1 + 1 + exp(−YiXiβ ))

1 + exp(−YiXiβ )
(−YiX

T
i )

= (1 − σ (YiXiβ )) (−YiX
T
i )

– (plain/batch) gradient descent: repeat until convergence
2
, t = 1, ...,Tmax:

β (t+1) = β (t ) + τ

(
λ

N

∑
i

(
1 − σ (YiXiβ

(t ) )
)︸                ︷︷                ︸

> 0 ≈




0, if correct

1, if false

YiX
T
i − β

(t )

)

– stochastic gradient descent (SGD): we want to minimizeE[loss (Xi ,Yi ,β )]

repeat until convergence
3
, t = 1, ....,Tmax:

∗ choose i ∈ 1, ...,N at random

∗ β (t+1) = β (t ) + τt
(
λ(1 − σ (YiXiβ

(t ) ))YiXi − β
(t )

)
– SGD with momentum 4

:

д(t+1) = (1 − µ )д(t ) + µ
(
λ(1 − σ (YiXiβ

(t ) ))YiXi − β
(t )

)︸                                  ︷︷                                  ︸
=f (t )

β (t+1) = β (t ) + τtд
(t+1)

here τt =
τ0

(1+t )3/4
, i.e. the rate should have a slower rate, д is initialized to

zero.

∗ What does the averaging mean?

д(t+1) =

T ′∑
t ′=0

wt ′ · f
(t−t ′) wt ′ = µ

t ′ = exp(−t ′/η)

i.e. wt ′ decays exponentially with η being the half life

⇒ η ≈ N : behavior should be similar to plain GD

2τ represents the learning rate

3τt =
τ0

1+t
4µ ∈ (0,1)

7



2 Lecture 17/04

– mini-batch SGD: choose NB instances at random, put them into mini-

batch B

β (t+1) = β (t ) + τ

(
λ

NB

∑
i∈B

(
1 − σ (YiXiβ

(t ) )
)
YiXi − β

(t )

)

– averaged SGD: similar to momentum, but smooth β instead of gradient

β (t+1) = β (t ) + τt
(
λ(1 − σ (YiXiβ

(t ) ))YiX
T
i − β

(t )
)

β
(t+1)
= (1 − µ )β

(t )
+ µβ (t+1)

– stochastic averaged gradient SAG:

д(t+1)
i =




д(t )i , i , i′

λ(1 − σ (Yi ′Xi ′β
(t ) ))Yi ′Xi ′ − β

(t ), i = i′

д(t+1) =
1

N

∑
i

д(t+1)
i = д(t ) +

д(t+1)
i ′ − д(t )i ′

N

β (t+1) = β (t ) + τtд
(t+1)

8



3 Lecture 22/04

3.1 Algorithms for Logistic Regression

• objective:

min

β

βTβ

2

+
λ

N

∑
i

(1 + exp(−YiXiβ ))

• gradient descent algorithm, stochastic GD

• Newton-type algorithms in primal and dual space

• reminder: Newton-Raphson-algorithm: optimize nonlinear function f (a), Taylor

series expansion around current guess:

f (a (t ) + ∆a) ≈ f (a (t ) ) + f ′(a (t ) )∆a +
f ′′(a (t ) )

2

∆a2 → min

∂d

∂∆a
f (a (t ) + ∆a) ≈ f ′(a (t ) ) + f ′′(a (t ) )∆a

!

= 0

⇒ ∆a = −
f ′(a (t ) )

f ′′(a (t ) )

if a is a vector: ∆a = −H−1 |a (t )∇f |a (t ) ⇒ update: a (t+1) = a (t ) + ∆a, need gradient

min

β

βTβ

2

+
λ

N

∑
i

(1 − σ (YiXiβ ))︸            ︷︷            ︸
σ (−YiXiβ )

(−YiX
T
i )

Hessian:
∂2Loss
∂β2
= I − λ

N (−σ ′(YiXiβ )︸     ︷︷     ︸
σ (t ) (1−σ (t ))

) Y 2

i︸︷︷︸
=1

X T
i Xi

∂2Loss

∂β2
= I +

λ

N

∑
i

σ (Xiβ ) (1 − σ (Xiβ ))X
T
i Xi = I + X TWX

whereW = λ
N diag (σ (Xiβ ) (1 − σ (Xiβ ))) is a N × N matrix

• simplify gradient usingW 1
:

λ

N
(1 − σ (YiXiβ ))YiX

T
i =

λ

N

∑
i

σ (Xiβ ) (1 − σ (Xiβ ))
Yi

σ (YiXiβ )
X T
i

= X TWỸ

1Ỹ = Yi
σ (YiXi β )

is N × 1

9



3 Lecture 22/04

• insert into Newton-Raphson update

β (t+1) = β (t ) + (I + X TW (t )X )−1(X TW (t )Ỹ (t ) − β (t ) )

= (I + X TW (t )X )−1

(
(I + X TW (t )X )β (t ) + X TW (t )Ỹ (t ) − β (t )

)
= (I + X TW (t )X )−1

(
X TW (t ) (Xβ (t ) + Ỹ (t ) )

)
= (I + X TW (t )X )−1X TW (t )Z (t )

where Z (t ) = Xβ (t ) + Ỹ (t )

• this is the formal solution of the weighted ridge regression problem

β (t+1) = arg min

β
(Z (t ) − Xβ )TW (t ) (Z (t ) − Xβ ) +

| |β | |2

2

⇒ Iterated Reweighted Least-Squares Algorithm (IRLS)

repeat until convergence, t = 1, ...Tmax

– computeW (t )
and Z (t )

– V (t ) = (W (t ) )1/2, X̃ (t ) = XV (t )
, Z̃ (t ) = Z (t )V (t )

– use a standard solver to minβ (Z̃
(t ) − X̃ (t )β )2 +

| |β | |2

2

• faster than GD or SGD on small datasets

• even faster: use fast approximation of the Hessian⇒ “quasi-Newton”, e.g. BFGS

(Broyden–Fletcher–Goldfarb–Shanno) algorithm

• Newton in dual space

• in the primal space, we approach the optimum from above: all β (t ) are upper

bounds of Loss (β∗) ≤ Loss (β (t ) )

• the dual problem approaches the optimum from below: ∀α (t )
: DualLoss (α∗) ≥

DualLoss (α (t ) )

• In di�cult optimization problems, one often brackets the (unknown) global optimum

between a primal upper bound and a dual lower bound. The di�erence between the

bounds is the “duality gap”.

• If the dual bound is tight, the duality gap is zero, and primal and dual solutions

agree, e.g. LR.

• requirements on dual for LD:

– tight lower bound

– simple in β , s.t. it can be solved in β in closed form

10



3.1 Algorithms for Logistic Regression

Figure 3.1: Plot showing the logistic loss function in comparison to the above introduced

hinge loss.

• obvious choice: tangents of loss, parameterized by their slope

log(1 + exp(−t )) ≥ −αt − α logα − (1 − α ) log(1 − α ) α ∈ [0,1]

⇒ Laдranдian(β ,α ) =
βTβ

2
+ λ

N

∑
i (−αiYiXiβ − αi logαi − (1 − αi ) log(1 − αi )), re-

place loss with its lower bound s.t. αi ∈ [0,1]
2

∂Laдranдian

∂β
= β +

λ

N

∑
i

−αiYiX
T
i

!

= 0

⇒ β =
λ

N

∑
i

αiYiX
T
i

• insert into Lagrangian:

DualLoss (α ) = −
λ2

2N 2

∑
i,i ′

αiαi ′YiYi ′XiX
T
i ′ −

λ

N

∑
i

(αi logαi + (1 − αi ) log(1 − αi ))

• dual optimization problem: α∗ = maxα DualLoss (α ) s.t. αi ∈ [0,1]

2
with 0 log 0 := 0

11



3 Lecture 22/04

• solution via coordinate-wise Newton (one αi at a time)

∂Dual

∂αi
= −

λ2

N 2
YiXi

∑
i ′

(αi ′Yi ′Xi ′ ) −
λ

N

(
logαi +

αi
αi
− log(1 − αi ) −

(1 − αi )

(1 − αi )

)
= −

λ2

N 2
YiXi

∑
i ′

(αi ′Yi ′Xi ′ ) −
λ

N
log

αi
1 − αi

∂2Dual

∂α2

i

= −
λ2

N 2
Y 2

i XiX
T
i −

λ

N

1

αi
−
λ

N

1

1 − αi

= −
λ2

N 2
XiX

T
i −

λ

N

1

αi (1 − αi )

• Dual coordinate-wise Newton algorithm:

– choose α (0)
randomly

– repeat until convergence, t = 1, ...,Tmax

∗ α (t+1)
i = α (t )

i −
∂Dual
∂αi

∂2Dual
∂α2

i

∗ clip at [0,1]

– LIBLINEAR implements a slightly improved version (numerically more stable)

– seems to be the fastest algorithm for large N

3.2 Why is SGD fast for largeN ?

• 3 sources of error:

1. modeling error εmod: How far away is the (unknown) best model in our model

family from the truth
3
?

2. estimation/generalization error εest: How far away is our empirical opti-

mum (from �nite training set) from the theoretical (from in�nite data)
4
?

3. optimization error εopt: How far away is our solution (after �nitely many

iterations) from the true optimum (after in�nitely many iterations)
5
?

• our choice of algorithm in�uences 1. and 2., ε = εest + εopt

• Both errors should decrease at about the same rate, otherwise our e�orts on mini-

mizing one of them are useless.

3
can be reduced by a larger model family

4
can be reduced by a smaller model family or more training data

5
can be reduced by more iterations

12



3.2 Why is SGD fast for large N ?

• numerical analysis: εest ∈ O
(

logN
N

)
best case, O

( √
logN
N

)
worst case

ε ∼ εest ∼ εopt ∼
logN

N
*
,
or

√
logN

N
+
-

N ∼
1

ε
logN

logN ∼ log

1

ε
+ log logN︸    ︷︷    ︸

≈0

N ∼
1

ε
log

1

ε
(best case)

N ∼
1

ε2
log

1

ε
(worst case)

Algorithm Time per step Steps to accu-
racy

Time to accu-
racy εopt

Time to total
accuracy

SGD + Dual O (D) O ( 1

εopt

) O ( D
εopt

) O (Dε )

GD O (ND) O (log
1

ε
opt

) O (DN log
1

ε
opt

) O (D 1

ε2
(log

1

ε )
2)

Newton O (D2N ) O (log log
1

ε
opt

) O (D2N log log
1

ε
opt

) O ( D2

ε2
log

1

ε log log
1

ε )

• Fazit: on the long run SGD wins
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4 Lecture 24/04

4.1 Neural Networks

• linear classi�ers: only work when the data are approximately linearly separable,

otherwise we need a nonlinear method

• two approaches to construct nonlinear methods from linear ones:

1. augment the feature space

– measure more properties

– compute new features as nonlinear functions of the existing ones (e.g.

kernel SVM) (⇒ later)

2. non-linearly combine several linear classi�ers

– boosting: ŷ = sign(
∑

l αl fl (X )), fl (X ): linear classi�ers sign(Xβl + bl )

training: greedily add one classi�er at a time, minimize exponential loss

(ML1)

– decision tree: hierarchy of linear classi�ers

training: greedily maximize purity (minimize Gini impurity) (ML1)

• neural networks (NN) combine the ideas in 2. : connect linear classi�ers in parallel

(“layers” ) and layers in series (“multi-layer” or “deep” if ≥ 4)

• history:

– 1940/50s: �rst neuron models (Hebb, McCulloch/Pitts) and idea of multi-layered

architectures inspired by brain research and meant to explain the brain

– 1958: Perceptron and multylayer perceptron (Rosenblatt): �rst working training

algorithm (gradient descent on centered hinge loss), but no good algorithm for

multi-layer training

– 1969: book by Papert & Minsky: proved limitations of single layered perceptron

(cannot solve the XOR-problem) and they conjectured (falsly) that multi-layered

architectures are not much better.

⇒ �rst death

– 1986: Rumelhardt & Hinton: popularized backpropagation training for multi-

layer NN; �rst practical training algorithm for multi-layer NN⇒ �rst rebirth

– ... 1995:
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4 Lecture 24/04

∗ proof of universial approximation capability

∗ solved several di�cult toy problems

but:

∗ proof that exact training is di�cult (NP hard in worst case)

⇒ need training heuristics, but they are very di�cult to apply e�ectively

(“black art”)
1

∗ success on real problems was limited

∗ discovery of SVM, boosting and random forests (much better on practical

problems)

⇒ second death

– 2006:

∗ much larger training sets (less over�tting)

∗ GPU-based parallelization (100× speed-up)

∗ Hinton: discovery of unsupervised pre-training

⇒ second rebirth

∗ NN won several prestigious benchmark competitions

∗ training was still di�cult

– 2010 ...:

∗ interesting ideas to simplify training (dropout, dropconnect, ReLU activa-

tion, max out, ...)

∗ simpler architectures (fewer layers)

⇒ NN start to get interesting

4.2 NN architecture

• each neuron has arbitrary many inputs and a single output

• originally: neuron computes a weighted sum of the inputs and “�res” if a threshold

is exceeded (threshold activation function), inspired by the brain

• today: generalize for arbitrary activation functions:

Zi = φ (Xiβ + β0)

Zi is the response, φ the function, Xi the features, β the weights and β0 the bias
2

1
“Training is easy as long as you let Hinton do it.”

2
Usually, the bias is absorbed into β .
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4.2 NN architecture

Input # 1

Input # 2

Input # 3

Input # 4

Output

Hidden

layer

Input

layer

Output

layer

– activation functions motivated by brain research: step function, sign function

⇒ threshold “on-o�” behavior

– activation functions motivated by training algorithms: logistic function
3
, hy-

perbolic tangent
4

⇒ smooth versions of step & sign functions

– modern choices: piecewise linear functions: hinge function
5

(usually called

ReLU-“recti�ed linear unit” ); maxout activation (⇒ later)

almost everywhere di�erentiable⇒ sparse activation patterns, better general-

ization

• a neuron with sigmoid activation is simply logistic regression⇒ several neurons

needed

• “network architecture” = how many neurons and how to combine them (must be

�xed by network designer)

• in a “feed forward network” all connections are directed from input→ output⇒ NN

is a DAG (directed acyclic graph)

• opposite: recurrent network: information �ows forward and backward (popular in

time series analysis and not treated in this lecture)

• authors cannot agree on how to count layers:

1. count input and output as layers⇒ L = #hidden + 2

popular notation: D − H1 − H2 − ... −M to specify number of neurons in each

layer

2. most do not count the inputs

3. to avoid confusion, some use di�erent terms:

3φt = σ (t )
4φ (t ) = tanh(t ) = 2σ (2t ) − 1

5ϕ (t ) = max(0,t )

17



4 Lecture 24/04

– stages = # transitions between layers

– hidden layers

⇒ we take approach 2., but start counting at 0, input l = 0, output l = L

• notation:

number of layers L;

layer index l = 0,1, ...,L;

number of inputs/features: D, j = 0, ...,D6
;

number of outputs: M ,m = 1, ...,M ;

number of hidden neurons in layer l : Hl , if there is only 1 hidden layer:

H , h = 0, ...,H 7
;

B8
: 3-dimensional array of weights;

Bl matrix of weights between layer (l − 1) and l ;

Blh: column vector
9

input weights of neuron h in layer l ;

Blhj: single weight from neuron j in layer (l − 1) to neuron h in layer l ;

output (row) vector of all neurons in layer l : Zl ;

output of neuron h in layer l : Zlh;

φl: activation functions in layer l (all identical)

• example: 2-layer NN with 1 output neuron:

Ŷi = Z21 = φ2

*.
,

H1∑
h=0

B21h · φ1

*.
,

D∑
j=0

B1hjXij
+/
-

+/
-

6
0 being the bias neuron

7
0 being the bias neuron

8
actually capital β

9
(= β in a single linear classi�er)
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5 Lecture 29/04

5.1 Theoretical Capabilities of NN

• A 1-layer NN is just a set of independent LR
1

instances (or linear regression).

⇒ to be better, we need hidden layers

• The VC-dimension of a linear classi�er with D features is D + 1. NVC = D + 1 is the

largest training set where zero training error is always achievable, regardless of the

labels if C = 2 (ML1).

⇒ we can always reduce training error by adding more hidden neurons but beware

of over�tting

• consider the �rst stage: each hidden neuron in the �rst layer splits the feature space

into two half-spaces.

– their union partitions the feature space into convex cells (“polytopes” )

– encode the cells by a binary number according to the side of each hyperplane

– projects the feature space onto the corners of a H1-dimensional hyper cube

• these 2 properties can be used to construct a 2-layer (di�cult) or 3-layer (easy)

network with zero training error⇒ exercise

• universal approximation theorems (various versions): NN can learn arbitrary func-

tions

– e.g. Hornik, 1991 is one of the most general

∗ regression setting (includes the classi�cation setting via regression of the

posterior probabilities)

∗ one hidden layer, and one neuron with linear activation

∗ assume that the activation function of hidden neurons is continuous,

bounded and non-constant on every compact subset of RD

⇒ output
2
:

ˆf (x ) =
∑H1

h=0
B21hϕ1(B1hZ0)

∗ consider function space Lp , i.e. the set of all functions s.t.

Lp =


f : | | f | |p =

(∫
RD
| f (x ) |pdX

)
1/p


1
logistic regression

2
Notation update: Z0 = [1 X T

]
T
, i.e. a column vector
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5 Lecture 29/04

∗ Theorem: for every function f ∈ Lp , there exist parameters H1,B1,B2

such that (∫
ρ
| f − ˆf |pdx

)
1/p

< ε

where ρ ∈ RD
arbitrary compact substract, ε > 0 arbitrary small

⇒ in principle, one hidden layer is su�cient
3

5.2 The Practice

• intuition: Transform the data via several layers until they cluster cleanly into few

easily separable clusters.

• prediction:

input layer Z0 ∈ [(D + 1) × 1]

hidden layer Z̃l = BlZl−1 ∈ [Hl × 1] = [Hl × Hl−1][Hl−1 × 1] layer (l − 1) to l

Zl = φl (Z̃l ) pointwise [Hl × 1]

output layer L depends on the application

regression linear activation Ŷi = Z̃T
L (= ZT

L ) ∈ [1 ×M]

decision rule ŷ = arg maxk Z̃Lk , k ∈ 1, ...,C number of classes

2-class posterior p (Ŷi = 1|Xi ) = ZL = σ (Z̃L), k ∈ {0,1}, scalar output

multi-class posterior (C ≥ 2) ⇒ k ∈ {1, ...,C},∀k : p (Ŷi = k |Xi ) = ZLk =
eZ̃lk∑
k ′ e

Z̃Lk ′
4

,

5.3 Backpropagation

fancy name for gradient descent training of the weights

• De�ne Loss (application speci�c⇒ later) and its derivatives

δl :=
∂Loss

∂Zl
=
∂Loss

∂Zl+1

∂Zl+1

∂Zl
= δl+1

∂Zl+1

∂Zl

• Derivatives w.r.t weights:

∂Loss

∂Bl
=
∂Loss

∂Zl︸︷︷︸
δl

= δl
∂Zl

∂Z̃l

∂Z̃l

∂Bl
= δlφ

′
l (Z̃l )︸   ︷︷   ︸

[Hl×1]

ZT
l−1︸︷︷︸

[1×Hl−1
]

∈ [Hl × Hl−1]

3
The problem with this theorem is, that it only gives a statement of existence with no indication on how to

construct
ˆf .

4
known as “soft-max function” a generalization of the sigmoid function
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5.3 Backpropagation

• common activation functions:

σ ′(Z̃l ) = Zl (1 − Zl ),

tanh
′(Z̃l ) = 1 − Z 2

l
,

ReLU φ (t ) = max(0,t ),

φ′(Z̃l ) = step(Z̃l ) =



1 Z̃l > 0

0 else

Figure 5.1: Some depictions of widely used activation functions.

• derivatives w.r.t. to previous layers:

∂Zl+1

∂Zl
= φ′l+1

(Z̃l+1)
Z̃l+1

∂Zl
= BT

l+1
φ′l+1

(Z̃l+1)

• backpropagation algorithm:

– init δL =
∂Loss
∂Zl

,
˜δL = δLφ

′
L (Z̃L)

– for l = L, ...,1 :

∆Bl = ˜δlZ
T
l−1

δl−1 = BT
l

˜δl
˜δl−1 = δlφ

′
l (Z̃l )

– B (t+1)
l
= B (t )

l
− τ∆B (t+1)

l
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5 Lecture 29/04

5.4 Loss functions depend on application:

regression: Loss = 1

2
(Y − Ŷ )2 ⇒ δL = Ŷ − Y = ˜δL (because φL (t ) = t )

2-class posterior: Loss = −Y log p̂ − (1 − y) log(1 − p̂)

δL =
∂Loss
∂Zl
=




−1/Zl , i f y = 1

1/(1 − ZL), i f y = 0

,
∂ZL
∂Z̃L
= ZL (1 − ZL)

˜δL = δL
∂ZL
∂Z̃L
=




ZL − 1, i f Y = 1

ZL, i f Y = 0

• regularization: RLoss = Loss + Reдularizer . Popular Regularizers: L2, L1
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6 Lecture 06/05

6.1 NN training algorithm

• Initialization:

– choose network architecture (# layers, # neurons) and learning rate (schedule)

– init the weights B (0)

• repeat until convergence, t = 1, ...,Tmax

– ∆B (t ) = 0

– for i in instances
(t )

=




a single random i (SGD)

a random mini-batch

full training set (GD)

∗ forward step: prediction

Z0 = [1 X T
i ]

T

for l = 1, ...,L

Z̃l = B (t−1)
l
− Zl−1

Zl = φl (Z̃l )

∗ compute loss gradient acc. to application

˜δL =
∂Loss (ZL,Yi )

∂Z̃L

∆B (t )
L + =

˜δLZ
T
L−1

∗ backward sweep (“error (gradient) backpropagation”)

for l = L − 1, ...,1

δl =
(
B (t−1)
l+1

)T
˜δl+1

˜δl = δl ∗ φ
′
l (Z̃l ) pointwise

∆B (t )
l
+ = ˜δlZ

T
l−1

– weight update:

B (t ) = B (t−1) − τt∆B
(t ) + µ (B (t−1) − B (t−2) )
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6 Lecture 06/05

6.2 Classical Tricks to make this work

• regularization, e.g.
λ

2N | |B | |
2

F ,
λ
L | |B | |1, max-norm regularization Blh the weights for

neuron h at layer l : Blh = Blh
min(C,| |Blh | |2)
| |Blh | |2

(| |Blh | |2 ≤ C , always C = 3, ...,4 to keep

the expected input in the non-constant range of the sigmoids)

σ ′(t ) = σ (t ) (1 − σ (t )) ≈ 0 if σ (t ) ≈ 0,1

tanh
′(t ) = 1 − tanh

2(t ) ≈ 0 if t ≈ ±1 ⇒ no gradient is propagated when the

nonlinearity is saturated

• weight initialization: init such that neurons are not saturated at the beginning

– standardize features (zero mean, unit variance)

– assume that the neuron activations are zero mean and unit variance
1

– initialize weights with zero mean and variance s2

– input properties of next layer neuron

E(BlhZl−1) = E(Blh )E(Zl−1) = 0

var(BlhZl−1) = var(Blh )var(Zl−1) = s
2

Hl−1∑
h′=0

varZl−1,h′︸     ︷︷     ︸
=1

= (Hl−1 + 1)s2

– for gradient training to work, E(BlhZl−1) ± std(BlhZl−1) should not be in the

saturated region.

⇒
√
Hl−1 + 1s ≤ 1 (≤ 2), solve for s = 1√

Hl−1
+1

⇒ init Blh ∼ N (0, (Hl−1 + 1)−1) or ∼ U

(
−

√
3

Hl−1
+1
,
√

3

Hl−1
+1

)
always set the Blh0 = 0 (weight of bias neuron)

variant s = 1√
Hl−1

+Hl+1

2

• optimization algorithms

– plain gradient descent (“batch training”)

– stochastic gradient descent (“online training”)

– mini-batch SGD

⇒ need to adjust learning rate and momentum (→ later)

– methods that automatically adjust the step size

– usual suspects:

∗ Newton, quasi Newton (BFGS), conjugate gradient with line search

∗ RPROP:

1
only assume this for the weight initialization... in general it is wrong
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6.2 Classical Tricks to make this work

· idea: adjust the log of the training rate by gradient descent log(θt ) =
log(τt−1) + ∆t

⇒ multiplicative update on τ , after some math and simpli�cations

η (t )
lhj
=




η+(= 1.25), if ∇B (t )
lhj
∇B (t−1)

lhj
> 0

η−(= 0.7) else

τt ,lhj = min

(
τmax,max

(
τmin,τt−1,lhjη

(t )
lhj

))
∆B (t )

lhj
= ∆B (t−1)

lhj
− τt ,lhjsign(∇B (t )

lhj
)

· converges very quickly or diverges

· use with large minibatches

• termination criterion: training easily over�ts⇒ keep a separate validation set and

monitor the validation error

⇒ stop when validation error starts to go up

• learning rate and momentum for GD and SGD [Wilson & Martinez 2003]

– we want ∆B (t ) = −τtE
[
∂Loss
∂B

���t−1

]
, �nite data estimate:

E

[
∂Loss

∂B

]
=

1

NB

∑
i ∈ Batch

∂Lossi
∂B

�����t−1

– for the full GD: Batch = training set, NB = N ⇒ get accurate estimate of

E[дrad] at cost O (N )

– SGD: Batch = single instance, NB = 1⇒ inaccurate estimate at cost O (1)

– minibatch is between these extremes

– rule of thumb: the more accurate E[дrad] the bigger we can choose τ . τGD ≈√
NτSGD ⇒ the time for equal progress in GD is

√
N longer than SGD because

of O (N ).

– learning rate schedules:

∗ keep the learning rate constant

∗ divide τ → τ/10 when learning stalls (2x)

∗ τt =
τ0

1+t/t0
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7.1 RPROP

• normal update of a single weight: B (t )
lhj
= B (t−1)

lhj
− τ∆B (t )

lhj

• give each weight an individual training rate τlhj and train it via GD: logτ (t )
lhj
=

logτ (t−1)
lhj

+ ∆(logτ ) (t )
lhj
⇒ multiplicative update in τ itself

⇒ update rule B (t )
lhj
= B (t−1)

lhj
− τ (t )

lhj
∆B (t )

lhj
.

• after some math and approximations, we �nd: ∆B (t )
lhj
= sign

(
∂Loss
∂Blhj

���t
)

⇒ the gradient w.r.t B only determines the step direction not the length

• step length is completely absorbed into τ (t )
lhj

τ (t ) = max(τmin,min(τmax,τ
(t−1)
lhj

η (t )
lhj
))

η (t )
lhj
=




η+(= 1.25), if ∇B (t )
lhj
∇B (t−1)

lhj
> 0

η−(= 0.7) else

with τmin = 10
−7

, τmax = 10
−2

7.2 Dropout [Srivastava & Hinton 2012]

dropout

×

×

×

×

×

×

×

Figure 7.1: Depiction of a deep neural network demonstrating the in�uence of applying

dropout with p = 0.5.
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7 Lecture 08/05

• new regularization technique (breakthrough), similar to the randomization in deci-

sion trees⇒ random forest

• idea: randomly switch-o� part of the neurons in each training step.

⇒ forward sweep:

for l = 1, ...,L:

rl−1 ∼ Bernoulli (p)Hl−1
+1

[(Hl−1 − 1) × 1]

Z̃l = Bl (rl−1 ∗ Zl−1) pointwise

keep neurons with probability p.

• backpropagation only on the subnetwork of active neurons (weights going in/out of

a inactive neuron are not changed)

• at end of training: downscale all weights B → p ·B and use all neurons for prediction.

– this is an approximation for the statistical interpretation of dropout

– there are 2
H

possible subnetworks⇒ dropout trains a (small) random fraction

of these

– all subnetworks share O (H 2) weights

– at prediction time: sample M of the 2
H

possible subnetworks and return the

average of their prediction.

– but: this is expensive ⇒ approximate the average of the predictions with

the prediction using the average network⇒ single prediction with average

network instead of M predictions from subnetworks

– if all activations φl (t ) were linear, the average network is just B → p · B

– the inventors showed experimentally that this also works for nonlinear activa-

tions

– equivalent alternative (easier to implement): upscale all active weights during

training by Bactive →
1

pBactive

• practical recommendations:

– learning rate must be increased by a factor of 10...100, and we need more

iterations

– learning rate must decrease over time τt =
τ0

1+t/t0

– use max-norm regularization Blh → Blh
min(C,| |Blh | |2)
| |Blh | |2

with C ≈ 3..4

• theory:

– observation:

∗ since neurons cannot rely on the presence of any input neuron during

training, subtle co-adaptation e�ects (huge weights that cancel each other)

cannot occur⇒ strong regularization
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7.3 Piecewise linear activation functions

∗ weights tend to become sparse, e.g. if applied to images, weights Bl become

local �lters.

∗ dropout reduces the Rademacher complexity of the network exponentially

[Gao & Zhou, 2014]

∗ reminder (ML1): Rademacher complexity 2R̂ measures the expected train-

ing success rate on nonsensical data, i.e. the featuresXi are �xed and labels

Yi are random (if the success rate here is high, the algorithm will strongly
over�t)

∗ optimism: opt = 2R̂ + O ( 1√
N
), test error ≤ train error + opt.

∗ without dropout: R̂ ∈ O
(∏L

l=1
| |Bl | |1

)
⇒

· classical regularization (=reducing | |B | |) helps

· more layers (with total # weights �xed) increase over�tting

∗ with dropout: R̂ ∈ O
(
pL/2

∏L
l=1
| |B | |1

)
⇒more layers reduce pL exponentially⇒we can use many layers (L > 20)

• variant: DropConnect ([Wan et al 2013]). Randomly drops weights (=graph edges)

instead of neurons (=graph nodes)

– small gains in performance, but a lot more complicated

7.3 Piecewise linear activation functions

• the other recent breakthrough

• ReLU (“recti�ed linear unit”) [Nair & Hinton, 2010 / Glorot et al. 2011]

ReLU(t ) = max(0,t )

– empirically works better than sigmoids

– convex, only saturated for negative t

– can approximate sigmoids by two ReLUs

(
ex. ReLU(t + θ ) - ReLU(t − θ ) −θ

)
– e�ect: features select a subnetwork “specialized” for that input (by driving

some neurons into saturation)

⇒ for each input, we select a linear subclassi�er that is an “expert” for that

particular region of the feature space.
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Figure 7.2: Recti�ed Linear Unit (ReLU) activation function, which is zero when t < 0 and

then linear with slope 1 when t > 0.

7.4 MaxOut [Goodfellow et al. 2013]

• any linear function is convex, the pointwise max of a set of convex functions is also

convex

⇒ we can produce an arbitrary piecewise linear convex function from the max of

linear functions

• any continuous function can be expressed as di�erence between two convex func-

tions
1

⇒ we can arbitrarily well approximate any function by a piecewise linear function,

taking the di�erence of two of these max(linear functions)

• maxout: alternate linear layers with maxout layers

l = 1,3,5, ... : Zl = Z̃l

l = 2,4,6, ... : Zlh = max

Slh⊂[0,Hl−1
]

[Zl−1]

where Slh is a subset of neurons in layer l − 1 (typically: each neuron Zlh uses k
neurons of Zl−1 without sharing, Hl−1 = kHl )

• k ∈ [2, ...,20] is the number of linear segments after each maxout neuron.

• main application: convolutional neural networks: “max pooling”: reduce a

√
k ×√

k window to a single pixel by taking the maximum.

1
under mild assumptions
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7.5 PReLU “parametric ReLU” [He et al 2015]

9 2 9 6 4 3

5 0 9 3 7 5

0 7 0 0 9 0

7 9 3 5 9 4

max pooling
9 9 7

9 5 9

Figure 7.3: Graphical depiction of the max pooling function used in convolutional neural

networks to reduce a 2 × 2 window to a single pixel by taking the maximum.

7.5 PReLU “parametric ReLU” [He et al 2015]

• compromise between ReLU and Maxout: two �exible linear segments.

φ (t ;a) =



t , t ≥ 0

a · t , t < 0

Figure 7.4: Leaky ReLUs or PReLUs are one attempt to �x the “dying ReLU” problem.

Instead of the function being zero when t < 0, a leaky ReLU or PReLU will

instead have a small negative slope a. For PReLUs the value of a is made into a

parameter which is adaptively learned during training.

• each neuron has its own a

• the a’s are trained via backpropagation:

∂φ

∂Z
= φ′(Z̃lh;alh ) =




1, Z̃lh ≥ 0

a, Z̃lh < 0

∂φ (Z̃lh,alh )

∂alh
=




0, Z̃lh ≥ 0

Z̃lh, Z̃lh < 0
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• weight initialization must be changed to:

Bl ∼ N

(
0,

2

(1 + a2

0
)Hl−1

)
a0 = 0.25 recommended initial a
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8.1 Multi-class Classification

• task: assign each instance to exactly one of C classes

• distinguish frommulti-labeled problems: each instance can have several labels.
(Image: sunset, beach, sur�ng, ...; document: several topics)

• general approach: extend y to a “one hot”, “one-of-C” vector of size C

– hard decisions: Y ∈ {−1,1}C , contains exactly one +1

– posterior probabilities: Y ∈ [0,1]
C

,

∑C
k=1

Yk = 1

– scores: Y ∈ RC

• goal: predict Ŷi = Yi , we can obtain hard decisions from posteriors and scores:

arg max

k
Yk

• some classi�ers have natural generalizations to the multi-class case

– nearest neighbor: predict class of the nearest neighbor (or the majority of

several near neighbors)

– Naive Bayes:

∗ learn 1D likelihoods for each feature and each class (DC likelihoods)

∗ computation of posteriors via Bayes’ rule is easy

– decision trees:

∗ split selection criteria are naturally multi-class

· entropy: minimizeNleft

∑
k
(
−pleft,k logpleft,k

)
+Nright

∑
k

(
−pright,k logpright,k

)
· Gini impurity: minimize Nleft

(
1 −

∑
k p

2

left,k

)
+ Nright

(
1 −

∑
k p

2

right,k

)
∗ prediction of each leaf: ŷ =

[
pleaf,k

]
– random forest:

∗ ensembles of decision trees:

· train each tree on a random subset of the instances

· only consider a random subset of the features when selecting a split

∗ prediction: average over all tree predictions Ŷ =
∑
Ŷt
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– neural network:

∗ de�ne the non-linearity of the output layer via the “soft-max” function

ZLk =
exp(Z̃Lk )∑
k ′ exp Z̃Lk ′

∗ train with the “cross-entropy loss”

Loss =
∑
k

[
−I[Yi = k] logZLk − I[Yi , k] log(1 − ZLk )

]
∗ back propagation:

∂Lk =
∂Loss

∂ZLk
=




−1/ZLk , k = Yi
1

1−ZLk
, k , Yi

∂ZLk

∂Z̃Lk

= .... = ZLk − Z
2

Lk

∂ZLk

∂Z̃Lk ′′
= ... = −ZLkZLk ′′

⇒ Jacobian Jkk ′ =



ZLk (1 − ZLk ), k = k′

−ZLkZLk ′, k , k′

˜δLk =
∂Loss

∂Z̃Lk

=
∑
k ′′

δLk ′′ Jk ′′k =



ZLk − 1 −
∑

k ′′,k
ZLk ′′

1−ZLk ′′
ZLk , Yi = k

2ZLk −
∑

k ′′,k,k ′
ZLk ′′

1−ZLk ′′
ZLk , Yi = k

′ , k

– logistic regression: is just the special NN with a single layer, L = 1

– both NN and LR are true multi-class algorithms because the prediction ZLk are

not independent:

∗ trained jointly and coupled via the Jacobian

∗ prediction is coupled via the softmax normalization

∗ all ZLk share the hidden weights

– Support vector machine 2-class objective:

min

β ,b

1

2
| |β | |2

2
+
λ

N

∑
i

hinge(1 − Yi (Xiβ + b))

equivalently

min

β ,b

1

2
| |β | |2

2
+
λ

N

∑
i

ξi s.t.
1Yi (Xiβ + b) ≥ 1 − ξi , ξi ≥ 0

ξi are called slack variables
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8.1 Multi-class Classi�cation

– generalization of [Weston & Wathins, 1999]:

– we now have a (β ,b) pair for each class β → B [D ×C], b → vector [bk]

– now the constraint must hold for every pair of classes

– predict Ŷi = arg maxk (XiBk + bk ) (optional: “don’t know” if too small)

⇒ objective:

min

B,b

1

2
| |B | |2F +

λ

N

∑
i

∑
k,Yi

ξi,k s.t. XiBYi + bYi ≥ XiBk + bk + 2 − ξik f.a. k , Yi

⇒ N (C − 1) slack variables

– compute the dual and train in the dual space⇒ di�cult

• generalization of [Crammer & Singer, 2001]:

– it is su�cient when the constraint holds for the Yi ’s closest competitor

– also absorb the threshold parameters b into B (by adding a feature Xi,0 = 1)

objective

min

B

1

2
| |B | |2F +

λ

N

∑
i

ξi s.t. XiBYi ≥ max

k,Yi
(XiBk ) + 1 − ξi

– again train in the dual⇒ easier, more popular than WW

• traditional belief: CS is better than WW because there are only N constraints instead

of N (C − 1)

• but: [Drogan et al. 2011] claim that the crucial di�erence is actually the elimination

of the intercepts b because they lead to di�cult equality constraints in the dual⇒

eliminate b in the WW and got better than CS

• if your classi�er is not generalizable to C > 2: reduce the multi-class problem to a

set of 2 class problems

– “one-vs-all” or “one-vs-rest”: trainC classi�ers where classi�ersk′ gets labels

Yi,k ′



+1, k′ = Yi

−1, k′ , Yi
train hk ′ (X ) binary classi�ers for k′ vs rest

∗ predict: Ŷi,0 arg maxk ′ hk ′ (Xi )

∗ this only works if the outputs of a hk ′ (X ) are comparable in magnitude

· hk ′ (X ) return hard decisions: return Ŷ if exactly one hk ′ (X ) returns

+1 otherwise “don’t know”

· hk ′ (X ) return posteriors: just take the max

· hk ′ (X ) return scores: make the scores comparable, example: all hk ′ (X )
are linear classi�ershk ′ (X ) = XBk ′+bk ′ are comparable when | |Bk ′ | |2 =
1
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– “one-vs-all” or “all pairs”: train
C (C−1)

2
classi�ers for all possible pairs in k′,k′′

⇒ train hk ′,k ′′ (X ) with labels Yi =



+1, Yi = k
′

−1, Yi = k
′′

and don’t use the instances

of the other classes

∗ isn’t this too expensive?

Not always: h are kernel SVMs: training takes Ω(N 2) times, OVS takes

Ω(CN 2), but OVO takes Ω
(
C (C−1)

2

(
2N
C

)
2

)
= Ω(N 2) ⇒ faster

– prediction:

∗ variant 1: apply all classi�ers and return the class with most +1 votes

∗ variant 2 [Platt et al. 2000]: �ll a vector with the class labels (in any order),

apply the classi�er for the �rst and last entry in the list⇒ pop the loosing

label from the list, repeat until only one label remains⇒ Ŷi . This can be

written as a decision DAG (directed acyclic graph)
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9.1 Coding Matrices for multi-class problems

• we had one vs. rest (OVR) and one vs. one (OVO): We train L binary classi�ers,

where classes get temporary labels from Ỹil ∈ {−1,0,1}1

⇒ write labels as a C × L matrix M , s.t. Mkl =




1, class k is pos in classi�er l

−1, class k is pos in classi�er l

0, class is not used

e.g. Movr =

*....
,

1 −1 ... −1

−1 1 −1 ...
... ... ... ...
−1 ... −1 1

+////
-

, Movo =

*......
,

1 1... 0 0 ...
−1 0 ... 1 1 ...
0 −1 ... −1 0 ...
0 0 ... 0 −1 ...
... ... ... ... ... ...

+//////
-

• in principle, M can be arbitrary, the best choice of M is an open problem (restriction,

rows of M must di�er)

– OVO, OVR are still good choices

– [Dietterich et al. 1995]: Error-correcting output codes (ECOC). Idea: make

the rows of M pairwise as di�erent as possible.⇒ classi�cation becomes robust

against errors in a few of the L classi�ers. If for classes k and k′, at least L′

elements of M di�er, we can recover from b L
′−1

2
c by majority vote

• [Sun et al. 2005] : choose M at random, simple and works well

• optimize M for your data and classi�ers: current research

– [Bautista et al 2015]: compute between-class covariance, S ∈ [C ×C], compute

PCA (eigenvector matrix EV). Initial guess M = sign(EV ), then iterate to

maximize error-correction while staying similar to EV

• stagewise optimization (various authors): add a new column to M until the over-

all performance is satisfying, choose the new column “optimally” with respect to

existing columns.

• prediction (“decoding”):

1
0 means, that the instance is not used to train classi�er l

37



9 Lecture 20/05

– if all hl (X ) return crisp binary labels, assign X to the row of M , with minimal

Hamming distance.

– if all hl (X ) return posteriors or scores: compute the loss of all rows and choose

k which minimizes the loss.

• coding via M is especially critical for boosting

h(X ) =
∑
l

alhl (X )

h(X ) will be correct, when the majority of hl is correct

• This is easy for binary classi�cation, hl (X ) just must be a bit better than guessing.

• but: for multi-class, better than guessing means pcorrect =
1

c + ε ⇒ majority vote will

not be correct

• We recover the “weak-learning condition” by reducing to a set of binary problems

via M .

9.2 Gaussian Processes (or The Statistical Theory of
Interpolation)

• so far, we always assume that training data are iid ( p (X ,Y ) is stationary, but un-

known)

⇒ probability of the training set factorizes: p ((X1,Y1), ..., (XN ,YN )) =
∏N

i=1
p (Xi ,Yi )

⇒ the NLL is a sum − logp (..) = −
∑N

i=1
− logp (Xi ,Yi )

⇒ the loss (training error) is additive over instances⇒ convenient optimization of

loss

• but: many applications do not ful�ll the iid assumption:

– time series

– images: neighboring pixels usually belong to the same object⇒ not indepen-

dent

• three ways to deal with dependent data:

1. de�ne features that capture a neighborhood of each instance, e.g. image �lters

of a window of pixels.

⇒ relationship between neighboring instances (pixels) is recorded into features

describing the local changes

⇒ can treat the data as approximately iid, given (“conditional on”) these new

features (⇒ chapter “Features”)
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9.2 Gaussian Processes (or The Statistical Theory of Interpolation)

2. factorize (p (X1,Y1), ..., (XN ,YN )) as good as possible, (e.g. = 1

Zp ((X1,Y1), (X2,Y2))·
... · p ((XN−1,YN−1), (XN ,YN )) “Markov assumption: only neighboring trace-

points are related”)

– graphical models �nd such factorizations systematically (⇒ chapter

“GM”)

3. learn the full joint probability p ((X1,Y1), ..., (XN ,YN ))⇒ Gaussian processes

– this is only tractable when we use a simple model for p (..)

– obvious choice: multi-variate Gaussian distribution⇒ everything an be

computed in closed form

– typical application is regression, classi�cation is modeled via regression

of the posterior class probability.

• Consider a vector of values Y = [Y1, ...,YN ]. These are eventually functions Yi =
f (Xi ), but we ignore the Xi for the moment. Indices i are now �xed and no longer

permutable.

– model their distribution by a N -dimensional Gaussian, p (Y ) ∼ N (Y ,S ) =
1

Z exp

(
−1

2
(Y − Y )TS−1(Y − Y )

)
take N → ∞: Y becomes a function, we still

write formally Y
∞
∼ N (Y∞,S∞) “in�nite-dim Gaussian”

– in practice, we only work with �nitely many points: can be interpreted as a

�nite dimensional marginal of the in�nite dimensional Gaussian (i.e. integrate

out all points we are not interested in)

– fortunately for a Gaussian all marginals are again Gaussian.
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10.1 Gaussian Processes

• Generalize from a �nite vector [Y1, ...,YN ] of dependent variables Yi to a function

Y = f (X ) by taking N → ∞.

• Model the probability of f (X ) as a Gaussian f (X ) → N ( ¯f (X ),S ) 1
.

f (X ) ∼ p ( f ;
¯f ,S ) = 1

Z exp

(
−1

2

〈
f − ¯f , f − ¯f

〉
H (S )

)
– Under our model p ( f ;

¯f ,S ) all functions with �nite norm

〈
f − ¯f , f − ¯f

〉
H (S )

have non-zero probability.
2

– A function f has high probability if it is similar to
¯f and conforms to the

covariance structure given by S ⇔ || f − ¯f | |H (S ) is small.

– S (X ,X + ∆X ) decreases slowly with ∆X ⇒ neighboring points are highly

correlated⇒ f should be smooth.
3

– S (X ,X + ∆X ) decreases quickly⇒ noisy functions are also probable
4

– S must be chosen by the designer to model the properties of the application.

• in practice, we are only interested in �nitely many points of f (training & test points)

⇒We create marginal distributions ofN( ¯f ,S ) by integrating out all points we don’t

care about.

⇒ general property: any marginal of a Gaussian is again Gaussian

let [X1, ...,XN ] be the training locations with observed response [Y1, ...,YN ]
T = Y ,

[XN+1, ...,XN+N ′] the test locations where we want to �nd [ŶN+1, ...,ŶN+N ′]
T = Y ′

⇒ the marginal distribution of [Y1, ...,YN+N ′] is N

( [
Y
Y ′

]
− Y ,S1:N+N ′

)
5

1 ¯f = E( f ) , S = E[( f (X ) − ¯f (X )) ( f (X ′) − ¯f (X ′))], covariance or kernel function

2
〈
f ,д

〉
H (S ) :=

∫
F (f )F (д)
F (S0 )

dω, where S0 (X ) = S (X ,0) centered kernel function at origin

3
the plot shows a rather smooth function

4
the plot shows a “squiggly” function

5
specialize the kernel to the points [X1, ..,XN+N ′], and Ȳ = [

¯f (Xi )]
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• we simplify by setting
¯f = 0, because we can always subtract

¯f in preprocessing,

and add it after analysis Ŷ�nal = Ŷ + ¯f (X )

p (Y ,Y ′) ∝ exp
*
,
−1

2

[
Y
Y ′

]T
S−1

1:N+N ′

[
Y
Y ′

]
+
-

p (Y ) ∝ exp

(
−1

2
Y TS−1

1:NY
)

• we are interested in

p (Y ′|Y ) = p (Y ,Y ′)/p (Y )

we need S−1 = S̃ . To compute it, we partition S according to known and unknown

S =

[
A B
BT C

]
, S̃ =

[
Ã B̃
B̃T C̃

]
, by de�nition S−1S = S̃S = 1N+N ′

6

• we get

p (Y ′|Y ) ∼ N
(
BTA−1Y ,C − BTA−1B

)
• introduce kernel function k (X ,X ′), kernel matrix K with Kij = k (Xi ,X j ), kernel

vector k7
with k = k (X ′,Xi ), where X ′ is a test point, κ = K (X ′,X ′)

• we can compute the test responses one point at a time, i.e. we can set N ′ = 1

p (Y ′|Y ) ∼ N

(
k(X ′)TK−1Y ,κ − k(X ′)TK−1k(X ′)

)
fundamental interpolation equation:

Ȳ = E[Y ′ = f (X ′)] = k(X ′)TK−1Y

uncertainty of the interpolated point8:

var[Ŷ ] = κ − k(X ′)TK−1k(X ′)

• de�ne interpolation coe�cients: Ỹ = K−1Y can be precomputed
9

because of indepen-

dence from X ′

• Ŷ = k(X ′)TỸ

• example: linear interpolation, assume that X is 1D and Xi are equidistant (a grid),

w.l.o.g. we set Xi = i for the training points

6
see Bishop p. 307 for the derivation of S̃

7
actually a cursive k

8
note: independent of Y

9
in practice: solve linear system KỸ = Y ... avoid computing K−1

. two typical algorithms:

1. if K is dense: Cholesky decomposition K = LLT

2. if K is sparse: conjugated gradients
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• k (X ,X ′) = (1− |X −X ′|)+, Kij = k (Xi ,X j ) = k (i, j ) = (1− |i − j |)+, i, j ∈ {1, ...,N } ⇒

K = 1N , κ = 1, k (X ′,Xi ) =




0, |X ′ − Xi | ≥ 1

1 − t i = bX ′c

t , i = bX ′c + 1

10

Ŷ (X ′) = k(X ′)TY = (1 − t )Yi + tYi+1, i = bX ′c, t = X ′ − bX ′c

var(Ŷ ) = κ − k(X ′)TK−1k(X ′) = 1 − (k) (X ′)Tk(X ′)

= 1 − (1 − t )2 − t2 = 2t (1 − t )

10t = X ′ − bX ′c
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Reminder: E(Y ′) = Ŷ = k(X ′)TK−1Y = k(X ′)TỸ
Kernel functions: A function K (X ,X ′) is a kernel i� it is positive de�nite (Mercer’s

condition).

• New kernel functions can be constructed from existing ones with easy operations.

– a positive linear combination of kernels is a kernelKnew(X ,X
′) = α1K1(X ,X

′)+
... + αMKM (X ,X ′), α1, ....,αM > 0

– a product of kernels is a kernel Knew(X ,X
′) = K1(X ,X

′)K2(X ,X
′)

– We may map the X into an arbitrary feature space before applying the kernel

function Knew(X ,X
′) = K1(ϕ (X ),ϕ (X ′)).

– the exponential of a kernel is again a kernel Knew(X ,X
′) = exp(K1(X ,X

′))

– [...]

• two big classes of popular kernels: “radial basis functions”, “tensor product
kernels”

• radial basis functions (RBF): K (X ,X ′) = K (r ), r = | |X − X ′| | distance between X ,

X ′ in some norm (usually Euclidean or weighted Euclidean)

– squared exponential (aka Gaussian): K (r ) = exp

(
−1

2

(
r
ρ

)
2

)
where ρ = “band-

width” of the kernel

– γ -exponential: K (r ) = exp

(
−

(
r
γ

)γ )
, γ ∈ [0,2]

– Matérn kernels (less smooth than squared exponential):

K (r ) ∼

(
r

γ

)γ
kγ

( √
2γ

r

γ

)
1

∗ γ = 1/2, K (r ) = exp(− r
ρ ) Ornstein-Uhlenbeck Kernel for Brownian

motion - very rough

∗ γ = 3/2, K (r ) = (1 +
√

3
r
ρ ) exp(

√
3
r
ρ )

∗ γ = 5/2, K (r ) =
(
1 +
√

5
r
ρ +

5

3

(
r
ρ

)
2

)
exp(−

√
5
r
ρ )

– inverse quadrics: smoother than squared exp: K (r ) = 1(
1+ 1

2α

(
r
ρ

)
2

)α α > 0.

∗ α = 1/2 K (r ) = 1√
1+

(
r
ρ

)
2
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∗ α = 1, K (r ) = 1

1+
1

2

(
r
ρ

)
2

– for 2D feature spaces: thin plate spline K (r ) = r 2
log r

∗ only “conditionally positive de�nite” – is positive de�nite after performing

linear regression (i.e. TPS is applied to the residuals of linear regression)

∗ advantage: it’s usually not necessary to optimize the bandwidth

∗ TPS is the minimum energy surface of a (in�nitely thin) elastic plate

attached to the training points:

· it minimizes the curvature integral

∫
R2

( f 2

xx + 2f 2

xy + f 2

yy )dxdy

• all kernels so far have in�nite support K (r ) > 0 even for very large r ⇒ kernel
matrix K is dense, i.e. expensive to invert when N is big (solution of linear system

KỸ = Y takes O (N 3))

• A kernel with compact support (i.e. K (r ) = 0 if r > rmax) leads to a sparse kernel
matrix. ⇒ sparse solvers need O (N )

– truncate a non-compact kernel — approximation

– de�ne compact kernels, e.g. Wendland splines K (r ) =
(
1 − r

ρ

)γ
+

polyγ (
r
ρ )

∗ choose γ and poly according to feature space dimension and the required

# of derivatives

· smooth, but not di�erentiable: K (r ) =
(
1 − r

ρ

)γ
+

, γ = bD
2
c + 1

· 1-times di�erentiable: K (r ) =
(
1 − r

ρ

)γ
+

(
γ r
γ + 1

)
, γ = bD

2
c + 2

· [...]

• radial basis functions are best if the training points Xi are irregularly arranged —

“scattered data interpolation”

• if theXi form a regular grid, tensor product kernels — allow to work in one dimension

at a time

• tensor product kernel: K (X ,X ′) = K1(X1,X
′
1
) · · ·KD (XD ,X

′
D ), each being 1D kernels

• squared exponential:

K (x ,x′) = exp

(
−1

2
| |X − X ′| |2

)
= exp

(
−1

2
(X1 − X

′
1
)2
)
· · · exp

(
−1

2
(XD − X

′
D )

2

)
– only kernel that is both a RBF and a tensor product

• B-splines (Xi+1,j − Xi,j = 1 unit grid, ρ = 1, i.e. preprocess data accordingly)
2
:

k (x ) = Bγ (x ) =

∫ x+1/2

x−1/2
Bγ−1(x )dx = B0 ∗ Bγ−1, B0(x ) =




1, −1/2 < x ≤ 1/2

0

2
to simplify notation
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B1(x ) =



1 − |x |, |x | ≤ 1

0

B2(x ) =




3

4
− x2, |x | ≤ 1

2

1

2
( 3

2
− |x |)2, 1

2
≤ |x | ≤ 3

2

0

B3(x ) =




2

3
− x2 + 1

2
|x |3, |x | ≤ 1

1

6
(2 − |x |)3, 1 < |x | ≤ 2

0

B∞(x ) ∼ e
−

1

2

(
x
ρ

)
2

• kernel matrix is sparse, e.g. B0 and B1: K = IN , B2 and B3: K is tridiagonal. Tri-

diagonal systems are easy to solve:

– Thomas algorithm

– recursive �lters

• cardinal functions K (x ) =




1, x = 0

0, x ∈ {±1,±2,±3, ...}

, 0

– B0 and B1 are cardinal

– ideal interpolator: sinc(x ) = sin(πx )
πx

– Catmull-Rom spline3
: C (x ) =




1 − 5

2
x2 + 3

2
|x |3, |x | ≤ 1

2 − 4|x | + 5

2
x2 − 1

2
|x |3, 1 < |x | ≤ 2

0

– advantage: the kernel matrix K = IN , giving us Ŷ (X ′) = k(X ′)TY

– any 1D kernel de�nes a cardinal function: κ (X ′)T = k(X ′)TK−1

3
compact support version of the sinc function
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• on the grid, Gaussian process interpolation is just �ltering (convolution)

• example: Catmull-Rom spline C (X ), y′ = k(X ′)TK−1Y 1

To compute k(X ′), place a kernel function centered at X ′, i0 = bX
′c, t = X ′ − i0,

k(X ′) = [0, ...,0,C (−t − 1)︸     ︷︷     ︸
index −2

,C (−t )︸︷︷︸
−1

,C (−t + 1)︸     ︷︷     ︸
0

,C (−t + 2)︸     ︷︷     ︸
1

,0, ...,0]. The interpolation is

then the following �lter

y′ = k(X ′)Y = C (−t − 1)Yi0−1 +C (−t )Yi0 +C (−t + 1)Yi0+1 +C (−t + 2)Yi0+2.

• example: B-spline B3: now K , I, but a tridiagonal matrix. De�ne interpolation

coe�cients Ỹ = K−1Y

⇒ interpolation is analog to C-Rom:

y′ = k(X ′)Y = B3(−t − 1)Ỹi0−1 + B3(−t )Ỹi0 + B3(−t + 1)Ỹi0+1 + B3(−t + 2)Ỹi0+2

Computing Ỹ is a preprocessing of Y . Since K is tridiagonal K−1Y can also be

implemented by �ltering (speci�cally, a pair of recursive �lters [Unser et al. 1991]).

Intuitive e�ect of K−1
: since B3 is a smoothing �lter, we would not get interpolation

when Y ′ = k(X ′)TY . The pre-�ltering of Y with K−1
exactly counters the smoothing

e�ect at the grid points. Ỹ = K−1Y is sharpening

12.1 Uncertainty of GP interpolation

case 1 Yi are assumed to be noise-free⇒we have to keep the values intact⇒ interpolation

Ŷi = k(Xi )
TK−1Y = Yi and the variance var[Y ′] = k (X ′,X ′) − k(X ′)TK−1k(X ′) = 0 is

X ′ = Xi

case 2 Yi are noisy: Yi = f (Xi )︸︷︷︸
noise-free solution

+ εi , εi ∼ N (0,σ 2). The Gaussian process becomes:

Y ∼ N ( f (= 0),K + σI)

where K is the uncertainty about the true function f , whereas σ 2I is the uncertainty

in the measurements of Yi .

1Y values at grid points, K = I for Catmull-Rom
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• We need the conditional probability for unseen points, given the training

points: p (Y ′|Y ) = p (Y ,Y ′)/p (Y )2. The computations are almost the same as

with σ 2 = 0, giving us

Ŷ = E(Y ′(X ′)) = k(X ′)T( K︸︷︷︸
= A

+σIN )Y + Eε′︸︷︷︸
=0

var(Y ′) = k (X ′,X ′) + σ 2 − k(X ′)T(K + σ 2IN )
−1k(X ′).

This does not interpolate anymore: Ŷ = K (K + σ 2I)−1Y , Y , giving us a

denoised version of Y .

• σ 2
acts as a regularization parameter, it shrinks Y ′ towards 0 (more generally,

towards f ).

• Ŷ = k(X ′)T(K + σ 2I)−1Y is exactly kernel ridge regression (see ML1), but now

derived statistically.

12.2 Application [Snoek et al. 2012]: GP to optimize the hyper
parameters of a learning algorithm

• Learning Algorithm 1 (LA1) solves some problem of interest, Learning Algorithm 2

(LA2) optimizes LA1.

• standard approach to hyperparameter optimization of LA1: grid search with cross-

validation, but: CV is expensive, grid search is expensive, because exponentially

many candidate parameter sets (in the # of parameters)

• do CV for a few hyperparameter sets θi and compute Lossi

• use {(θ1,Lossi )} as training data for LA2

• �nd θ ′ which minimizes Loss′ in LA2

⇒ we can try many candidates θ ′ (≈ 10
6
) by cheap interpolation in LA2 (= GP)

• perform CV on LA1 only with our best candidate θ ′
best

• repeat

• precisely, the best candidate minimizes
Loss ′

Std (Loss ′) “probability of improvement cri-
terium” or a more sophisticated criterion (better).

• suggest to use Matérn-
5

2
kernel in LA2

2
where S =

(
A + σIN B

BT C + σ 2IN ′

)
, compare to an earlier lecture
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12.3 Application: GP classi�cation

12.3 Application: GP classification

• a standard GP learns a function Y ′ = f (X ′) : RD → R

• for classi�cation, we need a posterior class probability p (Y |X ′) : RD → [0,1]

• idea: inspired by logistic regression p (Y |X ′) = σ (X ′β ), f (X ′) = X ′β , p (Y |X ′) =
σ ( f (X ′)). Now we replace f (X ′) by a GP estimate: instead of f (X ′) = X ′β we use

f (X ′) = k(X ′)T(K +σ 2I)−1
[f (X1), ..., f (XN )]

T
but it’s not so easy because f appears

on the LHS and RHS

• introduce a latent variable Z and de�ne Zi = f (Xi ).

p (Y |X ) =

∫
p (Y |X ,Z )p (Z |X )dZ

simplify by making independence assumptions: Yi ⊥⊥ X |Z (X ) ⇒ P (Y |X ,Z ) =
p (Y |Z ), and Y ⊥⊥ Y ′|Z ,Z ′⇒ p ({Yi }|{Zi }) =

∏
i p (Yi |Zi ) giving us

p (Y |X ) =

∫
p (Y |Z )︸ ︷︷ ︸
σ (Z )

p (Z |X )︸  ︷︷  ︸
GP reg.

dZ

• problem: how to determine Zi

p (Z |X ) actually depends on the training data D = {(Xi ,Yi )}, p (Z |X ,D).

[Zi] = arg max

Z
p (Z |X ,D)

• to model p (Z |X ,D), we make the Laplace approximation: in a neighborhood of the

optimum [Ẑi] p (Z |X ,D) looks like a Gaussian. ⇔ we use the second order Taylor

expansion of logp (Z |X ,D)

logp (Z |X ,D) ≈ logp (Ẑ |X ,D) − 1

2
(Z − Ẑ )TH (Z − Ẑ )

[the linear term is missing, because Ẑ is a maximum]

H is the negative Hessian of logp (Z |X ,D) at Ẑ

H = −
∂2

∂Z 2
logp (Z |X ,D)

�����Z=Ẑ

p (Z |X ,D) ≈ e logp (Ẑ |X ,D)︸       ︷︷       ︸
const

e−
1

2
(Z−Ẑ )H (Z−Ẑ )

= N (Ẑ ,H−1)

⇒ choose H−1
as an appropriate kernel and estimate Ẑ
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13.1 GP classification

• p (y′ = ±1|X ′) =
∫
Z ′
p (y |Z ′,X )p (Z ′|X )dZ ′ latent variable Z : simpli�es matters

because of independence assumptions
1

• in order to make predictions p (Z ′|X ′) = p (Z ′|X ′,D) we need the Zi values for the

training points E(Z ′) = kT(X ′)K−1Ẑ

⇒ training = determine Ẑ

• p (Ẑ , {Xi ,Yi }
N
i=1

) = p (Ẑ |{Xi ,Yi }
N
i=1

)p ({Xi ,Yi }
N
i=1

) = p ({Yi }|Ẑ )p (Ẑ |{Xi })p ({Xi })

Ẑ = arg max

Z
p (Z |{Xi ,Yi }

N
i=1

) = arg max

Z
p ({Yi }|Z )p (Z |{Xi })

= arg max

Z
= logp ({Yi }|Z )︸         ︷︷         ︸∑

i logp (Yi |Zi )=
∑
i logσ (YiZi )

+ logp (Z |{Xi })︸     ︷︷     ︸
GP︸          ︷︷          ︸

=−
1

2
ZTK−1Z+

1

2
log(K )+

N
2

log 2π

⇒Ẑ = arg max

Z
= −

∑
i

log (1 + exp(−YiZi )) −
1

2
ZTK−1Z + const = ψ (Z )

∂ψ (Z )

∂Z
= v − K−1Z

!

= 0

where v =



t1 − π1

...
tN − πN


, ti = 2Yi − 1 ∈ {0,1},πi = σ (Zi )

∂2ψ (Z )

∂2Z 2
=W − K−1

whereW =



−π1(1 − π1) 0

... ...
0 −πN (1 − πN )


Update step: Z (t+1) = Z (t ) − (W (t ) − K−1)−1(v (t ) − K−1Z (t ) ), Ẑ = Z (t→∞)

[numerically better formulation⇒ Rasmussen & Williams 2006]

1
see last lecture
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• predictions:

– solve p (Y |X ′) =
∫
Z ′
σ (YZ ′)GP (Z ′|Ẑ ,X ′)dZ ′, no closed form solution

⇒ solve numerically or use the normal CDF instead of σ (t ) (but then we must

adjust
∂ψ
∂Z ,
∂2ψ
∂Z 2

during training)

– if we only need a decision function:

ŷ = arg max

Y
p (Y |X ′) = sign(E(Z ′)) = sign(kT(X ′)K−1Ẑ )

13.2 The Bayesian Interpretation of GP regression (and their relation to
“reproducing kernel Hilbert spaces”(RKHS))

• vector space Y ∈ RN
, scalar prod. 〈Y ,Y ′〉 = Y TY ′, how to visualize Y if N > 3,

“parallel coordinates”

Figure 13.1: A depiction of the use of parallel coordinates as plotting technique for multi-

variate data. It allows one to see clusters in data and to estimate other statistics

visually. When we are using parallel coordinates points are represented as

connected line segments. Each vertical line represents one attribute of the

car data set. One set of connected line segments represents one data point.

Points that tend to cluster will appear closer together. The dataset is clustered

in dependence of the number of cylinders given in the legend in the upper

right (MPG-miles per gallon).

• Hilbert space: take N → ∞ ⇒ parallel coordinates turn into a function f (X ),〈
f ,д

〉
=

∫
f (x′)д(x′)dx′, x′ ∈ RD

• vector with generalized scalar product: arbitrary bilinear form 〈Y ,Y ′〉 = Y TAY ′

example: PCA, QDA
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13.2 The Bayesian Interpretation of GP regression (and their relation to “reproducing kernel Hilbert spaces”(RKHS))

• doing the same in a Hilbert space gives the RKHS
2
:

– kernel function K (X ,X ′) = K (X ′,X ) pos.def.,

– centered kernel function at x0: Kx0
(X ) = K (X ,X ′ = x0)

H(k) is of RKHS :

(i) ∀x0,Kx0
∈ H (K )

(ii) reproducing property of the scalar product:

∀x0,∀f (x ) ∈ H (k ) :

〈
f ,Kx0

〉
H (k ) = f (x0)

• to de�ne the scalar product explicitly, we need the convolution operator

( f ∗ д) (x ) =

∫
f (x − x′)д(x′)dx′ =

∫
f (x′)д(x − x′)dx′

• use convolution to de�ne the inverse kernel function centered at x0 = 0
3

k−1

0
⇔ (k−1

0
∗ k0) (x ) = δ (x ) =

∫
k−1

0
k (x − x′)dx′

• to actually compute k−1

0
, its best to use Fourier transform: convolution theorem:

F ( f ∗ д) (x ) = F ( f )F (д)

k−1

0
⇔ F (k−1

0
)F (k0) = 1,k−1

0
= F −1

(
1

F (k0)

)
but often, no closed form expression fork−1

0
(x ) exists, no problem in practice, because

we can always explicitly invert the kernel matrix for our �nite training set

• scalar product:〈
f ,д

〉
H (k ) :=

∫
f (x′) (k−1

0
∗ д) (x′)dx′ =

∫
(k−1/2

0
∗ f ) (x′) · (k−1/2

0
∗ д) (x′)dx′

• this ful�lls the reproducing property:

〈
f ,kx0

〉
H (x ) = f (x0)〈

f ,kx0

〉
H (x ) =

∫
f (x′) (k−1

0
∗ kx0

) (x′)︸            ︷︷            ︸
(∗)

dx′

=

∫
f (x′)δ (x′ − x0)dx

′ = f (x0)

(∗)

∫
k−1

0
(x′′)kx0

(x′ − x′′)dx′′ =

∫
k−1

0
(x′′)k0((x

′ − x0) − x
′′)dx′′ = δ (x′ − x0)

if f (x ) = kx1
(x ):

〈
kx1
,kx0

〉
H (k ) = Kx1

(x0) = Kx0
(x1) = K (x0,x1) = K01 (kernel matrix

element)

2
Note on the notation: k,K might sometimes need to be exchanged

3
analog to inverse matrix M−1 ⇔ M−1M = 1
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• application to GP regression:

– given training data D, �nd the function f (x ) that has maximum a posteriori

probability p ( f |D)

– expand according to Bayes p ( f |D) ∝ p (D| f )︸  ︷︷  ︸
training error

p ( f )︸︷︷︸
prior for f

– data probability: squared loss p (D| f ) = exp

(
1

2σ 2

∑
i (Yi − f (Xi ))

2

)
– prior: choose a Gaussian process p ( f ) = exp

(
−1

2

〈
f , f

〉
H (k )

)
– prior experience encodes the expected smoothness of f in the kernel K and

prefers f that conforms to this smoothness requirement. ⇔
〈
f , f

〉
small

⇔ p ( f ) high

ˆf = arg max

f
p ( f |D) =

1

σ 2

∑
i

(Yi − f (xi ))
2 +

〈
f , f

〉
H (k )︸     ︷︷     ︸

regularization

(∗)

– to solve this, we need the “representer theorem” [Kimeldorf & Wahba 1971]

Thm: In any problem (∗), the optimal solution can be expressed as a linear com-

bination of kernel functions centered at the training points
ˆf (x ) =

∑
i αiKxi (X ),

just determine the αi

• insert the representer theorem into (∗)〈
ˆf , ˆf

〉
H (k )
=

〈∑
αiKxi ,

∑
αiKxi

〉
=

∑
i,j

αiαj
〈
Kxi ,Kx j

〉
=

∑
i,j

αiαjK (Xi ,X j ) = α
TKα

Expansion of the �rst term of (∗):

=
1

σ 2

∑
i

Y 2

i −
2

σ 2

∑
i

Yi f (Xi ) +
1

σ 2

∑
i

f (Xi )
2

extending the second and third summand∑
i

( f (x ))2 =
∑
i

(
∑
j

αjKx j (xi ))
2 =

∑
jk

αjαk
∑
i

kx j (Xi )κxk (Xi ) = α
TK2α∑

i

Yi f (Xi ) =
∑
i

Yi
∑
j

αjkx j (Xi ) = α
TKY

inserting into (∗) again gives:

(∗) =
1

σ 2

∑
i

Y 2

i −
2

σ 2
αTKY +

1

σ 2
αTK2α + αTKα

∂(∗)

∂α
= −

2

σ 2
KY +

2

σ 2
K2α + 2Kα = YKα + σ 2α

!

= 0

⇒ α = (k + σ 21)−1Y Ŷ = k(X ′)Tα

aka fundamental interpolation equation
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14.1 Graphical Models

• task: model joint probability p (X1, ...,XD ), but:

– direct modeling is intractable

– no obvious factorization exists (e.g. for iid p (X1, ...,XD ) =
∏

j p (X j ))

• idea: use conditional independence between variables to factorize as good as possible,

which is much weaker than unconditional independence, but our only chance

• “graphical”: represent conditional independence by means of a graph
1

• example 1: correct handling of independence/association is not at all obvious

– problem: we know that Alice has two children that are not twins. What’s the

probability that both are boys?
2

1. you have no additional information: p1

2. we meet Alice with one of her children, who is a boy: p2

3. we meet Alice with one of her children, who is a boy and she says “This is

my �rst-born”: p3

4. we meet Alice with one of her children, who is a boy and she says “He

was born on a Sunday”: p4

5. we meet Alice with one of her children, who is a boy and she says “Today

is his birthday”: p5

p1 , p2 , p3 , p4 , p5. The probabilities are (p1,p2,p3,p4,p5) = ( 1

4
, 1

2
, 1

3
, 13

27
, 729

1459
)

Let A be �rst-born, B second-born child:

1. p (A = boy,B = boy) = P (A = boy)P (B = boy) = 1

4

2. p (A = boy,B = boy|A = boy) =
P (A=boy,B=boy)

P (A=boy) =
1/4
1/2 =

1

2

3. p (A = boy,B = boy|A = boy ∨ B = boy) =
p (A=boy,B=boy)
P (A=boy∨B=boy) =

1/4
3/4 =

1

3

4. wrong model:

p (A=boy∧B=boy∧(A=Sun∨B=Sun) |(A=boy∨B=boy)∧(A=Sun∨B=Sun))

1
There will probably be a lot of plots in this chapter, which won’t be reproduced here, see e.g. Barber,

Koller&Friedman for those.

2
We could just ask Bob.
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=
p (A = boy,B = boy)

p (A = boy ∨ B = boy)

⇒ missing, that it’s the same person who is a boy and born on a sunday

⇒ correct model:

p (A=boy,B=boy∧(A=Sun∨B=Sun) |(A=boy∧A=Sun)∨(B=boy∧B=Sun))

p4 =
13

27

=
2 · 7 − 1

4 · 7 − 1

5. see exercise

• example 2: Simpson’s paradox: if dependencies are treated incorrectly, you can

turn a statement into its opposite, using the same data

– ≈ 1970 U Berkley was sued for preferring men over women

male:app male:adm male:% fem:app fem:adm fem:%

total 2590 1192 46 1835 557 30.4

A 825 512 62 108 89 82
B 560 353 63 25 17 68
C 325 120 37 593 202 34

D 417 138 33 375 131 35
E 191 53 28 393 94 24

F 272 16 6 341 24 7

– 4 out of 6 departments prefer women

– 5 out of 6 departments prefer the minority

– in total: men are highly preferred

⇒ explanation: women tend to apply for highly competitive �elds

– statistical mistakes:

1. an association does not in general imply causality

∗ to determine causality, better methods are needed

· preferred: randomized controlled experiment (group applicants at

random and force each group into a particular �eld⇒ dependency

between sex & �eld is broken by “active intervention” (⇒ inter-
ventioned dataset))

· often this is illegal or unethical or impossible⇒ have only “observational
dataset”⇒ causality is a very di�cult problem⇒ later
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CancerSmoking

(a)

Gene

Smoking Cancer

(b)

Gene

Smoking Cancer

(c)

Figure 14.1: Three possible models for smoking and cancer. (a) Direct causal in�uence; (b)

indirect causal in�uence via a latent common cause (Gene); (c) incorporated

model with both in�uences.

2. omitted variable bias: apparent association could be causal, but can also

have a common cause (smoking→ lung cancer, gene→ lung cancer and

gene→ smoking) or a mediating property (sex→ admission, but sex→�eld

→ admission)

if the additional variable is ignored (marginalized out), very misleading

conclusions will be drawn

• graphical models are a tool to treat conditional independence systematically

– two kinds:

∗ directed (graphs): based on chain rule of probability

∗ undirected (graphs): based on the Gibbs probability distribution p (X ) =
1

Z exp(−E (X ))

• chain rule: p (X1, ...,XD ) = p (XD |XD−1, ...,X1) · · ·p (X2 |X1)p (X1)

draw the decomposition as a directed graph
3

which is called a “Bayesian network”

• trick: can drop arcs when variables are conditionally independent (remember condi-

tional independence does not in general imply general independence)

• goal: drop as many arcs as possible⇒ simplest problem representation

How many parameters are needed to specify the probability? Let X j ∈ {1, ..,Cj }.

– p (X1, ...,XD ) needs

∏
j Cj − 1 parameters

– full factorization needs as many parameters

– if we drop arcs, the number of parameters reduces

3
see earlier comment
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15.1 Bayesian Networks (directed graphical models)

• idea:

1. factorize the joint probability p (X1, ...,XD ) according to the chain rule

2. represent the factorization as a directed graph

3. use conditional independence to remove as many edges as possible⇒ simpler

problem (reduced)

• catch:

– every permutation of the variables results in a di�erent, but equivalent factor-

ization: D! possibilities

– but in some factorizations we can remove many more edges

⇒ goal: use the permutation that results in the fewest edges after step 3. the

best permutation tends to be the one that results in a causal graph (i.e. arc

direction = cause→ e�ect)

• how to identify causal relationships:

1. use domain knowledge (past→ present→ future, property→measurement
1
)

2. perform randomized controlled experiments: experimenter intervenes to

break potential dependencies, so that other dependencies can be analyzed in

isolation (exclude the possibility of a common cause aka. confounder)

3. when controlled experiments are impossible/illegal/unethical, estimate causal-
ity from purely observational data

– this is very di�cult and a hot research topic⇒ later

• main task in BN:

– prediction: in contrast to traditional methods, where prediction is relatively

easy, here sophisticated inference algorithms are needed

∗ compute probabilities not explicitly represented in the model:

· marginals p (X j ) =
∑
p (X1, ...,XD )

· marginals given evidence on some variables p (X j |X j ′ = ej ′ )

· likewise for uncertain evidence

1
can be violated in quantum mechanics
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∗ compute the most probable variable assignment (maximum a posteriori

(MAP) solution ) or several highly probable solutions (k-best)

∗ support decision making (“will surgery help?”)

– training:

∗ parameter learning: given the graph, learn the conditional probabilities of

the decomposition

∗ structure learning: identify the optimal (ideally: causal) graph

• two popular kinds of BN:

– temporal models: causality is implied by time, e.g. speech recognition

– causal models: give an explanation of the observed behavior that can be

understood by domain experts

• Pearl’s basic network construction algorithm

1. identify all variables relevant to the problem (missing variables may lead to

Simpson’s paradox)

2. arrange the variables in a useful order (ideally: causal)

3. for j = 1, ...,D (D = # variables)

– add a node for X j to the network

– �nd a minimal subset PA(X j ) ⊆ {X1, ...,X j−1} = Sj−1 such that

X j ⊥⊥ (Sj−1\PA(X j ) |PA(X j )) PA(X j ) are called the “parents” (e.g. use a

statistical test like χ 2
test for conditional independence)

– add arcs ∀X j ′ ∈ PA(X j ) : X j ′ → X j

⇒ the graph represents the factorization p (X1, ...,XD ) =
∏

j p (X j |PA(X j ))

4. learn the parameters of the distributions p (X j |PA(X j )) for all j (p (X j |PA(X j ))),
can be represented by conditional probability tables (CPT) or parametric models

⇒ Bayesian or Belief Network (BN)

• there are three fundamental con�gurations in a BN

– chain (“causal chain”) A→ B → C

– diverging connection (“common cause”) A← B → C

– converging connection (“common e�ect”) A→ B ← C

⇒ behave interestingly when B is marginalized out or there is evidence on B

• chain:

– if B is marginalized, we just loose information: p (C |A) =
∑

B p (C |B)p (B |A)
(uncertainty increases)

– if B is known (B = b), then C is independent of A : A ⊥⊥ C |B (dictated by the

graph structure, otherwise A must be in PA(C ))
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• common cause:

– if B is marginalized, an association betweenA andC results (the arrow direction

does not follow from the graph, but often from the application) example:

Simpson’s paradox, Berkley admission

– if B is known: A ⊥⊥ C |B

• common e�ect:

– if B is not marginalized but unknown A ⊥⊥ C

– if B is marginalized: unconditional independence still holds

– if B is known, A and C become conditionally dependent A 6⊥⊥ C |B (“Bergson’s
paradox”)

• example: Burglary alarm
2

p (B = 1) = 0.01, marginal p (A = 1) = 0.016

B p (A = 1|B) p (A = 1,B) p (B |A = 1)
0 0.007 0.0069 0.43

1 0.9 0.009 0.57

Now suppose you live in California: the alarm can be triggered by an earthquake

B E p (A = 1|B,E) p (A = 1,B,E) p (B,E |A = 1) p (B |A = 1)p (E |A = 1)
0 0 0.001 0.00097 0.06 , 0.27

0 1 0.3 0.0059 0.37 , 0.16

1 0 0.9 0.0088 0.55 , 0.35

1 1 0.95 0.00019 0.01 , 0.22

marginalize out B:

E p (A = 1,E) p (E |A = 1)
0 0.0098 0.62

1 0.0061 0.38

Bergson’s paradox: given A = 1, we learn (e.g. from the news) that there was an

earthquake E = 1. Compute p (B |A = 1,E = 1) =
p (A=1,B,E=1)
p (A=1|E=1)

B p (B |A = 1,E = 1)
0 0.97

1 0.03

This is known as the “explaining away e�ect”

• The e�ect also occurs when we get evidence on any descendent of A.

2
The tables are not in the right order. Figuring out the correct order is left as an exercise to the reader.
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• The three fundamental con�gurations can be combined into a systematic criterion

to identify all independence assumptions that are implicitly represented in a given

graph. “d-separation”

– directed path from X  Y sequence of nodes A0 = X ,A1, ...,Ak−1,Ak = Y such

that Aj−1 → Aj is an arc

– transitive closure (descendants) of X : DE (X ) = {Y : X  Y }

– ascendants of X : transitive closure of the transposed graph, nodes that can

reach X : AS (x ) = {Y |Y  X }

– undirected path (X ! Y ): A0 = X ,A1, ...,Ak−1,Ak = Y , such that Aj−1 → Aj

or Aj−1 ← Aj is an arc in the graph

• Consider a set S ⊂ {X1, ...,XD } such that evidence is available for all nodes in S . Let

X ,Y < S . Then, an undirected path X ! Y is blocked by S if any of the following

is true:

1. Ai−1— Ai — Ai+1 is a chain and Ai ∈ S

2. Ai−1 ← Ai → Ai+1 and Ai ∈ S

3. Ai−1 → Ai ← Ai+1 and neither Ai < S nor for Z ∈ DE (Ai ) Z < S

• Def: X and Y are d-separated
3

by S , if S blocks every path X ! Y .

3
Note: according to wiki d stands for directional
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• What independence assumptions does a BN encode?

– when X and Y are associated, information must �ow between them:

– in a BN information can only �ow along the arcs (in both directions!)

⇒ we must consider an undirected path between X and Y (X ! Y )

– if information can �ow along X ! Y the path is “active”, otherwise “blocked”

– if all paths between X and Y are blocked⇒ X ⊥⊥ Y (unconditionally)

– given a set S of nodes where we have evidence (know the variable value), path

activation can change
1

• algorithm to check for d-separateness:

Given: directed graph G, nodes S ; X ,Y < S

1. De�ne the ancestral subgraphG′ of G: remove all nodes not in {X ,Y ,S ,ancestors(X ,Y ,S )}
and their arcs.

2. De�ne moral graph G′′ of G′: for each node in G′ connect all unconnected

parents (“unmarried”) by an undirected arc and remove all arrows.

3. Construct G′′′ of G′′ by removing all nodes from S in G′′.

4. X and Y are d-separated given S if they are unconnected given G′′′.

• Def: A joint probability p (X1, ...,XD ) satis�es (directed global) Markov property

w.r.t a graph, if X j and X j ′ , are d-separated by S implies X j ⊥⊥ X j ′ |S in p (X1, ...,XD ).

• Theorem: If p (X1, ...,XD ) is Markov w.r.t a DAG G, then it can be factorized as

p (X1, ...,XD ) =
∏

j p (X j |PA(X j )).

• The converse is not generally true: conditional independence does not always imply

d-separation.

Example: X and Y are not d-separated but independent: X → Z → Y ← X .

linear model:

X = εX ∼ N (0,σ 2

X )

Z = aX + εZ

Y = bZ + cX + εY

= abX + bεZ + cX + εY = (ab + c )X + ε′Z

if (ax + c ) = 0⇒ X ⊥⊥ Y

1
see end of last lecture
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• this is undesirable: de�ne the problem away

• Def: A distribution p (X1, ...,XD ) is faithful to a DAG G if X j ⊥⊥ X j ′ |S implies d-

separation of X j ,X j ′ , given S .

• Claim: many important models for p (X j |PA(X j )) are faithful with probability 1.

Advantage: d-separation, i.e. the structure of the graph, fully speci�es all indepen-

dence assumptions⇒ we can separate the two problems

1. de�ne/learn the structure of the graph

2. learn the probabilities, given the graph

16.1 Inference in BN

• Inference: compute interesting properties that are implicitly represented by the

BN (graph structure and p (X j |PA(X j )) are known)

• basic algorithm: variable elimination: split the variables into 3 (disjoint & complete)

sets

– T : variables we are interested in (“targets”)

– V : variables where we have evidence (“visible”)

– U : variables we are not interested in

• whenV is empty: variable elimination =marginalization overU : p (T ) =
∑

U p (T ,U )

• when V is not empty:

1. de�ne new functionsq(X j |PA(X j )) =



P (X j |PA(X j )), if var. assignment is comp. w/ V

0, otherwise

2. marginalize over U q(T |V ) =
∑

U
∏

j q(X j |PA(X j ),V )

3. turn into probability by normalization p (T |V ) = q(T |V )/
∑

T ′ q(T
′|V )

• example 1: last week’s computations in the burglary alarm network

• example 2: Naive Bayes classi�er. Assumptions:

– class membership causes feature observations

– features are independent, given the class X j ⊥⊥ X j ′ |C .

Prediction:

∗ V = {X1 = o1, ...,XD = oD } what is p (C |V )?

∗ q(X j |C,V ) =



p (X j |C ), X j = oj = p (X j |C )δ (X j = oj )

0, otherwise
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16.1 Inference in BN

∗ p (C |X1, ...,XD ) ∝ p (X1, ...,Xd |C )p (C )

∗ p (C |X1 = o1, ...,XD = oD ) = q(C |X1, ...,XD )/
∑
q(C = k |X1, ...,XD )

problem: variable elimination has exponential complexity in the size of U (# of

variables to eliminate)

• solution, idea: use the distributive law to minimize the complexity in the sum over

products

– ab + ac = a(b + c ) (three operations vs 2). In a complex network, proper

grouping of terms can give dramatic gains:

q(X1,X3) =
∑
X2,X4

q1(X1,X2,X3)q(X1,X4)

assume each X j takes b di�erent values. Then we have in total b2 · 2b2 = 2b4
,

but grouping ∑
X2

q1(X1,X2,X3)
∑
X4

q2(X1,X4)

gives us b3 + 2b2

• but: �nding the optimal grouping is in general NP-hard.

• but: it is easy for a very important special case: if the BN is a tree.

⇒ use “belief propagation algorithm” to �nd the optimal computation mechani-

cally

• why is this relevant:

– many practical BNs are trees

– some can be transformed into trees by duplicating and grouping variables

using “junction tree algorithm”

– belief propagation also works when the graph is not a tree (“loopy belief

propagation”) (relevant cycles of the undirected graph corresponding to BN)

but gives approximate solution (quality is application dependent)

• belief propagation is also known as message passing.

– it passes around (between neighboring nodes) reduced (marginalized) proba-

bility tables
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• marginalization in Bayesian networks is generally done by “variable elimination”

• but: VE has exponential complexity in the # of eliminated variables when applied

naively

• We can take advantage of the distributive law to group sums and products such that

the complexity is minimized.

• “belief propagation” �nds an optimal evaluation order automatically for tree-shaped

graphs.

• original algorithm [Pearl, 1988] for BN, here: use the generalization to factor graphs

by [Kschischang et al., 2001]

– factor graph:

∗ two types of nodes: variables (X j ), factors (functions) fl (small squares)

X1 X2

X3

X1 X2

X3

fa

fc fb

X1 X2

f (X1,X2,X3)

X3

Figure 17.1: The left �gure shows the undirected graph for the middle and right picture

with single clique potential Φ (X1,X2,X3). The picture in the middle is the

factor graph of Φ (X1,X2,X3) = fa (X1,X2) fb (X2,X3) fc (X3,X1) and the right

�gure is the factor graph for Φ (X1,X2,X3) = f (X1,X2,X3).

∗ bipartite, i.e. edges are only between nodes of di�erent types (undirected

edges)

∗ edge X j—fl exist⇔ X j is an argument of fl

∗ example: Burglary alarm

– Variable elimination is implemented by “message passing”. Each node sends

and receives messages to/from its neighbors. messages = reduced probability

tables = partial variable elimination
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fE

E B

fB

fA

A

Figure 17.2: Factor graph for the Burglary alarm example

– message passing has two simple rules:

1. variable to factor:

µX j→fl (X j ) =
∏

f ′∈Ne (X j )\fl

µ f ′→X j (X j )

2. factor to variable:

µ fl→X j (X j ) =
∑

{X ′}∈Ne ( fl )\Xi

fl (Ne ( fl ))
∏

{X ′}∈Ne ( fl )\X j

µX ′→fl (X
′)

Note: Ne (·) represents the neighborhood of ·

– shorthand notation {X ′} ∈ N ( fl )\X j =: Nl\j

– Summary of the principle: message sent by a node to a receiver depends on

the messages coming in from all neighbors of the sender except the receiver.

– message scheduling: a message︸   ︷︷   ︸
LHS

can be sent as soon as all required incoming messages︸                   ︷︷                   ︸
RHS

at the sender have been received

⇒ leaf nodes in a tree can send messages to its only neighbor without waiting

or prerequisites

⇒ message passing proceeds in rounds:

. round 0: send messages from leaf nodes

. round t: send messages where last prerequisites were received in round

(t − 1)
termination time T = diameter of the tree (longest path)
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17.1 Temporal Models/Belief Networks

– �nalization rule: compute the marginals from all incoming messages of the

variable nodes

q(X j ) =
∏

f ∈Ne (X j )

µ f→X j (X j )

p (X j ) = q(X j )/
∑
X ′j

q(X ′j )

– For small graphs, this is no improvement over naive variable elimination, but it

is easy to implement as an algorithm for arbitrary large graphs “sum-product
algorithm”.

– If the graph has cycles (no tree)⇒ belief propagation is generalized to “loopy
belief propagation”.

∗ due to cycles, a node can receive messages through the same edge repeat-
edly (either through alternative paths or by repeated winding around a

cycle)

⇒Whenever this happens, the node sends updated messages through the

other edges.

∗ no hard termination condition, but converges to a �xed point (local optimal

solution) = reasonable approximation of full variable elimination, but

depends on the initial state

∗ two possibilities to incorporate evidence (observed states)

· set fl (X ) = 0 if the evidence is incompatible with the variable states

f (A,B,C ),A = 1 ∀B,E : f (A = 0,B,E) = 0

· attach unary factors to the variable nodes where we have evidence

example: Alice’s children, version (2) (We know that at least one of

the children is a boy.)
1

17.1 Temporal Models/Belief Networks

• causality goes past→ present→ future, we know the arrow directions

⇒ simplest possible model: Markov chain (MC) PA(X j ) := {X j−1, ...,X j−M }, M-th

order Markov chain

M = 1 : (X1) → (X2) → (X3) → ...
M represents how much memory the system has, for example M = 1 there is no

memory and the future only depends on the present, not the past

If p (X j |PA(X j )) = p (X j |X j−1) = R (j )
, Ri,i ′ = p (X j = ai |X j−1=i ′ )

p (XD |X1) = R (D) · · ·R (2)p (X1)

• The system is stationary if all X j have the same set of states and R (j ) = R (j ′)
.

1
there is again a graph that won’t be reproduced here
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• a stationary system can be represented as a probabilistic state machine, example: the

weather homework from exercise06.pdf

Rain

Sunny Cloudy

0.1

0.3

0.2

0.2

0.30.3 0.5

0.4 0.7

Figure 17.3: Probabilistic State Machine for weather homework.

• for D → ∞ p (XD |X1) becomes the stationary distribution p∞ which can be shown

to be independent of X1.

’stationary’ means that it doesn’t change anymore, p∞ = Rp∞, i.e. p∞ is the eigen-

vector of R corresponding to eigenvalue 1.
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This lecture is actually two lectures.

18.1 Markov Chains

(X1) → (X2) → ... → (XD ) if stationary: probabilistic state machine, state transition

matrix R, stationary distribution p∞ = Rp∞ eigenvector of R with eigenvalue 1.

X...X1 XDp(X... | X1) p(XD | X...)

p(X1 | X1) p(X... | X...) p(XD | XD)

Figure 18.1: Schematic of Markov Chain

18.1.0.1 Google PageRank algorithm

• a search engine works in two steps:

1. �nd pages related to the query

2. rank these pages according to importance/relevance

• how to measure importance?

– today: probably use actual click statistics

– ≈ 1995 : no statistics available ⇒ simulate user clicks by a random walk =

monkey user clicking at random

⇒ consider pages as important if they are frequently reached in the random

walk⇔ high prob. in p∞.

• de�ne transition matrix:

– state k = user looks at webpage k , k = 1, ...,C , C = # of pages

1. the monkey clicks on each link on page k uniformly at random

2. if page k contains no links the monkey goes to any page uniformly at random.
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3. on any page there is a constant prob λ that the monkey goes to any other page

uniformly at random instead of clicking a link.

– adjacency matrix A: Ak ′k =



1, page k links to page k′

0, else

– out-degree of page k:

∑
k ′ Ak ′k

– from 1. and 2. we de�ne the transition matrix R′:

P (X j = k
′|X j−1 = k ) = R′k ′k =




Akk ′/
∑

k ′ Ak ′k , if page k has Links

1/C, otherwise

∀k :

∑
k ′

R′k ′k = 1.

– incorporate rule 3. to de�ne “Google matrix” R:

Rk ′k = λ
1

C
+ (1 − λ)R′k ′k

– importance of page k : (p∞)k (numerically di�cult if C >> 1)

18.2 Hidden Markov Models (HMM)

• make Markov chain a bit more complicated: the interesting variables X j are not

observable anymore

• instead we can observe features Yj that depend on the “hidden” or “latent” vari-
ables X j (dependency is causal, but probabilistic)

⇒ BN: (X1) → (X2) → ... → (XD ) and (Xi ) → (Yi ),∀i
probability factorizes: p (X1, ...,XD ,Y1, ...,YD ) =

∏
j p (X j |X j−1)p (Yj |X j )

• example:

– speech recognition: X1, ...,XD is what the speaker said (phonemes), Y1, ...,YD
is what you heard

– wireless communication (e.g. cell phones): Xi symbol sent, Yj symbol received

• major task:

– compute marginals for the hidden states, given observations Y = O1
: p (X j |Y =

O ), j = 1, ...,D

1
observed state vector
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– compute the most likely sequence of hidden states, given observations

â = arg max

a
p (X = a |Y = O )

(note: the global ML sequence â generally di�ers from the sequence of pointwise

maxima α̃j = arg max

a
p (X j |Y = O ))

– learn the probabilities p (X j |X j−1) and p (Yj |X j ) from training data

• compute pointwise marginals

p (X j |Y = O ) =

∑
X\X j p (X1, ...,XD ,Y1 = O1, ...,YD = OD )∑
X p (X1, ...,XD ,Y1 = O1, ...,YD = OD )

∝
∑
X\X j

p (X1, ...,XD ,Y1 = O1, ...,YD = OD ) = q(X j |Y = O )

• factor graph

f1(X1) = p (X1) prior of X1

fj (X j ,X j−1) = p (X j |X j−1) transition probability

дj (Yj ,X j ) = p (Yj |X j ) observation probability

f1(X1) X1
f2(X2 | X1) X2

f3(X3 | X2) X3

д3(Y3 | X3)д1(Y1 | X1) д2(Y2 | X2)

Y1 Y2 Y3

Figure 18.2: Illustration of the factor graph for a HMM.

• BP message passing rules:

µX→f (X ) =
∏

f ′∈NE (X )\f

µ f ′→X (X )

µ f→X (X ) =
∑

X ′∈NE ( f )\X

f (X )
∏

X ′∈NE ( f )\X

µX ′→f (X
′)︸                     ︷︷                     ︸

(∗)
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• all factor nodes have degree 2 (“pairwise factors”) the products (∗) contain only a

single term, we can simplify message passing by concatenating two consecutive

messages
2

γj (X j ) = (µYj→дj ◦ µдj→X j ) (X j )

αj (X j ) = (µX j−1→fj ◦ µ fj→X j ) (X j )

βj (X j ) = (µX j+1→fj+1
◦ µ fj+1→X j ) (X j )

• message schedule:

– round 0: send all γ messages (in parallel) and α1(X1) (these messages have no

prerequisites, because f1 and Yj are leaves)

– round j: send αj+1(X j+1) and βD−j (XD−j )

⇒ forward-backward algorithm

• expand the message de�nitions:

γj (X j ) =
∑

X ′∈NE (дj )\X j︸       ︷︷       ︸
Yj

дj (Yj ,X j ) µYj→дj (Yj )︸      ︷︷      ︸
δ (Yj=O j )

= дj (Yj = Oj ,X j )

αj (X j ) =
∑

X ′∈NE ( fj )\X j︸       ︷︷       ︸
X j−1

fj (X j ,X j−1) µX j−1→fj (X j−1)︸           ︷︷           ︸∏
f ′∈NE (X j−1)\fj−1

µ f ′→X j−1
(X j−1)︸                               ︷︷                               ︸

αj−1
(Xj−1

)γj−1
(Xj−1

)

=
∑
X j−1

fj (X j ,X j−1)αj−1(X j−1)γj−1(X j−1)

α1(X1) = p (X1)

βj (X j ) =
∑

X ′∈NE ( fj+1)\X j︸         ︷︷         ︸
X j+1

fj+1(X j+1,X j )µX j+1→fj+1
(X j+1)

=
∑
X j+1

fj+1(X j+1,X j )γj+1(X j+1)βj+1(X j+1)

βD (XD ) = 1

• algorithm:

– round 0: propagate γj and α1

– round j: propagate αj+1 and βD−j

2◦ represents the concatenation
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– �nalization: compute marginals:

q(X j |Y = O ) =
∏

f ′∈NE (X j )

µ f ′→X j (X j ) = αj (X j )βj (X j )γj (X j )

• Remark: most textbooks derive the F/B algorithm directly, without factor graphs.

Then, the messages αj and γj are usually merged to α̃j (X j ) = αj (X j )γj (X j ).

• computing p (X j |Y = O ) is also called “smoothing”, intuition: X and Y have the

same statespace (symbols of an alphabet), Y is a noisy version of the true message

X ⇒ p (X j |Y = O ) is a denoised (smoothed) version of Y = O

• in smoothing, we condition on all observations Y1 = O1, ...,YD = OD

• in an online system, we can only condition on the observations received so far Y1 =

O1, ...,Yj = Oj (we do not yet know the values of future observations Yj+1, ....,YD )
⇒ (online) �ltering

• Derive �ltering from scratch and show that it gives the same results as belief propa-

gation on factor graphs:

p (X j |Y1 = O1, ...,Yj = Oj ) = p (X j , .Y1, ...,Yj )/p (Y1, ...,Yj )

q(X1 |Y1 = O1, ...,Yj = Oj ) = p (X j ,Y1 = O1, ...,Yj = Oj )

p (X j ,Y1, ...,Yj ) =
∑

X\X j ,Y\{Y1,...,Yj }

p (X1, ..,XD ,Y1, ...,YD )

=
∑
X j−1

p (X j−1,X j ,Y1, ...,Yj ).

• BN factorization and Bayes rule:

p (X j−1,X j ,Y1, ...,Yj )

= p (Yj |X j−1,X j , ...,Yj−1)p (X j |X j−1,Y1, ...,Yj−1)p (X j−1,Y1, ...,Yj−1)

= p (Yj |X j )p (X j |X j−1)p (X j−1,Y1, ....,Yj−1)

q(X j |Y1 = O1, ...,Yj = Oj )︸                           ︷︷                           ︸
=:α̃ j (X j )

=
∑
X j−1

p (Yj = Oj |X j )p (X j |X j−1)q(X j−1 |Y1 = O1, ....,Yj−1 = Oj−1)

= p (Yj = Oj |X j )
∑
X j−1

p (X j |X j−1) q(X j−1 |Y1 = O1, ...,Yj−1 = Oj−1)︸                                   ︷︷                                   ︸
α̃ j−1 (X j−1)

α̃j (X j ) = p (Yj = Oj |X j )︸          ︷︷          ︸
γj (X j )

∑
X j−1

p (X j |X j−1)α̃j−1(X j−1)︸                          ︷︷                          ︸
α j (X j )
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translate this to our notation:

q(X j |Y1 = O1, ...,Yj = Oj ) = γj (X j )︸︷︷︸
corrector

αj (X j )︸︷︷︸
predictor

αj (X j ) =
∑
X j−1

p (X j |X j−1)︸      ︷︷      ︸
fj (X j ,X j−1)

γj−1(X j−1)αj−1(X j−1)

predictor: updated prior for X j representing our expectations of the next X j

corrector: noisy observation of X j

q(X j |Y1, ...,Yj ): compromise between our expectations and observations

• Kalman �lter
3
:

– HMM with continuous state space for X and Y . X j ∈ R
N

, Yj ∈ R
N ′

– transitions are de�ned by linear (matrix) equations + additive Gaussian noise

⇒ nice analytical matrix expressions for all probabilities

• task: determine the most likely sequence of X , given Y = O , “maximum likelihood
detection”

â = arg max

a
p (X = a |Y = O )

– “decoding the noise received message Y ”

– Viterbi-algorithm, widely used in all digital communications

• as usual, instead of maximizing the likelihood, we minimize the negative log-

likelihood

– rede�ne the factors:

fj (X j ,X j−1) = − logp (X j |X j−1)

дj (Yj ,X j ) = − logp (Yj |X j )

– objective

α̂ = arg max

a
p (X = a |Y = O )

⇔ â = arg min

a

*.
,

D∑
j=1

дj (Yj = Oj ,X j = aj ) +
D∑
j=1

fj (X j = aj ,X j−1 = aj−1)
+/
-

– surprisingly, this can also be solved by a variant of belief propagation

– crucial insight: sum-product algorithm (= standard belief propagation) auto-

matically groups terms to minimize computations, but this grouping only relies

on the algebraic properties of addition and multiplication

3
might be treated later if there is enough time
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⇒ it works for other tasks that have the required algebraic properties

• speci�cally addition and multiplication form a semi-ring
Def of a semi-ring

4
: (R,⊕,⊗) is a semi-ring over domain R, if

(i) ⊕ is a commutative and associative operator with neutral element “0”

(ii) ⊗ is a commutative and associative operator with neutral element “1”

(iii) ⊕ and ⊗ are distributive: (a ⊗ b) ⊕ (a ⊗ c ) = a ⊗ (b ⊕ c )

(iv) “0” annihilates ⊗: a ⊗ “0”=“0”

• This obviously applies to ordinary addition and multiplication with “0” = 0, “1” = 1.

• for maximum a posteriori estimation = minimal negative log-likelihood we need

the “min-sum algebra”

(i) a ⊕ b = min(a,b), “0” =∞ (min(a,∞) = a)

(ii) a ⊗ b = a + b, “1” = 0, a + 0 = a

(iii) min(a + b,a + c ) = a +min(b,c )

(iv) a ⊗ “0” = a +∞ = ∞

• using this algebra, belief propagation becomes the “min-sum algorithm”, intuition:

replace all products with sums and all sums with “min” in the sum product algorithm

⇒ reuse the messages α ,β ,γ and update scheduling

– round 0: initialization

γj (X j ) = дj (Yj = Oj ,X j ) = − logp (Yj = Oj |X j )

βD (XD ) = 0 = “1” of min-sum

4
add inverses for a “complete” ring
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18 Lecture 24/06

– backward sweep, rounds 1, ...,D − 1 (compute the likelihood right to left):

min

{X1,...,XD }

*.
,

D−1∑
j=1

дj (Yj = Oj ,X j ) + fj (X j ,X j−1)
+/
-
=

= min

{X1,...,XD−1}

*.
,

D∑
j=1

дj (X j ) + fj (X j ,X j−1)
+/
-

+min

XD

*..
,
дD (XD )︸  ︷︷  ︸
γD (XD )

+fD (XD ,XD−1) + βD (XD )︸  ︷︷  ︸
=0

+//
-︸                                               ︷︷                                               ︸

=:βD−1 (XD−1)

= min

{X1,...,XD−2}

*.
,

D−2∑
j=1

дj (X j ) + fj (X j ,X j−1)
+/
-

+min

XD−1

(дD−1(XD−1) + fD−1(XD−1,XD−2) + βD−1(XD−1))︸                                                                ︷︷                                                                ︸
βD−2 (XD−2)

[...]

βj (X j ) = min

X j+1

(
дj+1(X j+1) + fj+1(X j+1,X j ) + βj+1(X j+1)

)
�nally:

â1 = arg min

X1=a1

*..
,

α1(X1)︸ ︷︷ ︸
− logp (X1=a1)

+β1(X1) + γ1(X1)︸ ︷︷ ︸
− logp (Y1=O1 |X1=a1)

+//
-

– forward sweep: propagate the solution from left to right

αj (X j ) = fj (X j ,X j−1 = âj−1)

âj = arg min

X j=aj

(
αj (X j ) + βj (X j ) + γj (X j )

)
“Viterbi algorithm”

• remark 1: one can also do a forward sweep �rst, followed by a backward sweep⇒

same result

• remark 2: in principle, one can also use this to maximize the likelihood directly

(instead of negative log-likelihood)

– use the “max-product algebra” ⊕ = max, “0” = −∞, ⊗ = ·, “1” = 1 to get the

“max-product algorithm”

– numerically not advisable, because it involves products of small numbers⇒

loss of precision

better: work with logarithms and min-sum algorithm
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Note: This lecture contains a lot of equations given in a very short amount of time. The
frequency of typing errors is therefore probably higher. Proceed with caution!

• Di�erence between point-wise marginals p (X j |Y = O ) and the global MAP
solution â = arg min

a
p (X = a |Y = O )

• Example 1:

– consider a problem where X j ∈ 1, ...,C and labels are ordinal (e.g. discretized

values of a continuous phenomenon) and Yj ∈ 1, ...,C are noisy observations

of the X j .

– Point-wise marginals describe the local uncertainty about X j . For example

X̄ j = E[X j], std[X j] can be computed from p (X j |Y = O ) and give local error

bars
1
.

– The MAP solution is the most likely global solution, within the local error bars.

• Example 2: consider a random walk in a maze: the room entered most frequently
2

is

not necessarily part of the most likely way out.

19.1 Learning the parameters (= transition probabilities) of a
HMM

• case 1: supervised training: the states X j are known in the training data→ estimate

the transition probabilities by counting transition frequencies

• case 2: unsupervised training: X j are unknown

– example: wildlife photographer wants to get footage of a interesting chim-

panzee. X j =



1, chimp is north of the river

2, chimp is south of the river

at time j.

– photographer needs to predict X j+1 to set up equipment at the right location

– observations Yj : any evidence where chimp is/was (sightings, excrements, ...)

Yj =




0 : no evidence or contradictory evidence on day j

1 : was seen north (but may be wrong!)

2 : was seen south (but may be wrong!)

1
example plot here

2
max of point-wise marginals

81



19 Lecture 26/06

– task: create a HMM from N observation sequences

• stationary HMM: transition probabilities are independent of j and constant ρk =
p (X1 = k ) prior k ∈ {N ,S }; πk ′k = p (X j = k′|X j−1 = k ); µmk = p (Yj = m |X j = k ),
m ∈ {0,N ,S }
full parameter set: θ = {ρ,π ,µ}

• training data:

– N sequences, n = 1, ...,N , length Dn j = 1, ..,Dn

– Observations Y = O , Y (n)
j = O (n)

j ∈ {0,1,2}

– hidden states X (n)
j are unknown

• maximum likelihood parameter estimation
3
:

ˆθ = arg max

θ
pθ (Y = O ) = arg max

θ

∑
X

p (X ,Y = O )

• no closed form solution, need an iterative algorithm: EM algorithm (known from

Gaussian mixture models/clustering in ML1)

given a current guess θ , try to get a better guess θ ′, such thatpθ ′ (Y = O ) ≥ pθ (Y = O )

• Kullback-Leibler (KL) divergence between two distributionsp1(ω) andp2(ω) over

the same domain ω ∈ Ω

KL(p2 |p1) =
∑
ω

p1(ω) log

p1(ω)

p2(ω)
≥ 0

We choose: p1(ω) = pθ (X |Y = O ) =
pθ (X ,Y=O )
pθ (Y=O ) , p2(ω) = pθ ′ (X |Y = O ) =

pθ ′ (X ,Y=O )
pθ ′ (Y=O )

KL(p2 |p1) =
∑
X

pθ (X ,Y = O )

pθ (Y = O )
log

pθ (X ,Y = O )pθ ′ (Y = O )

pθ ′ (X ,Y = O )pθ (Y = O )

= log

pθ ′ (Y = O )

pθ (Y = O )
+

1

pθ (Y = O )

∑
X

pθ (X ,Y = O ) log

pθ (X ,Y = O )

pθ ′ (X ,Y = O )

≥ 0

abbreviation:

Q (θ1,θ2) =
∑
X

pθ1
(X ,Y = O ) logpθ2

(X ,Y = O )

KL(p2 |p1) = log

pθ ′ (Y = O )

pθ (Y = O )
+
Q (θ ,θ ) −Q (θ ,θ ′)

pθ (Y = O )
≥ 0

3
marginalize over all possible assignments X
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19.1 Learning the parameters (= transition probabilities) of a HMM

⇒
Q (θ ,θ ′) −Q (θ ,θ )

pθ (Y = O )︸                 ︷︷                 ︸
lower bound for RHS

≤ log

pθ ′ (Y = O )

pθ (Y = O )︸        ︷︷        ︸
≥ 1 desired︸             ︷︷             ︸

≥ 0 desired

⇒ Improve the objective
pθ ′ (Y=O )
pθ (Y=O ) as much as possible by maximizing the lower

bound.

⇒ de�ne
ˆθ ′ = arg max

θ ′
Q (θ ,θ ′)

• EM algorithm
4

outline:

1. de�ne initial guess θ (0)

2. for t = 1, ...,T (or until convergence)

– E-step: de�ne

Q (θ (t−1),θ ′) = Eθ (t−1) [logpθ ′] =
∑
X

pθ (t−1) (X ,Y = O ) logpθ ′ (X ,Y = O )

– M-step: �nd
ˆθ ′ = arg max

θ ′
Q (θ (t − 1),θ ′)

– set θ (t ) = ˆθ ′

• thanks to the BN factorization of our HMM; the calculations simplify tremendously

Q (θ ,θ ′) =
∑
X

pθ (X ,Y = O ) log pθ ′ (X ,Y = O )︸           ︷︷           ︸∏
n
∏

j pθ ′ (X j |X j−1)pθ ′ (Yj=O j |X j )

=
∑
X

pθ (X ,Y = O )
N∑
n=1

*
,

logpθ ′ (X
(n)
1

) +
Dn∑
j=2

logpθ ′
(
X (n)
j |X

(n)
j−1

)
+

Dn∑
j=1

logpθ ′
(
Y (n)
j = O (n)

j |X
(n)
j

) +
-

• when minimizing w.r.t θ ′ = {ρ′,π ′,µ′} we also need to preserve the normalization

of these probabilities⇒ Lagrangian

L (θ ′) =
∑
X

pθ (X ,Y = O )
N∑
n=1

*
,

logpθ ′ (X
(n)
1

)︸    ︷︷    ︸
ρ ′

+

Dn∑
j=2

logpθ ′
(
X (n)
j |X

(n)
j−1

)︸            ︷︷            ︸
π ′

+

Dn∑
j=1

logpθ ′
(
Y (n)
j = O (n)

j |X
(n)
j

)︸                     ︷︷                     ︸
µ ′

+
-
+ λρ *

,
1 −

∑
k

ρ′k
+
-

+
∑
k


λk *

,
1 −

∑
k ′

π ′k ′k
+
-
+ ηk *

,
1 −

∑
m

µ′mk
+
-


4
E for expectation, M for maximization
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19 Lecture 26/06

• optimize by setting the derivative to 0

∂L (θ ′)

∂π ′
k ′k

=
∑
X

pθ (X ,Y = O )
∑
n



Dn∑
j=2

δ
(
X (n)
j = k

′,X (n)
j−1
= k

)
π ′
k ′k


− λk

!

= 0

π ′k ′kλk =
∑
X

pθ (X ,Y = O )︸          ︷︷          ︸
pθ (X |Y=O )pθ (Y=O )

∑
n

Dn∑
j=2

δ (X (n)
j = k

′,X (n)
j−1
= k )

= pθ (Y = O )
∑
n

Dn∑
j=2

∑
X

pθ (X |Y = O )δ (X (n)
j = k

′,X (n)
j−1
= k )

= pθ (Y = O )
∑
n

Dn∑
j=2

pθ (X
(n)
j = k

′,X (n)
j−1
= k |Y = O )

π ′k ′k ∝
∑
n

Dn∑
j=2

pθ (X
(n)
j = k

′,X (n)
j−1
= k |Y = O )

This can be computed by a variant of the forward/backward algorithm⇒ homework.

And then normalize:

π ′k ′k∑
k ′ πk ′k

→ π ′
k ′k

ρ′k ∝
∑
n

pθ (X
(n)
1
|Y = O )

µ′mk ∝
∑
n

Dn∑
j=1

pθ (X
(n)
j = k ,Y

(n)
j =m |Y = O )

∝
∑
n

Dn∑
j=1

pθ (X
(n)
j = k |Y = O )︸                   ︷︷                   ︸

standard F/B algorithm

1(Y (n)
j =m)

• Baum-Welch algorithm: repeat until convergence:

– compute marginals pθ (X
(n)
j = k |Y = O ) and pθ (X

(n)
j = k′,X (n)

j−1
= k |Y = O )

under the current guess θ , using the forward-backward algorithm.

– Update ρ′,π ′,µ′ by pretending that the marginals are the ground truth, using

counting followed by normalization.

• BW converges only to a local optimum of p ˆθ (Y = O ) ⇒ quality depends on the

quality of the initial guess.

– don’t initialize with 0, unless this is a constraint of the model, because 0 probs

stay 0 probs.

– method 1:

∗ random initialization: θ (0) is a uninformative prior plus noise, e.g. π (0)k ′k =
(1 − λ) 1

C + λU (0,1)
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19.1 Learning the parameters (= transition probabilities) of a HMM

∗ repeat with several initializations and keep best solution

– method 2: Viterbi counting

∗ de�ne counting matrices ρC , πC , µC (count how often each transition

occurred)

∗ initialize the counting matrices πC = LC×C , ρC = LC×1, µC = LM×C (L =

regularization parameter, minimum count for each transition)

∗ for t = 1, ...,T

· choose a training sequence n at random

· de�ne the transition matrices for the current iteration
5
:

π (t ) = (1 − λ)norm(πC ) + λnorm(U (0,1)C×C )

µ (t ) = (1 − λ)norm(πC ) + λnorm(U (0,1)M×C )

ρ (t ) = (1 − λ)norm(ρC ) + λnorm(U (0,1)C×1)

· compute the MAP solution using Viterbi

X = â,Y = Ô ,Ôj = arg max

oj

p (Yj = Oj |X j = âj )

· update the counting matrices πC ,ρC ,µC as if the MAP solution was

the ground truth

∗ init Baum-Welch with norm(πC ), norm(ρC ), norm(µC )

5norm = normalization
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20 Lecture 01/07

20.1 Causality

• causality is second major application of BN: (�rst: temporal models)

• three approaches to causality:

– understanding the underlying mechanism (but: may be beyond our techno-

logical capabilities, too expensive, overkill, not yet possible in early stages of

investigation)

– statistical experiment: actively intervene into the system and analyze the e�ect

statistically (but may be impossible, illegal, unethical, too expensive, too early)

– observational analysis: measure properties

• example: cholera epidemics in London ≈ 1850

– root cause (bacterium) was discovered in 1854 by Pacini (but not widely known),

settled by Robert Koch in 1884

– many hypothesis about cause (air quality, elevation of homes, social status,...)

– Farr (head statistician): derived from data: Yi/Yi ′ = (E′i − E0)/(Ei − E0)
1

– Snow (physician - inventor of anesthesia) believed (contrary to every one) that

cholera was transmitted by contaminated water.

⇒ identi�ed highly signi�cant association between illness and water pump

– Farr: this hypothesis is very plausible, but not forced by the data in 1854

– By 1866 Farr had collected enough data to con�rm Snow’s claim.

• Why is it di�cult to derive causality here?

– In physical systems (or standard ML) we can reset the experiment and repeat

under di�erent conditions.

⇒ can identify
2 E[Yi (Xi = a1) − Yi (Xi = a0)] > 0⇒ a1 is better than a0 (E

goes over individuals i)

– in living systems it is impossible to replay the data⇒ we can at best compute

EXi=a1
[Yi] − EXi=a0

[Yi] (E is over groups that received either treatment)

How can we assure that this is ≈ E[Yi (Xi = a1) − Yi (Xi = a0)]?

1Yi = prop i gets ill, Ei = elevation of i’s home

2i is a data instance and Xi = aj are di�erent interventions
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20 Lecture 01/07

– we may not be able to actively intervene⇒ the groups {Xi = a1} and {Xi = a0}

are outside of our control

• goals of causality analysis:

– prediction: What will happen if we apply treatment a or implement policy a?

(e.g. raise cigarette taxes?)

– counterfactual queries: What would have happened if Xi had been ak instead

of the actual ak ′?

– decision making: Is it “better” to apply treatment ak or ak ′ or no treatment at

all?

• BNs are a very useful tool here if

– they include all relevant variables (no hidden causes)→ di�cult to achieve

– the arrows in the BN represent causal directions→ “identi�ability”

– the probs are known→ “parameter searching”

• always remember: association (“correlation”) if not causality (but: analysis of many
associations can reveal causality)

• Reichenbach’s “common cause principle”: if X and Y are associated then either X
causes Y or Y causes X or there exists Z such that Z causes X and Y 3

– almost complete: correct when data X and Y are not conditioned on a common

e�ect of X and Y (“explaining away e�ect”)

– example: are lectures useful? Top researchers �nd self-learning more e�cient

“selection bias”

• remember the de�nition of independence: X ⊥⊥ Y ⇔ p (X ,Y ) = p (X )p (Y ), X ⊥⊥
Y |Z ⇔ p (X ,Y |Z ) = p (X |Z )p (Y |Z )
⇒ no causation is possible between independent variables (no direct causation if

conditional independent)

• modeling of interventions (active state changes by the investigator)

– suppose we have a “correct” BN, i.e. p (X1, ...,XD ) =
∏

j p (X j |PA(X j ))

– Pearl’s “do” operator: do(X j = aj ) = X j was actively set into state aj
more general do(X j ∼ p̃ (X j )) = X j was actively drawn from p̃ (X j ) instead of

p (X j |PA(X j ))
4

– “do” changes the factorization by replacing the distribution of X j

p
(
X1, ...,XD |do(X j ∼ p̃ (X j ))

)
= p̃ (X j )

∏
p (X j ′ |PA(X j ′ ))

graphical: incoming arcs of X j are deleted
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20.1 Causality

X

Y Z

Figure 20.1: Common-

Cause Model

X

Y Z

Figure 20.2: Causal-Chain

Model

X

Y Z

Figure 20.3: Common-

E�ect Model

X

Y Z

do Y

X

Y Z

do Y

X

Y Z

do Z
Figure 20.4: In�uence of interventions on the three basic causal models

⇒ “structural interventions”
5

– marginalization: (under hard intervention δ (X j = aj ))

p (X1, ...,X j−1,X j+1, ...,XD |do(X j = aj )) =
∑
X j

p (X1, ...,XD |do(X j = aj ))

=
∏
j ′,j

p (X j ′ | PA(X j ′,X j = aj )︸              ︷︷              ︸
X j = aj , whenever X j ∈ PA(X j′ )

)

– examples of the e�ect of “do”

p (...|X = a)︸        ︷︷        ︸
cond prob

= p (...|do(X = a))︸              ︷︷              ︸
intervent prop

⇔ X is a root in the BN (no incoming arcs)

– otherwise, the two probs are di�erent:

First example p (X ,Y ) = p (Y )p (X |Y )

p (Y |X = a) =
p (Y )p (X = a |Y )∑
Y p (Y )p (X = a |Y )

,

p (Y |do(X = a)) =
∑
X

p (Y )δ (X = a) = p (Y )

3X → Y , Y → X , X ← Z → Y
4
hard intervention X j = aj is a special case: p̃ (X j ) = δ (X j = aj )

5
opposite: “parametric intervention” p (X j |PA(X j )) = p̃ (X j |PA(X j ))
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Second Example67 p (X ,Y ,Z ) = p (Z )p (X |Z )p (Y |X ,Z )

p (Y |X = a) =
∑
Z

p (Y ,Z |X = a) =
∑
Z

p (X = a,Y ,Z )

p (X = a)

=(∗)
∑
Z

p (Z |X = a)p (Y |X = a,Z )

,

p (Y |do(X = a)) =
∑
X ,Z

p (Z )δ (X = a)p (Y |X ,Z )

=
∑
Z

p (Z )p (Y |X = a,Z )

⇒ be careful when making interventional predictions from observational

probabilities (⇒ later)

• What’s the “correct” BN?

– Let G be a DAG with nodes X1, ...,XD and p (X1, ...,XD ) a joint distribution, p
is “Markov and faithful” with respect to G if:

[X d-separate Y |Z ]G ⇔ [X ⊥⊥ Y |Z ]p .

– in general, G is not uniquely determined:

“Markov equivalence class”:M (G ) = {G′|p is Markov and faithful w.r.t G’}

– “skeleton” of G: undirected graph obtained by removing all directions in G

– “moral graph” of G. connect all parents by an undirected edge and remove all

directions afterwards

– Theorem: Two DAGs G, G′ are Markov equivalent i� their skeletons and

moral graphs are equal.

– “Markov minimality”: a DAG G is Markov minimal w.r.t p, if p is Markov and

faithful w.r.t G but not w.r.t any subgraph of G8

– “causal e�ect”
9
: there is a (total) causal e�ect from X j to X j ′ in p (X1, ...,XD ) i�

X j 6⊥⊥ X j ′ in p (X1, ...,XD |do(X j ∼ p̃ (X j )))

– “true causal graph”:

∗ Let G be a DAG s.t. p (X1, ...,XD ) is Markov and faithful.

∗ For all subsets of S ⊆ {X1, ...,XD } let

pG (X1, ...,XD |do(S ∼ p̃ (S ))) = p̃ (S )
∏
j<S

p (X j |PA(X j ))

6X 6⊥⊥ Y partly due to direct e�ect X → Y partly due to common cause Z

7 (∗) there are some basic calculations needed here, which are left as an exercise for the reader

8
i.e. we cannot remove any edges from G without changing the probability

9
intuitively: there is a path from X j  X j′ , in the graph where all incoming arcs of X j were removed
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20.1 Causality

be the interventional distribution obtained fromG and p (X1, ...,XD |do(S ∼
p̃ (S ))) the true interventional distribution.

G is a true causal graph of p i� ∀S ,∀p̃ (S ):

pG (X1, ...,XD |do(S ∼ p̃ (S )) = p (X1, ..,XD |do(S ∼ p̃ (S )))

• Theorem: The minimal true causal graph for p is unique.
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21.1 Create BNs from data

• A true causal model reproduces the joint probability p (X1, ...,XD ) (what you get

from passive observation) and all interventional distributions p (X1, ...,XD |do(S ∼
p̃ (S ),S ⊂ X )) (what you get from experiments).

• Theorem: The minimal true causal model is unique [Peters et al. 2014].

• problem: given data, infer the true model, or (weaker) a member of the Markov

equivalence class

• IC algorithm1
: idealized exact algorithm to identify the Markov equivalence class.

– assumptions:

∗ the nodes X1, ...,XD of the graph are known

∗ the possess to a test oracle that answers (conditional) independence queries

– steps:

1. start with the complete graph and remove edges whose end points are

(conditionally) independent

⇒ skeleton of G

2. detect “common e�ect” situations and orient the arrows accordingly (“v-

structures”)

3. use BN constraints (e.g. cycle-free) to orient as many additional edges as

possible

4. perform experiments to obtain the orientation of the remaining edges (or

orient arbitrarily)

1. compute the skeleton (conceptual way, exponential complexity)

– for all pairs (X j ,X j ′ )

∗ for every subset S ⊆ X\{X j ,X j ′} (including ∅)

· ask the oracle if X j ⊥⊥ X j ′ |S , if yes

+ call S ⇒ Sjj ′ and remember it
2

+ remove the edge (X j ,X j ′ ) from graph

1
IC = “inductive causation”

2
remember the smallest one if there are multiple
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– Theorem: This produces the true skeleton if the oracle is always correct.

In practice, the oracle is some statistical test (⇒ later) that may be erro-

neous. ⇒ we get only an approximate skeleton

– optimization 1: PC-algorithm
3

∗ start with small conditioning sets S: CI-test (“conditional independence

test”) is faster and more accurate

∗ showed that S only needs to include neighbors of either X j , or X j ′ ⇒

after a few edge removals, a lot fewer S can be constructed

∗ early termination: After some removals, it may become impossible to

create new S .

∗ algorithm:

· start with complete graph

· set S = ∅: for all pairs (X j ,X j ′ ) remove edge if X j ⊥⊥ X j ′ |∅

· work on S with |S | = 1: for all nodesX j that have at least 2 neighbors

+ for all X j ′ ∈ NE (X j ) and all X j ′′ ∈ NE (X j )\X j ′ remove edge

(X j ,X j ′ ) if X j ⊥⊥ X j ′ |X j ′′

· work on S with |S | = 2: for all X j with at least 3 neighbors

+ for all X j ′ ∈ NE (X j ) and all X j1 ,X j2 ∈ NE (X j )\X j ′ remove edge

(X j ,X j ′ ) if X j ⊥⊥ X j ′ |(X j1 ,X j2 )

· and so on, until no X j has the required number of neighbors

∗ in the worst case this is not faster than IC algorithm, but can be proven

[Classen et al. 2013] that a variant of PC has worst case complexity

O (D2(deg+2) )4

⇒ if the skeleton is sparse (deg is small)⇒ polynomial runtime; in

practice this is usually the case

∗ If the oracle is always correct: PC creates the correct skeleton, oth-

erwise the result is order-dependent because errors lead to di�erent

subsequent tests and errors.

– optimization 2: stable parallel PC-algorithm: eliminate order dependence

by performing all CI tests for given |S | in parallel, only remove edges until

each round |S | is �nished

∗ don’t remove edges in parallel but sort by con�dence of the CI test

(increasing p-value) and remove in that order, but skip removals whose

preconditions no longer hold (i.e. the edge a particular test relies upon

have already been removed) = no, this requires more thought

∗ faster than PC if CI tests are performed concurrently

3
PC = “Peter & Clark”

4
deg: maximum degree of any node in the skeleton
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21.1 Create BNs from data

A

B C

Figure 21.1: Example where applying stable-PC gives a di�erent outcome.

2. detect “v-strutures” (common e�ects)

– for all pairs X j ,X j ′, that are not connected but have a common neighbor

X j ′′

if X j ′′ < Sjj ′ ⇒ X j ′′ cannot be a common cause of or mediator between X j

and X j ′ ⇒ j → j′′ ← j′

– assume that step 2. �nds all v-structures
5

3. orient as many edges as possible using following constraints

– BN must be acyclic (⇒ some orientations are infeasible⇒ use the other

direction)

– when X j and X j ′ are not connected but have a common neighbor X j ′′ this

cannot be a v-structure
6

A B C D

E
Figure 21.2: True Causal Graph of

Example 2

A B C D

E
Figure 21.3: True Causal Pattern of

Example 2

example7

example 2[Spirtes et al 2010]
8

4. get interventional data to orient remaining edges: we know that after do(X j =

aj ), there can be no incoming arcs to X j ; all edges at X j must go out in the

interventional graph

– [Eberhardt et al.2006] showed: in the worst case, two situations are

needed for every edge (X j ,X j ′ )

a) exp 1: intervene on X j , but not on X j ′ , exp 2: intervene on X j ′ , but not

on X j

5
excludes turning j − j ′′ − j ′⇒ j → j ′′ ← j ′

6
if one edge is already connected, this implies the orientation of the other

7
the lecture contains a couple of graphical examples here

8
see Automated Search for Causal Relations_ Theory and Practice.pdf �gure 1 for the graph
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b) exp 1: intervene on neither of X j ,X j ′ , exp 2: intervene on exactly one

of X j ,X j ′

A

B C

A

B C

IA

IB

Figure 21.4: On the left we see the true unknown complete graph among the variablesA,B,C .

In one experiment, the researcher performs simultaneously and independently

a parametric intervention on A and B (IA and IB , respectively, shown on the

right). Since the interventions do not break any edges, the graph on the right

represents the post-manipulation graph.

5. Theorem:

– If one intervenes on exactly one variable per experiment, at most D − 1

experiments are needed to get full BN.
9

– If one can intervene on up to D/2 variables simultaneously, log
2
D + 1

experiments are su�cient.
10

practical problems are usually not worst case

9
assuming they do not err

10
again assuming correctness
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22 Lecture 08/07

22.1 Detecting conditional independence by statistical tests

• standard method: G-test

– X can have states 1, ..., Cx

– Y can have states 1,..., Cy

H (x ) = −
Cx∑
k=1

p (X = k ) log(p (X = k ))

H (x ,y) = −

Cx ,Cy∑
k=1,l=1

p (X = k ,Y = l ) log(p (X = k ,Y = l ))

– Mutual Information

MI (X ,Y ) = H (X ) + H (Y ) − H (X ,Y )

– usual hypothesis H0 : X ⊥⊥ Y
Under H0 the actual observed counts N follow a multinomial distribution

Ĝ = 2NM̂I (X ,Y )

has a χ 2
distribution with (Cx − 1) · (Cy − 1) dof

1

– conditional independence:

∗ repeat for every state of the conditioning set

∗ take result with max p-value

∗ better: Bonferroni correction
2

• Problems:

– Normally this test is conservative: we reject H0 only when we are con�dent

(high p-value). This means we assume independence in case of doubt. We

would like to have a test for X 6⊥⊥ Y but this is di�cult.

– continuous variables must be discretized and MI is very sensitive to particular

discretization⇒ active area of research

1
dof = degrees of freedom

2
see https://xkcd.com/882/

97

https://xkcd.com/882/


22 Lecture 08/07

– if the conditioning set is large, only few samples ful�ll the condition⇒ high

variance of MI, in practice |S | = 4 is max

– errors propagate in PC also

22.1.0.2 Kernel-based independence test

• map data into augmented feature space X̃ = ϕ (X ),Ỹ = ψ (Y ), where ϕ,ψ are nonlin-

ear

• compute cross covariance matrix

CV = E[(X̃ − EX̃ )T(Ỹ − EỸ )]

• compute biggest eigenvalue of CV

• perform statistical test if this ev is 0

if yes ⇒ X ⊥⊥ Y because zero correlation implies independence after nonlinear

mapping [Fukumizu et al 2008]

• eliminate explicit mapping by Kernel trick

22.1.0.3 Approximation algorithm for BN construction

• more making algorithms

– given our current guess of the BN, de�ne “moves” that transform the BN into

a similar one (typical ones: add arc, remove arc, reverse arc,...)

– compute a score for all candidates produced by moves, eg:

BIC = − logp (D |θ ) +
#θ

2

logN

– implementations vary in

∗ allowed moves

∗ score functions

∗ amount of randomness

– initialization: usually empty graph

22.1.0.4 Using structured equation models (SEMs)

• basic claim: Ambiguity in BN construction is caused by de�nitions that are too

general. It may not be the best idea to allow for any possible function p (X j |PA(X j ))
⇒ restrict function class using SEMs.

X j = fj (PA(X j ),Nj )

where Nj is noise
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22.1 Detecting conditional independence by statistical tests

• Theorem: If p (X1, ...,XD ) is strictly positive and Markov with respect to a DAG G
then there exists a SEM on G that generates p (X1, ...,Xd ).

• advantage: we have control over the function class, e.g. X j = fj (PA(X j )) + Nj

• identi�ability:

if fj is linear and Nj is Gaussian⇒ cannot distinguish between X → Y , Y → X
same if fj is asymptotically constant and strictly monotone and Nj is exp. distributed

3

• when identi�ability holds:

1. fj is linear and Nj is nonGaussian⇒ LINGAM algorithm [Kons & Shimzu 2003]

(similar to ICA)

2. fj is nonlinear Nj is Gaussian⇒ RESIT
4

algorithm

3Nj ∼ e−|x |
4
[Peters et al. 2014]
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23 Lecture 15/07

23.1 RESIT algorithm (regression with subsequent
independence test)

• approximation algorithm to construct a BN

• example for hot research: �nd new ways to detect causality

– traditional (PC algo): analyze dependence between variables X ⊥⊥ Y?, X ⊥⊥
Y |Z?

– new idea: De�ne a SEM
1

and analyze dependency between predictors and

residuals of the SEM regression.

SEM: X j = f (PA(X j )) + Nj (additive noise model)

regression
2
:

ˆf = arg min

f

∑
i (Xij − f (PA(X j )i ))

2

residuals: Rij = Xij − ˆf (PA(X j )i )
by de�nition of an additive-noise SEM, we require Nj ⊥⊥ PA(X j ). If the model

is correct, the same must be true for the residuals: Rj ⊥⊥ PA(X j ), meaning, that

there is no information in PA(X j ) that could be used to reduce the residual Rj .

– in particular Rj 6⊥⊥ PA(X j ) if the modal is not causal
3

• algorithm:

– phase 1 determine the optimal ordering of the variables for Bayesian factoriza-

tion.

∗ S = {X1, ...,XD }

∗ for t = D, ...,1 (construct order backwards)

· for each X j ∈ S :

+ regress X j on S\X j using a suitable regression method and compute

residual Rj

+ conduct independence test for Rj ⊥⊥ S\X j and store p-value pj

1
structured equation model

2
(non-linear least squares, kernel regression, ...)

3
The lecture contains an example graph here: X j → X j′ via д(X j ) and the anti-causal model X j′ → X j via

f (X j′ ). Our wrong SEM predicts x̂ j = ˆf (д(X j )) if д is not invertible, information is lost⇒ R j = X j − X̂ j

contains information that could be used to predict X j′ from X̂ j and R j .
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+ set π (t ) = arg max

j
pj (place the variable with biggest p-value, i.e.

highest certainty of independence at position t )

+ PA(Xπ (t ) ) = S\Xπ (t )

+ update S = S\Xπ (t )

– phase 2: determine SEM (remove as many edges from the graph as possible

and determine the regression functions)

∗ initializeG as the complete DAG for the order of phase 1 (add arcsX j ′ → X j

for all X j ′ ∈ PA(X j ))

∗ for t = 2, ...,D:

· for each X j ′,PA(Xπ (t ) ) (try to get rid of as many parents as possible)

+ regress Xπ (t ) on PA(Xπ (t ) )\X j ′ and compute residuals Rj ′

ifRj ′ ⊥⊥ PA(Xπ (t ) ): removeX j ′ from parents PA(Xπ (t ) ) = PA(Xπ (t ) )\X j ′
4

– output the resulting graph and regression functions

• properties:

– only marginal dependence tests are needed (no conditional ones)→ easier

– can prove: The true causal model is identi�able when the regression functions

are non-linear, provided that the regression is su�ciently powerful and the

additive noise assumption is ful�lled.
5

– e�cient: O (D2Q ) operations, where Q is complexity of the regressions and

independence tests
6

23.2 Parameter estimation in BNs

Estimate the probabilities p (X j |PA(X j )) from training data, given the structure of the BN.

• if the variables are discrete: estimate conditional probabilities by counting

• if the variables are continuous (or too many discrete states): use an SEM and regres-

sion

• if data is partially missing

– if missing at random (the fact that a value is missing is statistically independent

of the missing value): EM algorithm (replace missing data by our current guess

on their expected value)

– if systematically missing:

4
typically: kernel-based independence tests

5
typical regression methods: kernel SVR, Gaussian processes, generalized additive models, linear regression

6
compare PC: O (2D )
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23.3 Drawing Conclusions from a BN

∗ if the missing value is irrelevant for the instance at hand (e.g. physicians

wouldn’t do a useless diagnostic)

⇒ introduce class “irrelevant” as an additional state of the variable

∗ otherwise: non-trivial problem⇒ later

23.3 Drawing Conclusions from a BN

Two typical cases (in both cases it is critical to avoid omitted variable bias (Simpson’s

paradox)):

1. has X a direct e�ect on Y? (i.e. is there an arc X → Y , and if yes, how strong is the

association?)

2. what is the total causal e�ect of X on Y along all paths X  Y combined?

• omitted variable bias in 1.: Berkley admission example

– proposed BN of the plainti�s: sex→ admission. G-test for this model is highly

signi�cant for sex 6⊥⊥ admission and discriminating women p-value < 10
−

5

– proposed BNs of the defense: sex→ �eld→ admission and maybe even a link

sex→ admission?

Q: is there a direct e�ect of sex on admission?

G-test: sex ⊥⊥ admission | �eld:

∗ conditional independence for 5 out of 6 �elds p-value > 0.3

∗ in one �eld: conditional dependence with p-value = 10
−5

, but here women

are signi�cantly preferred (82% vs. 62%)

⇒ sex has a large total causal e�ect, but only a small direct e�ect.

⇒ rule: omitted “mediating” factors
7

(here �eld) cause bias when the direct

e�ect is of interest.

• in case 2., omitted variable bias arises from missing common causes (“confounders”)

example: kidney stone data: recovery rates for two treatments A (open surgery), B
(minimal invasive surgery)

A:treated A:recovered B:treated B:recovered

350 273 (78%) 350 289 (83%)

B seems to be better (but G-test says that the di�erence is not yet signi�cant)

BN : treatment → recovery. But an important confounder is missing: stone size,

giving us: recovery← size→ treatment→ recovery

A:treated A:recovered B:treated B:recovered

350 273 (78%) 350 289 (83%)

small 87 81(93%) 270 234(87%)

big 263 192 (73%) 80 55 (69%)

7
variables on directed path X  Y
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conditional on stone size, treatment A is superior. But: physicians prefer treatment

B for the less severe cases
8

problem arises due to the di�erence between the conditional probability p (rec |X )
and interventional probability p (rec |do(treatm.)). We derived earlier:

p (Y |X ) =
∑
Z

p (Z |X )p (Y |X ,Z )

p (Y |do(X )) =
∑
Z

p (Z )p (Y |X ,Z )

the latter being the de�nition of the total causal e�ect of X on Y .

p (rec |do(treat = A)) = 83%

p (rec |do(treat = B)) = 78%

i.e. exactly the reverse of the conditional probability.

Computing p (Y |do(X )) in the presence of confounders is called adjustment.

8
i.e. the BN is still not complete, because it doesn’t explain the treatment choice⇒ more hidden factors,

e.g. risk factors, speed of recovery, cost,...
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24.1 Confounder Adjustment

• naive estimate of treatment e�ect E[Y |X = A] − E[Y |X = B] ≈ 1

NA

∑
i:Xi=AYi −

1

NB

∑
i:Xi=B Yi is biased, when treatment decision Xi depends on features Zi of the

individual instance i , because the groups who received either treatment are not

comparable

• illustration using potential outcomes: Imagine that for each individual, the reaction

to treatment A and B is pre-determined but unknown to us.

– By applying a treatment, we will observe one of the potential outcomes, but

since we cannot rewind time, the other outcomes (“counter-factual” outcomes)

are missing = “fundamental missing data problem of causal inference”.

– If we have binary variables (2 treatments A and B, 2 outcomes true and false),

there are 4 di�erent types of people according to potential outcomes:

type|pot outcome A B

a 1 0 A responsive

b 0 1 B responsive

c 1 1 complete responsive

d 0 0 doomed
1

two observation groups: NA individuals who received treatment A: TA
2

– the (unknown) proportion of the 4 types in both groups: pa,pb ,pc ,pd for TA;

qa,qb ,qc ,qd for TB

– we cannot distinguish types: a from c, b from d in TA and a from d, b from c in

TB because the counter-factual outcome is unknown.

– compute the number of recovered people: RA = NA(pa + pc ); RB = NB (qc + qd )

– naive estimate: compare the proportions:
RA
NA
−

RB
NB
= pa + pc − (qb + qc )

– we are actually interested in the treatment e�ect: pa − pb

– we must make sure that the two groups TA and TB are comparable (“exchange-

able” treatment assignment)

⇒ pa ≈ qa,pb ≈ qb ⇒
RA
NA
−

RB
NB
≈ pa − pb as desired.

1
insert dark laughter here

2NB , TB analogously
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– preferred strategy to achieve these randomized experiments = decide about the

treatment uniformly at random, without considering the features Zi .

⇒ asymptotically, the feature distributions p (Z |X = A) = p (Z |X = B) = p (Z )
because X ⊥⊥ Z by design

⇒ we have pa = qa , etc. asymptotically

(for �nite samples, this may not be achieved⇒ avoid this by rejection sampling,

i.e. check if p (Z |X = A) = p (Z |X = B) and draw a new random assignment if

this is not the case)

– often, randomized assignment is impossible

example: placebo surgery⇒We must explicitly adjust for the di�erences in

TA and TB .

• possibility 1. confounder adjustment: p (Y |do(X = A)) =
∑

Z p (Y |X = A,Z )P (Z )

– The confounder Z can actually be a set of features: Z = {Z1, ...,ZL}.

– question: What is a valid adjustment set Z , given the BN?

– graphical criterion: “backdoor criterion” (su�cient, but necessary):

a) Z must not contain a descendant of X to avoid Berkson’s paradox
3

and

mediating variables

b) remove the outgoing arcs of X (= remove the causal e�ects of X) ⇒ All

remaining associations between X and Y are spurious common cause

e�ects of the confounders.

If X ⊥⊥ Y |Z in the modi�ed path, such e�ects cannot occur if we adjust

for Z =̂ valid adjustment set.
4

– problem: The number of joint states in Z grows exponentially with the number

of variables in Z #states = Ω(2L).
⇒ #states is big we will be unable to estimate P (Y |X ,Z ) from a realistic amount

of training data

• possibility 2. strati�cation: de�ne subgroups of instances with similar Z (“clus-

ters”, “strata”) and estimate probabilities in each stratum separately and sum over

strata

– typically achieved by coarse quantization of the Zl into at most 5 levels.
5

– still doesn’t work when Z has too many variables

• possibility 3. propensity score:[Rosenbaum& Rubin 1983] [Austin 2011]
6

– introduce a new variable F by splitting X (F becomes the only parent of X
receiving all the arrows from Z )

⇒ If Z was a valid adjustment set, so is F because it blocks exactly the same

backdoor paths.

3https://en.wikipedia.org/wiki/Berkson’s_paradox
4
special case: Z = PA(X )

5
age groups: 5-15, 15-25,...

6
see austin2011.pdf
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24.1 Confounder Adjustment

– de�ne structured equation model: F is a deterministic function
7

of Z FA(Z ) =
p (X = A|Z ), called the propensity score for A
simply train a classi�er that gives a posterior distribution (logistic regression,

random forest, neural networks)

p (X = A) = Bernoulli (FA(X ))

– surprising result: when FA(Zi ) ≈ FA(Zi ′ ) then the two individuals are compa-

rable, even if Zi , Zi ′ ⇒ it only matters that propensity scores match

– use this in three ways:

i) stratify on propensity score intervals

ii) weight adjustment: consider

E

[
1(X = A)Y

FA(Z )

]
=

∑
X ,Y ,Z

1(X = A)Y

FA(Z )
p (X ,Y ,Z )

=
∑
X ,Y ,Z

1(X = A)Y

FA(Z )
p (Y |X ,Z )p (X |Z )p (Z )

=
∑
Y ,Z

Y

FA(Z )
p (Y |X = A,Z ) p (X = A|Z )︸        ︷︷        ︸

=FA (Z )

p (Z )

=
∑
Y

Y
∑
Z

p (Y |X = A,Z )p (Z )︸                  ︷︷                  ︸
p (Y |do(X=A))

= E[Y |do(X = A)]

likewise, we have E
[
1(X=B)Y
FB (Z )

]
= E [Y |do(X = B)]

⇒E[Y |do(X = A)] − E[Y |do(X = B)]

≈
1

N

∑
i

1(Xi = A)Yi
FA(Zi )

−
1

N

∑
i

1(Xi = B)Yi
FA(Zi )

=
1

N

∑
i:Xi=A

Yi
FA(Zi )

−
1

N

∑
i:Xi=B

Yi
FB (Zi )

,
1

NA

∑
i:Xi=A

Yi −
1

NB

∑
i:Xi=B

Yi

iii) propensity score matching: arrange the two groups into a complete bipartite

graph

∗ weight edges by absolute di�erence |FA(Zi ) − FA(Zi ′ ) | = wii ′

∗ remove edges whose weight is above some threshold

∗ �nd the minimum cost by bipartite matching by Hungarian algorithm

(or a greedy approximation
8
)

7
analogously for B

8
results do not really change according to literature
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1

2

3

4

5

6

7

8

9

10

Treated
Control

∗ form subgroups T ′A and T ′B from all matched pairs: in T ′A and T ′B the

naive formula is equivalent to the exact formula

E[Y |do(X = A)] = Epairs[Y |X = A]

∗ the matched partner is our best guess at the counterfactual outcome

∗ ultimate pairing: twin-study
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25.1 Hidden Confounders

• variables we cannot measure (accurately) or don’t even know that they exist/are

relevant

• gold standard: randomized controlled experiment (RCE): do(X ) cuts all incoming

arcs of X , regardless of known or hidden

• if there is no opportunity to do RCE, not all is lost:

– sometimes, p (Y |do(X )) is still identi�able, e.g. front-door adjustment formula

– It may be possible to intervene on an instrumental variableW that in�uences

X . ⇒ p (Y |do(X )) may be identi�able

– But: the success of these methods depends on very narrow conditions.

25.2 Transfer Learning = Domain Adaptation

• suppose we cannot get data of the desired quality in the target

• instead of asking: “How can we get away with bad data?”, we ask “Can we combine

the bad data with good data from a similar domain to get better results?”

• we want to be better than the naive base lines:

– learn model from target data alone (high variance, possibly high bias if unad-

justed confounding)

– use model learned in the source domain (high bias, because domains di�er)

• typical scenarios: we got high quality annotations from experts, but experts won’t

do this again for another dataset

• There was a carefully designed experiment in one country: are the results transfer-

able to another country, where only observational data exists?

• Can we transfer results on a limited cohort (students) to the population at large?
1

• Frustratingly Easy Domain Adaptation: EasyAdapt[Daumié III 2007]
2
, EasyAdapt++

[Daumé III et al 2010]

1
e.g. WEIRD students in psychological studies, or transfer from lab animals to humans

2
see daumedomainAdapt.pdf
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– standard 2-class classi�cation

– we have lots of annotated training data in domain D = 0

– we have few annotated training data in domain D = 1, optionally lots of

unlabeled data (semi-supervised)

– idea:

∗ centralize the features X

∗ create an augmented feature space X̃ by replicating the features:

X̃ = [X , (1 − D)X ,DX ] =



[X ,X ,O], if i ∈ source

[X ,O ,X ], if i ∈ target

⇒ treat transfer learning as a missing data problem, one of the copies is

missing for each instance and replaced by the expected values O .

∗ the �rst copy should capture the common properties of both domains, the

others the di�erences

– consider a linear classi�er: training gives a weight vector:
˜β = [βc ,βs ,βt ]

T

– prediction of a source instance Ŷ = X̃β = X (βc + βs )

– prediction of a target instance: Ŷ = X̃β = X (βc + βt )

– also works for any blackbox classi�er = EasyAdapt, works well in experiments

– semi-supervised version EasyAdapt++: we augment the training set also with

unlabeled data

– claim: predictions of source and target classi�ers should be similar on unlabeled

data

Xu (βc + βs ) ≈ Xu (βc + βt ) ⇔ Xu (βs − βt ) ≈ 0

⇔ X̃u
˜β ≈ 0 where X̃u = [O ,X ,−X ]

– since we don’t have label 0, we add two augmented instances for each unlabeled

instance, one with either label X̃u ,Ỹu = [O ,X ,−X ,+1], X̃u ′mỸu ′ = [O ,X ,−X ,−1]

– train normally and predict Ŷ = X (βc + βt ) for target points

– for linear SVM, we get the rolling loss functions

– outperforms many complex methods

25.3 Data augmentation

idea: to make a ML algorithm robust against certain systematic transformations of the

data X , create additional training data using these transformations without changing the

outcome

⇒ algorithm must learn that the transformations are irrelevant
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25.4 Importance sampling by reweighting

• robustness against noise: add noise,

• illumination changes: linear intensity transformations

• rotational invariance: rotate the data

• shape invariance: randomly morph the shape

• ...

• especially popular for neural networks since they need a lot of training data anyway,

and can create augmented data on the �y

• preliminary: performs as well as explicitly designed invariance, but much simpler

25.4 Importance sampling by reweighting

• given a BN with �xed structure and parameterized probabilities/structural equations:

• we have a high-quality data of the BN behavior for some parameterization θ , want to

know: “How does the BN behave for θ ′”, without redoing the (expensive) experiment.

• replace question by counterfactual question: “How would the BN have behaved had

the parameters been θ ′ provided the hidden mechanisms didn’t change.”

⇒ virtually replay the data to simulate BN(θ ′)

• example: advertisement placement on the Bing Search result [Bottou et al. 2013]

– three con�icting goals:

∗ don’t annoy the user (few and relevant ads)

∗ attract advertisers (high click rates at reasonable price)

∗ maximize Bing’s revenue

– BN:

p (X |θ ) =
∏
j

p (X j |PA(X j ),θ )

– if we change the parameters for a single white arrow, we get

p (X |θ ′) = P (X ,θ )
P (X j |PA(X j ),θ

′)

P (X j |PA(X j ),θ )︸               ︷︷               ︸
w j= reweighting factor for j

E[Y |θ ′] = E[Ywj |θ] ≈
1

N

∑
i

Yiwij

This is known as ‘importance sampling’
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user intent u query x ad inventory v

ads a bids b

scores q

slate s prices c

revenue zclicks y

Figure 25.1: Causal graph of the network.

– critical: wj must not diverge because p (X j |PA(X j ),θ ) ≈ 0

⇒ researchers arti�cially increased the variance in the θ -experiment, so that

p (X j |PA(X j ),θ ) spans a larger part of the feature space

– performs well in experiments

25.5 Causal Theory of transferability [Barenboim, Pearl, Tian,
2012-2015]

• address
3

if the causal e�ect p∗(Y |do(x )) in domain ∗ is identi�able by combining

observational data from ∗ (lower quality) with high-quality (experimental) data from

a related domain.

• graphical notation extensions: dotted bidirectional arrows for hidden confounding,

Selection variable S ∈ {0,1} for the domain

• examples: the lecture contains some examples here, but since they aren’t reproduced
here, the corresponding calculations are left out as well

• intuitive goal: transform the expressions such that no conditional probability con-

tains S = 1, and do(X ) simultaneously

• inventors presented a complete theory (graphical criteria and algorithms) to

3
see e.g. AAAI-14-r425.pdf
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25.5 Causal Theory of transferability [Barenboim, Pearl, Tian, 2012-2015]

– decide if p (Y |do(X ),S = 1) is identi�able in a given graph (including dotted

arrows)

– �nd the appropriate adjustment expression by automatic symbolic calculations
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26.1 The omitted chapters (aka. “Machine Learning III”)

26.1.0.5 Markov Random Fields

• undirected graphical models: decompose according to Gibb’s distributionp (X1, ...,XD ) =
1

Z exp

(
−

∑
c Ec (X c )

)
, where EC are the energies/potentials and c the cliques of vari-

ables in a given undirected graph ( = maximal fully connected subgraphs), Z the

partition function: Z =
∑

X exp(−
∑

c Ec (X c ))
The partition function is usually intractable

⇒ most popular task: �nding the MAP-solution
1

= minimal energy state = “best”

solution

X̂ = arg max

X
p (X ) = arg min

X

∑
c

Ec (X c ) + logZ︸︷︷︸
=const

• typical merges

– unary potentials Ec (X c ) = E (X j ) encode the local evidence for probable state

of X j

– pairwise potentials E (X j ,X j ′ ) encode the desire of X j ,X j ′ to take similar values

(= attractive potential) or di�erent values (= repulsive potentials)

– higher-order potentials |C | ≥ 3: encode preferences of the structure/pattern of

the variables involved (often neglected by assumption)

• typical inference algorithms for discrete X

– exact:

∗ reformulate the problem as an integer linear program arg min

X
w · X s.t.

linear inequality constraints are met

(usually NP-hard, but often tractable by heuristics in practice)

∗ special cases:

· tree-shaped models⇒ belief propagation gives the exact solution in

one forward/backward sweep

· sub-modular models

∑
X j ,X j ′

1[X j = X j ′]E (X j ,X j ′ ) ≤
∑

X j ,X j ′
1(X j ,

X j ′ )E (X j ,X j ′ ) ⇒ graph-cut algorithm is exact [maximum �ow in a

graph = standard problem]

1
maximum a posteriori
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– approximations:

∗ relaxation, i.e. allow real values forX in the linear program (rounded later)

∗ move making: given a guess X (t )
, de�ne elementary moves (changes of

few variables) and accept the best one (iterated conditional models ICM,

Lazy Flipper
2
, tree submodels)

∗ move making: reduce the problem to a tractable subproblem (one-label-

against-the-rest = α expansion, one-label-against-one = α-β swap
3
)

∗ loopy belief propagation: iterate message passing until convergence

∗ sampling methods: randomly simulate the model and choose the best

solution we have seen (Markov Chain Monte Carlo (MCMC), Svendsen-

Wang, Gibbs sampling)

– learning the potentials:

∗ learn them in isolation, independently of the others

∗ better but much more di�cult: learn potentials jointly, s.t. they reinforce

each other towards a global loss function (on large patterns)

∗ details: watch Fred Hamprecht’s new video lecture
4

26.1.0.6 Weak Annotations

getting annotated training data is expensive

• one-class learning: only provide annotations for the target class (assuming this is

easy)⇒ non-target = outliers in target distribution

⇒ generative model, one-class SVM (one contour of the PDF, e.g. 95% con�dence

contour, or several coupled one-class SVMs for nested contours)

• multiple instance learning: a single label for a group (“bag”) of instances (e.g. one

label per image for all pixels jointly) with the understanding that only some instances

in each bag conform to the label ⇒ �nd these instances and the corresponding

classi�er

• similarity (metric) learning: just annotate “is A more similar to B or to C”⇒ learn

the similarity function and the clustering

• sparse annotation:
5

for each instance, only a few true labels are known (e.g. movies

that someone likes)⇒ infer the missing labels and learn a model (e.g. recommender

systems)

• active learning: minimize the required training set size by actively selecting the

most informative (don’t waste annotator e�ort on the easy decisions)

2
see lazy�ipper.pdf

3
both can be solved by graph-cut

4https://www.youtube.com/playlist?list=PLuRaSnb3n4kSgSV35vTPDRBH81YgnF3Dd
5
related to multiple instance learning
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• semi-supervised learning: combine a small labeled training set with a big unlabeled

(combine supervised & unsupervised learning)

• transfer learning: combine a small labeled training set with a big labeled training

set from a similar domain

• reinforcement learning: for state machines: instead of learning transition probabili-

ties that maximize the data likelihood (Baum-Welch), learn transition probabilities

that optimize an “expected reward”, problem: reward can only be computed af-

ter many transitions not for each transition individually (delayed annotation): e.g.

games: win or loss, robots: goal achieved or crashed

26.1.0.7 Matrix factorization

many phenomena can be explained by a linear superposition of elementary phenomena

⇒ (observed matrix) = (elementary weights)︸                      ︷︷                      ︸
what could happen

∗ weights︸   ︷︷   ︸
what was selected

general idea: use application-speci�c constraints to make decomposition well-posed, most

popular: sparsity, each elementary entry only explains a local part of the domain, only

few elementary things are active in each instance

26.1.0.8 Features

• designed features: we have to select from the in�nite possibilities

• feature learning:

– initial layers of a neural network

– kernel approximation: k (x ,x′) = 〈ϕ (x ),ϕ (x′)〉 ⇒ use feature selection to �nd

the important coordinates in ϕ (x ) and compute
˜ϕ (x ) explicitly (without kernel)

• random features:

– random projections have a lot of interesting structural properties (they are not
chaos)

⇒ use these properties (e.g. Johnson-Lindenstrauss lemma
6
)

⇒ multi-dimensional (randomized) hashing for similarity

⇒ extreme learning machine 2 layer NN: visible→ hidden random, hidden→

output analytically optimized

6https://en.wikipedia.org/wiki/Johnson-Lindenstrauss_lemma
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