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1 Introduction

Convolutional neural networks can be trained on multiple areas and move more and more
into the focus of widely used technologies. They are excellent at detecting objects in an
image, f.e. a pedestrian.
They do this by filtering out non-relevant and distracting information, the here called
distractor, and keeping a signal supporting the object they found.
In certain areas, it’s really important to understand the reasons behind a decision a
neural network made. Therefore the authors of the paper ”Learning how to explain
neural networks: PatternNet and PatternAttribution” [5] focused on making the signal in
an image visible with the algorithm PatternNet and tried to find the relevance of certain
pixel, the attribution to the classification, with the algorithm PatternAttribution.
To get more familiar with the terminology, take a look at figure 1. In the first image in
the first row, the complete data x is shown. In the second image, only the signal s is left.
The non-relevant parts and noise, called distractor d, are removed.
In the second row, the attribution is shown. The attribution indicates how relevant
which part of an image is. In order to determine the attribution, some earlier approaches
already exist.
The most straight forward approach is to use a simple backpropagation through the
layers as described in [9].
The backpropagation determines the weights w, that need to be applied to the pixels of
the image to receive the correct classification y. The derivative of the equation wTx = y
is ∂y

∂x = w. Therefore this is called gradient method. The problem with this simple
approach is, that it’s prone to noise and highlights only roughly interesting regions.
Other approaches have been proposed. Deconvolutional networks [12] and Guided
Backpropagation [11] are two methods, that are compared to PatternNet.
This paper shows that it’s also possible to gain more precise information about the
position of the classified object. It will even show which areas of the object are the most



Figure 1: Terminology: Top left input data, the complete image. Top right: Signal (input
data without distractor). Bottom row: Attribution. That’s the estimated
importance of a specific pixel for the outcome of the image classification.

Figure 2: Linear Model

important for classification.
To develop a new approach the authors take a step back and work in a controlled
environment, where it’s easier to analyze, how methods work. They compare the
previously mentioned methods applied on a linear model and develop an improved
solution.

2 Linear Model

The goal of image classification is to determine which object is visible in an image. This
task is complicated and it’s hard to keep track of what is happening. To simplify the
problem, the authors of the paper proposed to construct a linear data model. With such
a generated model, it’s easier to see where the problems of an approach are and it’s
possible to propose a solution that performs perfectly on such a simplified model.
The linear model consists of the complete image, the input data x, and is decomposed into
the helpful signal (s) and a distractor (d). The distractor contains noise and information
that can not be used to classify the image.
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Let’s first describe a simple example distractor.

d = adε, with ad = (1, 1)T and ε ∼ N(ν, σ2)

and a signal
s = asy, with as = (1, 0)T and y ∈ [−1, 1]

as and ad are the directions of their related properties. In figure 2 is shown, what
such a linear model looks like graphically. A good weight vector that can separate the
signal from the input data can be determined with a linear regression and is in this case
w = (1,−1)T .

wTx = wTs + wTd = wTasy + wTadε = 1y + 0ε = y

The goal of a learning algorithm is to find the best fitting w. For the linear case, this is
always possible, as long as the directions of the signal and the distractor are not parallel.
The filter/weight vector is highly dependent on the direction of the distractor. Figure 2
shows in every image the same signal vector and with different distractor directions. The
weight vector is always orthogonal to the distractor, which leads to a strongly changing
weight vector. When the weight vector is used to determine the important areas in the
image, the result would be highly dependent on the distractor. The direction of the
signal as only alters the amplitude of the filter, so that was = 1. Therefore the gradient
method, which only highlights the weight vector, won’t lead to good results.
In the here summarized paper, the authors propose a more sophisticated approach, that
leads to ideal results for this linear model, and still lead to really good results applied on
a nonlinear image. In natural images there is no linear distractor, that can be found. The
distractor is a composition of Gaussian noise and irrelevant information that is displayed
in the image. To detect the relevant information, a way to find the signal direction as
has to be learned.

3 Signal estimators and attribution

It’s essential to differentiate between the relevant signal of an image and its distractor
that contains the not relevant parts. In the first row of figure 1 the difference between an
image and its relevant information is shown. The signal can later be utilized to determine
the attribution. The attribution is the importance of a certain pixel on the outcome of
the classification. As shown in the last section for a linear model, the filter is highly
dependent on the distractor. Therefore it’s essential for determining the attribution,
to have the signal separated from the distractor. The attribution is computed with a
point-wise multiplication of the weight vector (filter) with the estimated signal.
In this section an identity estimator, which interprets the entire image as the signal, and
the filter-based estimator are introduced. For better performance on a linear model a
linear estimator and a for convolutional neural networks adapted version, a two-component
estimator, are proposed. To understand the calculations some basic statistics is required.
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3.1 Statistics

Expectation value The expectation value E describes the mean value of a distribution.
A constant factor that multiplies the random variable can be put in front of the expectation
value.

E[ax] = aE[x]

Variance The variance describes the expectation of the squared deviation of a random
variable from its mean. At the same time, it’s the square of the standard deviation.

var(X) := E[(x− µ)2] = σ2x

Covariance The covariance describes the joint variability of two variables. If the two
variables are independent, the covariance is 0.

cov(X,Y ) = E[(x− µx)(y − µy)]⇒ cov(X,X) = var(X)

cov(X,Y ) = E[xy]− E[x]E[y]

Correlation The correlation normalizes the Covariance to the range -1 to 1.

ρ(X,Y ) :=
cov(X,Y )

σxσy

Two variables, that are highly correlated tend to be positive.
For example ρ(X,X) = cov(X,X)

σ2
x

= 1. When two variables are uncorrelated, their

correlation tends to be 0. But it doesn’t mean that when the correlation is 0, that the
variables are uncorrelated.
The correlation is used in the next chapter for the quality measurement.

3.2 Identity estimator Sx

The identity estimator Sx is interpreting the complete image as the signal, ignoring the
existence of a distractor. This means formally: Sx(x) = x. When the attribution is
computed it is applied to the signal and the distractor.

r = w
⊙

Sx = w
⊙

s + w
⊙

d

With
⊙

as the element wise multiplicator.
This leads to noisy outputs, since the distractor is not filtered out at all.
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3.3 Filter-based estimator Sw

The filter-based estimator Sw is implicitly assumed by the Deconvolution Network and
Guided Backpropagation approach. It is more complex than the identity estimator.

Sw(x) =
w

wTw
wTx =

1

wTw
wy

That leads to the attribution

r = w
⊙

Sw(x) =
w

⊙
w

wTw
y

This attribution delivers much better estimations, but still doesn’t even manage to
reconstruct the optimal solution for the linear example. The estimated signal is still
dependent on the weight vector, which is dependent on the distractor. This leads the
authors of this paper to suggest a different estimator.

3.4 Linear estimator Sa

In the linear model, the distractor should be 0. Therefore d = x− S(x) = 0 which means
reformulated with co-variances

For cov[y,d] = 0⇒ cov[x, y] = cov[S(x), y]

For a linear model the signal estimator applied on the image should result in the signal

Sa(x) = asw
Tx (= asy) = s.

For this model Sa performs perfectly. To determine as the covariance term can be used

cov[x, y] = cov[asw
Tx, y] = ascov[y, y] = asσ

2
y ⇒ as =

cov[x, y]

σ2y
.

To determine as, the algorithm has to be trained to be able to determine the covariance
for every given data x. Its attribution is

r = w
⊙

asy.

Since the classifier should be used on nonlinear neural networks and extended approach
is introduced.

3.5 Two-component estimator Sa+−

The estimator is later not used to estimate the signal in a linear model but inside
a convolutional neural network. Therefore the structure of the estimator should be
adapted to the structure of the neural network. The convolution layer itself is linear, but
nonlinearity is added through the ReLU layers. Therefore a two-component estimator

5



Sa+− is proposed, that acts similar to a ReLU different for a positive and a negative
activation. Therefore the model x = s + d is extended into two components.

x =
{ s+ + d+ if y > 0

s− + d− otherwise

Which leads to a two-component signal estimator.

Sa+−(x) =
{ a+w

Tx if wTx > 0
a−w

Tx otherwise

To determine a+ and a− a similar procedure as for the linear estimator is used. This
time it’s only slightly more complicated, because there are more parameters involved.
The in section 3.1 mentioned reformulation of the covariance is used.

cov[p,q] = E[pq]− E[p]E[q]

The following computation is limiting itself to the positive case a+. For a− the calculation
can be done analogously.

cov[x+, y] = cov[S(x)+, y]

⇒ E+[xy]− E+[x]E+[y] = E+[S(x)y]− E+[S(x)]E+[y]

With the positive signal estimator Sa+(x) = a+w
Tx

⇒ E+[xy]− E+[x]E+[y] = E+[a+w
Txy]− E+[a+w

Tx]E+[y].

Since the expectation value doesn’t depend on a+ and w these terms can be put in front
of the expectation value. This means the equation can be refactored to a+

a+ =
E+[xy]− E+[x]E+[y]

wTE+[xy]−wTE+[x]E+[y]
.

Similar to the linear case the expected parameters have to be learned by applying a linear
regression model.

3.6 Deep Taylor Decomposition and PatternAttribution

To compute the attribution with this estimator, a deep Taylor decomposition (DTD) [7]
is used. This method takes the inputs of a neuron and determines the importance of
their contributions. To do so, it uses a first order Taylor expansion around root point x0
with wTx0 = 0. It’s an algorithm that propagates backward through the layers. In the
last layer it’s routputi = y for the correct output class and otherwise routputj 6=i = 0.

rl−1,i =
w

⊙
(x− x0)

wTx
rli

With rli as the attribution in the ith neuron of the lth layer. rl−1,i is a vector of all con-
tributions of a single neuron rli on the neurons in the previous layer. These contributions
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Figure 3: Architecture of compared approaches. For the gradient method, a saliency
map is shown, for the other three methods the estimated signal is shown.
The architecture of PatternAttribution and the Forward pass are shown for
comparison.

have to be summed up, to get the attribution of a single neuron in the lower layer.
When a ReLU isn’t activated on a forward pass, the re-distribution on the backward pass
is stopped and it’s save to assume that wTx > 0.
The extension around x0 is used by the authors. When it’s extended around 0, this
method is equal to the layer-wise relevance propagation (LRP) [2].
For the proposed PatternAttribution algorithm the Deep Taylor Decomposition is ex-
tended around the distractor. The negative component of the two-component estimator,
isn’t required, since the ReLU’s stopped the negative attribution in the forward pass.
x0 = d = x− S(x)+− = x− a+w

Tx included into the formula:

rl−1,i =
w

⊙
(x− x− a+w

Tx)

wTx
rli = w

⊙
a+r

l
i

In comparison, the gradient method uses a backward propagation with

rl−1,i = wrli

3.7 Compared Approaches

After giving the theoretical background behind the signal estimators, let’s compare how
these are used in the different algorithms. Figure 3 compares 4 different approaches and
their effectiveness to abstract the signal.
The first method the gradient method [10] simply takes the backward pass through
the network and determines the most relevant areas, by comparing its influence on the
outcome. It uses the identity estimator Sx, so the distractor isn’t canceled out. The
displayed result is a saliency map, and not the signal itself (which would be the complete
image). The outcome is really noisy with a focus in the area of the elephant.
The second method, DeconvNet [12] use implicitly the filter-based estimator Sw. To
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compute the backward pass it exchanges the forward ReLU’s used in the original neural
network with backward ReLU’s. These backward ReLU’s become 0 when the backward
propagation at this place becomes negative. The result seems to be noisy with no focus
on the area of the elephant. Therefore some minor structures of the elephant are visible.
The outcome is the signal, normalized to maximize the contrast for better visibility.
Nevertheless, it’s hard to see the structures.
The third method, Guided Backpropagation [11] also uses implicitly the filter-based
signal estimator. To compute the backward pass it keeps the forward ReLU’s for the
backpropagation in place and adds additional backward ReLU’s. This leads so much less
noise and to some visible structures of the elephant.
PatternNet uses for backpropagation the signal direction instead of the weight vector.
This way not only the contours, but a detailed elephant is visible in the output.
On the right side, the outcome of PatternAttribution is shown.

4 Quality measurements

To get a signal estimator is an ill-posed problem with multiple differently scaled solutions.
To find the best solution a quality estimator is used for optimization. The quality
estimator turns to be 1 when the optimal result is reached is formulated. A solution is
desired with no correlation between the distractor and the output. This would mean,
that no relevant information is left in the distractor and the signal estimator is optimal.
Therefore a vector v is multiplied on the distractor to maximize the visibility of these
correlations.

ρ(S) = 1−max
v

corr[vT (x− S(x)),wTx] = 1−max
v

corr[vTd, y]

Using this definition of the correlation

corr(x,y) =
cov(p,q)√

σ2pσ
2
q

the final equation gets

ρ(S) = 1−max
v

vT cov(d, y)√
var(vTd)var(y)

The equation further can further be simplified by the assumption var(vTd) = var(y).
To compute the covariance and the v, a least-squares regression is used.

5 Experiments and Results

The proposed approaches were implemented using the Lasagne library [4]. ”Lasagne
is a lightweight library to build and train neural networks in Theano.” Theano [1] is a
Python library, developed mainly by the University of Montreal, that can be used for
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Figure 4: Evaluation of the Quality estimator ρ(S) in certain layers of the VGG16 network.
A random signal estimator was chosen as the baseline.

deep learning.
To be comparable with other papers, ImageNet [3], a widely used dataset of images, with
labeled objects, was used for training and testing. All images were cropped to 224 times
224 pixels.
The authors used a VGG16 [8] network that was already pretrained on ImageNet for
performance reasons. They split the training dataset into two equally sized sets. The
signal estimators were trained on the first half of the training set, and the quality estimator
on the second half. The validation of the training was run on the official validation
dataset with 50000 samples.
They trained the linear and the two-component estimator, which takes 3-4 hours on 4
GPU’s.
To train the quality estimator, it would require them to compute it for every single
weight vector in the network. To speed this process up, they developed an equivalent
least-squares problem using stochastic mini-batch gradient descent with the ADAM [6]
optimizer until convergence. This still took 1 day on a Tesla K40.
These periods seem long, but they only have to be done for each signal estimator and
quality estimator whenever the network or training set is exchanged. In comparison to
the training for the classification of the neural network, which takes several days, these
times are acceptable. Therefore the usage of the trained quality estimator and the signal
estimator are computationally cheap.

In figure 4 they compare the result of the quality estimator for different signal estimators.
As a baseline they use a random estimator, that randomly chooses a signal and distractor.
A random signal estimator leads to a very bad quality in every single layer of the VGG16
network. This is exactly what is expect. The filter-based estimator Sw performs better but
still not really good. It’s fine in the first layer of the convolutional network and the fully
connected network, but getting worse in the deeper layers. This is probably because the
signal gets more and more non-linear. The linear and two-component estimator perform
much better. Interestingly the linear estimator performs in the fully connected layers even
better than the two-component estimator. This effect still needs to be understood. Due
to much better performance in the fully connected layers, the two-component estimator
performs overall better.
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Figure 5: The different attributions ordered importance of 9× 9 pixel patches. The most
important ones were averaged. The steeper the degeneration of classification
success, the better was the ordering of the method.

The quality estimator is only one indicator of the overall quality. A good signal estimator
manages to find the most relevant areas of a signal. When the most relevant areas of a
signal get disturbed, the classification task of the network gets much harder. In figure 5
the most relevant image patches in the size of 9× 9 pixel get averaged. It’s clearly shown,
that the two-component estimator is best suited to find the most relevant image patches.
The probability of the correct output drops from about 72 to 59 percent, after just 20
modified patches. When the patches are chosen randomly, this drop is below 1 %. The
other methods are in between these two estimators. The linear estimator performs here
even worse than the remaining estimators. This is because it can only represent linear
information, so the ordering is not perfect.
Interestingly the identity estimator leads to a better result than the filter-based estimator,
despite the fact that the filter-based estimator is an improved version of the identity
estimator. The filter-based estimator seems to be relatively good to find the most relevant
areas, but classifies also multiple not relevant patches as relevant.

To compare the results qualitatively, the different outputs of the signal estimators are
compared in figure 6. In the first row, the outputs of the different estimators are
compared. The identity estimator classifies the whole image as the signal, for the filter-
based estimator the outcome is relatively noisy and not very detailed. With the linear
estimator, some contours can be seen and the two-component estimator nicely selects
the important areas of the image. The area and color of the important parts can nicely
bee seen.
In the second row, the attribution for the four classifiers is shown. For the identity
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Figure 6: The identity estimator Sx, the filter-based estimator Sw, the linear estimator
Sa and the two-component estimator Sa+− compare their estimated signal (first
row) and their pixel-wise attribution (second row).

estimator, the attribution is really noisy but the most relevant areas of the image can
be approximately estimated. The filter-based estimator points out the most important
area of the image but doesn’t show any details. The linear estimator is more precise, but
still, there are barely any details. The attribution of the two-component estimator nicely
shows what parts of the objects in the image are the most relevant. In this case, its main
focus is on the corners of the music instrument.

In figure 7 the signal estimation and the attribution is shown for the different estimators,
with multiple images. The previously observed problems and limitations can also be seen
here. It’s interesting to see, that according to the PatternNet algorithm for classification
of the mailbox, the person next to it was important. The person itself had it’s most
important areas where the eyes and the knees are.

6 Summary and Discussion

The paper analyses the problem of finding the most relevant parts of an image for a
classification decision from two new angles. At first, it starts with a linear model, which
can be solved perfectly, but wasn’t in the focus of the other authors yet. Secondly, it
trains a linear regression model to perform well with the data. It sounds like a good idea
to train an algorithm to get better insights into trained neural networks. Maybe this
idea can be even improved by training a neural network to highlight the most relevant
areas of the image and gain insights into neural networks.
The method was adapted to work well on convolutional neural networks that make use
of ReLU’s to gain nonlinearities. When it should be applied to a completely different
looking architecture, this approach should be updated.
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Figure 7: Some more images for comparison between the proposed methods. The function
and signal methods are back-projections to input space with their original color
channels and were normalized to maximize contrast. The attribution methods
are heat maps showing pixel-wise attribution.

The result is much better than the compared approaches. It’s hard to judge for me,
whether it was compared with the current state of the art approaches of this field, or if
there was already some cherry picking. The resulting images they produced with the
existing approaches are authentically and look similar to the results in the original papers.
Nevertheless, it’s not surprising, that their method performs much better on a linear
model than the other approaches. It’s easy to construct a simple toy model, where other
approaches fail, but a new specially optimized algorithm performs very well.
I didn’t like a few points in the paper. The formula 5 in their paper is:

cov[x, y] = π+ (E+[xy]− E+[x]E[y]) + (1− π+) (E−[xy]− E−[x]E[y])

π+ is the expected ratio of wTx > 0 and is immediately dropped again. This formula
and formula 6 weren’t necessary to explain the following formula. They should have used
the formula

cov[x+, y] = cov[S(x)+, y]

like I did. From this easy to understand formula follow their further formulas.
Overall the results were a huge improvement over the existing methods and a nice
approach.
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