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"Correlation does not equal Causation". Almost everyone who has worked with statistics has heard 

this sentence at some point in time. And it isn't hard to find every day examples that underline the 

importance of this truism, e.g. a statistical study might show that people who are in a hospital are 

more likely to die in a given time interval than people who are not in a hospital. Assuming that the 

correlation between being in a hospital and death rate would be a causal relationship would indeed 

be fatal, since the conclusion would be that being in a hospital makes people more likely to die and 

therefore it would only serve the public health to remove hospitals alltogether.

And yet this observation proved detrimental for the field of statistics, because the founding fathers 

of this new science did not take the next step of uncovering the more hidden mechanisms that were 

at work in the example above, but instead decided to villify causation and declare that statistics can 

only be used to observe correlations and nothing beyond that.

In fact famous statistician Karl Pearson conducted an experiment similar to the one mentioned 

above where it was obvious that the measured correlation was not of causal nature. He obtained 

data on the measurements of the length and breadth of a large number of skulls (page 70 The Book 

of Why). He observed that there was no correlation between skull length and breadth if looking at 

the skulls of only one gender. Yet when he combined the data of both genders a significant 

correlation between the two measurements could be observed. Pearson called this phenomenon 

"spurious correlation" and took it as proof that one cannot "persist in looking upon all correlations 

as cause and effect" (page 71).

Though this assessment was correct his conclusion to completely turn his back on causality was a 

grave oversight. If we look at the data again, we can explain this spurious correlation by unraveling 

the causal mechanisms that were working in the background. The reason that Pearson got a 
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correlation between skull length and breadth was that there was a third factor that affected both 

measurements but differed in the two populations. Since women tend to have smaller heads than 

men they also tend to have smaller head breadth and length. So now suddenly, a small skull length 

would indicate that the skull is more likely to belong to a female, and therefore also more likely to 

have a smaller breadth.

The previous example with the correlation between hospitals and death rates follows the same 

pattern. In this case the third factor would be illness which affects the likelihood of being in a 

hospital as well as death rate. If one would account for this factor by grouping test subjects 

depending on whether they are ill or not, and on the severity of their sickness (similar to what 

Pearson did when he looked at the skull measurements of only one gender), one would hopefully 

find that hospitals do not increase death rates but overall lower them. So we would still have a 

correlation, but this time with the opposite effect and one that is also identical with what we would 

have predicted as the causal relationship. (After all hospitals are built in order to prevent people 

from dying to diseases/wounds).

And even though this explanation seems quite logical and intuitive, a few decades ago it would 

have been received with harsh criticism for using causality in a statistical problem. Recently 

however, a form of statistics that uses the concept of causality has been developed and popularised. 

One of the scientists leading this "causal revolution", as he coined it himself, is Judea Pearl who 

wrote the Book of Why in which he tries to convince the reader of the necessity of using causal 

reasoning in statistics and in which he presents a formal language with which causal problems can 

be formulated.

Pearl states that there are at least three different levels to causal reasoning (page 27). The first level 

is that of association. Here one is limited to observing correlation between variables and acting 

accordingly. This is the level that statistics restrict themselves to if they completely disregard 

causality and only work with observational data. Spurned by the idea that everything can be gained 

from observed data and that by creating models, the scientists would not be able to get over their 

prejudices about how they imagine things to be, these statisticians would end up in a trap of their 

own devise, where they would not have an alternative to the above conclusion of the hospital 

example, that hospitals lead to a higher death rate, other than saying that correlation does not imply 

causation and therefore ultimately does not imply anything, rendering any statistical studies 

practically useless. This might seem unreal and yet the debate over the health effects of smoking in 

the 50's and 60's shows that statistics was in exactly that situation and how helpless they were at 
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giving an answer to the important question asked.

Another example of entities that are restricted to this first level of causation are current machine 

learning programs. If one would want to support the claim that it really is all in the data, deep 

learning problems woul probably be the best way to do so. After all the succes of popular deepmind 

programs by google speaks for itself. Yet while they are unbeatably strong at tasks with complete 

information such as winning chess or go matches they fail at most other tasks. One game where 

deep learning's limits became quite apparent was the video game Starcraft. In Starcraft a lot of 

information is hidden from the player as he can only see wherever he controls units or buildings on 

the map. This introduces uncertainty into strategies and allows uncountable risky strategies, where a

player tries to disguise his gameplan by hiding key structures while pretending to be following a 

completely different strategy. While the AI eventually became very good (though not perfect) at 

playing standard games in which the opponent did not employ bluffing but instead followed a very 

efficient build order, even beating the reigning world champion at such games, it struggled heavily 

when facing unorthodox strategies. In addition to that, Alphastar's associative roots sometimes 

became very glaring when it copied certain strategic ideas from humans since they were associated 

with a high success rate, yet it implented these ideas into its own builds in ways that made it very 

clear that it did not understand why they work. One such example would be the construction of a 

wall at the entrance of one's base with a hole in it that is guarded by one single unit and functions as

a sort of door. Since every succesful player was using this strategy, Alphastar copied this behaviour, 

yet it would build inefficient walls with sometimes even more than one hole, demonstrating its 

complete lack of understanding of the causal mechanisms that humans use to make such strategic 

decisions.

One  more flaw of deep learning is its intransparency. The developer's of an AI can't predict the 

results of their creations and instead often have to use the age old method of trial and error. On the 

other hand the reason that the AI makes its decisions also remains a mystery. Asking a human why 

he made a specific chess move will yield an answer that explains the state of the board, which 

figures threaten which, and how the player hopes to gain an advantage by making this specific 

move, and the future possible pathways that could result from this move. The deep learning AI can 

only really give as an answer "Because it is the best move to do". Even though this can still be 

insightful to chess players as this can allow them to now in turn to justify that move and try to find 

the reason as to why it is good; the human answer, even though the move is not necessarily as 

optimal as the AI's, can give much more insight into the game to someone trying to understand a 

game of chess than the AI's answer would.

3



The improvement of AI towards a strong AI that is based on causal language is one of the main 

motivations for Pearl when it comes to his research in Causality. In order for an AI to be transparent

and be able to discuss the reasons for its actions with humans it must ascend past the level of 

association and instead be able to answer the "Why-Question".

The second level of causal thinking is that of intervention. On this level the statistician is no longer 

a mere passive observer of the world that he lives in, but instead an active subject that can 

manipulate the conditions under which an experiment takes place in a way that might help him 

uncover the effect that he was looking for. It encompasses the ability to ask the question "What 

happens if I do something specific?". A good example of individuals on this level would be babys 

and small childs, who are constantly trying out new things and always testing out new waters. There

is probably no better way to truly learn about the disadvantages of touching a hotplate than doing it.

Though this example already hints that this method can be rather risky and sometimes unsuitable 

due to practical or ethical reasons.

For statistics intervention is a very strong tool when it comes to discovering causal relationships. If 

one would apply this principle to the previously described hospital example, this would mean that 

instead of just looking at observational data of a population in its "natural state", one would create 

an artificial environment where whether a person is in a hospital or not would no longer be decided 

by external factors such as illness, but instead every person would randomly be assigned to either 

go to the hospital or not without considering any of the usual factors. Now illness would no longer 

confound the effect of being in a hospital on death and more so any other possible confounders that 

we didn't think about are also automatically eliminated, since going to a hospital or not now only 

depends on one independently determined random number. Thusly now any correlation would 

indeed be causation and we would see the true effect of hospitals on death rate.

Now this setup would be pretty unrealistic, as healthy people usually wouldn't go to the hospital 

(unless they are working there). A more appropriate setup for answering this would be assigning test

subjects randomly to one of two groups where one group can't go to hospitals and the other group 

can, but only if they would do so under normal circumstances. The first group is the treatment 

group that would give an answer to how having no hospitals would affect overall death rate, and the

second group would be the control group that gives us data of the status quo that can be used for 

comparison.

This method is called the RCT (short for Randomized Controlled Trial) and is one of the most 

popular methods in statistics since it guarantees the removal of the most common enemy of any 
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study: unknown or unobservable confounders.

The concept of the RCT was first described by R.A. Fisher in the 1920's and has since then been 

accepted by all statisticians as a way of discovering a causal effect (page 143). Now with that being 

said one might think the RCT solves all of statistics problems with causality but as the example 

above shows us, there are multiple drawbacks that come with the RCT. If one however can 

overcome all of these difficulties one will have an extremely high probability of discovering a real 

causal effect.

Ethical concerns are a very common tripwire for RCTs. In fact looking at the above hospital 

example, one can find several ethical problems when trying to set up a RCT experiment. Denying 

sick people access to a hospital, even if it is for the sake of scientific progress, can only be 

described as morally questionable. Another problem is that, in contrast to observational data which 

is often much more easily collected and potentially already available, setting up experiments that 

have sufficiently large sample sizes usually requires a lot of time, money and willing test subjects.

Luckily however there are multiple ways of transforming questions that would usually require 

intervention in such a way that they can be answered with only observational data.

Pearl dedicates an entire chapter to describing these methods. These include but are not limited to 

the convential checking and adjusting for confounders. For cases in which confounders cannot be 

observed or are unknown the front-door criterion or an instrumental variable can be used to uncover

the causal effect unspoiled by confounders if specific conditions are met.

The front-door criterion cann be applied whenever the effect in question is mediated by another 

effect. That means while we are interested in the effect of the treatment variable X on the outcome 

Y, the causal effect is not direct but rather X causes another effect M, the so-called mediator, which 

in turn causes Y. Now if we want to eliminate the effect of a confounder of X and Y(it is important 

that M is not affected by this confounder) that we can't observe and therefore can't adjust for, we 

can do so by measuring the effect of X on M and the effect of M on Y and multiplying the two. This



of course assumes that X has no direct effect on Y and only works through M and that the effects 

are linear. 

Instrumental variables are another strategy that can eliminate unobservables and that applies when 

the roles between the treatment variable and the mediator in the previous example are swapped. 

That means that the treatment variable X affects Y directly and X and Y are confounded by a 

common unobservable variable C. But this time X is also the mediator when it comes to the effect 

that the instrumental variable I has on Y, that means I affects Y through X and, for this strategy to 

work, must also be unaffected by the unobservable confounder C.

The above diagram shows these relationships. The dots represent the described variables and any 

arrow that leads from one dot to another one symbolises the causal effect of that variable on the 

other one, with a and b denoting the strength of these effects. These simple diagrams are called path

diagrams, as they outline causal pathways, and are a very commonly used method by Pearl for 

symbolising causal relationships.

In this case we are interested in measuring the value of the path coefficient b since this would tell us

the causal effect of X on Y. However, due to the unobservable variable C affecting both X and Y, the

observed correlation between X and Y will not be the same as the causal effect, no matter how big 

and exact our study is, as it will always be tainted by a systematic error.

If we can however measure the effect of the instrumental variable I on the treatment variable X 

(which would yield the value for the path coefficient a), as well as the effect of I on the outcome Y 

(equal to the product of path coefficients a and b), we could gain the sought after value by dividing 

the latter by the former effect: (Effect of I on Y)/(Effect of X on Y) = ab/a = b.

In The Book of Why Pearl underlines the practical significance of this technique with a historical 

example, where a study that used the above described strategy could have saved thousands of lives 

from cholera, if the results had gained more publicity.

In the mid 19th century, England was plagued by the cholera epidemic. Back then it was generally 

assumed that the disease was caused by unclean air which seemed to be supported by the fact that it 

was stronger in poorer districts where sanitation was worse. The physician John Snow however 

theorised that the disease was transmitted through either food or water, as the first symptoms 

occured in the intestines. Now in general food as well as water were cleaner in the wealthier 

districts of London than in the poor ones, which meant he had trouble setting himself apart from the

original theory. However as luck willed it, there were two different large water supply companies 

back then, which supplied the same districts but drew their water from different areas of the river 

Thames. One, the Southwark and Vauxhall Company, drew their water from a spot that was 
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downstream from the point where the sewers entered the river, while the other, the Lambeth 

Company, had recently moved their water intake to be upstream from the sewers.

This setup can now be inserted into the above described  path diagram. The instrumental variable I 

is the water company, the water pollution is the treatment variable X, and suffering from Cholera is 

the outcome Y, while C represents hard to measure factors such as hygiene and poverty which could

affect both X and Y. Snow already knew the impact that water company had on water purity, simply

by knowing that one used sewer contaminated water and the other one didn't. Following our model, 

all he had to do in order to find the effect of water purity on cholera, was measuring the effect of 

water company on cholera affliction. And that he did. He went from household to household and 

inquired to know which water company they were served by as well as how many cases of cholera 

they had. His research yielded that those households that were served by the Southwark and 

Vauxhall Company generally had a higher number of cholera cases than those served by the 

Lambeth Company, thusly proving his hypothesis that the disease was transmitted though food or 

water intake, in this case the pathogen left the body of the sick by the extreme diarrhea they 

suffered from and found their way through the sewers into the river back into the households of 

London and into the stomachs of their new victims.

It is worth noting that the only reason the water companies could be used as an instrumental 

variable was that they did not factor in poverty or hygiene when deciding which households to serve

and therefore were shielded from these confounders. In fact Snow himself stated that "no 

experiment could have been devised which would more thoroughly test the effect of water supply 

on cholera ..." (page 247). And it does indeed seem as if the water companies had set up a RCT, 

even it was unintentionally, allowing Snow to answer rung two questions by only collecting 

observational data.

And yet even though it almost seemed like all the stars aligned and Snow found an undeniable proof

as to what caused cholera and how to prevent it, his results gained no publicity and did not lead to 

actions by the water companies who could have prevented thousands of death by cholera by taking 

action and improving the purity of their water.

While the previously described strategies allow fitting rung two questions to observational data if 

specific conditions are met, they fall flat in all cases where they aren't met. This begs the question, 

could one devise a tool that can transform any such question into one that can be answered with 

only observational data? As a matter of fact such a tool already exists and was created by Pearl 

himself. The DO-Calculus is built upon three axioms and promises that every question about the 
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true causal effect of a variable upon another can be answered without having to conduct a RCT but 

only requiring a strong enough model as well as observational data.

To understand the axioms of the DO-Calculus, one first has to be familiarised with the notation of 

statistical probabilities and the differentiation between observed probabilities and interventional 

probabilities. For example P(Fire | Smoke) notes the probability of there being fire if one can see 

smoke, while P(Fire | do(Smoke)) describes the probability of fire if one is to create smoke. While 

P(Fire | Smoke) can be estimated to be fairly high, since fire is one of the most common causes for 

smoke, we can easily see that P(Fire | do(Smoke)) would probably be a lot lower (as long as we 

don't use fire to create the smoke in which case P would obviously be 1) as smoke is caused by fire 

but does not cause it itself. Therefore P(Fire | do(Smoke)) should be about the same as P(Fire). 

When applying this to path diagrams, using the do-operator is the same as erasing all arrows that 

point towards the varibale that we perform the intervention on. Applied to the example of fire and 

smoke this means that, while we normally have a diagram like this: Fire -> Smoke where the arrow 

leading from Fire to smoke signifies a very high probability that a fire causes smoke, the do-

operator erases this connection which is why they are suddenly independent. Applied to the 

example of the cholera epidemic, P(Cholera | Water Company, Water Purity) was what Snow was 

collecting data on. Now if one was to devise a RCT and intervene on water purity, one would no 

longer have to control for water company as one has basically taken their job away; this would 

mean P(Cholera | Water Company, do(Water Purity)) = P(Cholera | do(Water Purity)).

And this is effectively the first axiom of the Do-Calculus, which allows us to no longer control for 

variables that don't affect the outcome:

P(Y | do(X), Z) = P(Y | do(X))

In this case the variable Z does not have an arrow leading to Y and therefore no longer has to be 

controlled for.

Let's look at the example of the cholera epidemic again but in this case none of the confounders are 

unobservable or unmeasurable. In this case we can control for all of them and calculate the 

probability P(Cholera | do(Water Purity), Hygiene, Poverty, etc) and we can see that we no longer 

have to intervene as the afroementioned back-door criterion has been fulfilled and there are no more

confounders left that are not being adjusted for.

This is the second axiom which says that if one controls for a set of variables that closes all 

backdoor paths into the variable that we intervene on, we no longer have to intervene on it and 

do(X) = see(X):

P(Y | do(X), Z) = P(Y | X, Z)
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Here, controlling for Z would condition for all confounders.

Now let's assume we were an academic rival of John Snow and we wanted  to prove our theory that 

cholera was caused by polluted air, also known as miasma, and we would create a RCT before they 

were invented. This means we would have two groups of test subjects, which live under completely 

identical conditions except that one group can breathe in very clean air and the other one only very 

polluted air. This way we could calculate P(Cholera | do(Miasma)). However since Miasma was not 

the reason for cholera infections, we would find out that both groups would have about the same 

amounts of cholera cases, even though one would probably have more cases of lung diseases. The 

result would therefore be P(Cholera | do(Miasma)) = P(Cholera).

This is essentially what the third axiom states. If we intervene on a variable that has no effect on the

outcome, we could just remove that variable from the equation and get the same result:

P(Y | do(X)) = P(Y)

In this case X is our treatment variable that is actually not affecting the outcome Y.

With these three axioms we are generally able to transform any rung two question into a rung one 

question, meaning one should never be forced to rely on conducting a RCT, which even though 

often very pratical, can also be ethically or morally questionable or simply economically impossible

to see through. The same however does not hold true for questions that belong on the third rung of 

the ladder of causation.

This level of causal thinking is concerned with the question of what would have been if things had 

gone differently, in short counterfactuals. This is the level that requires the most abstract thinking, 

and according to Pearl is what allowed humans to become such an intellectually advanced species, 

setting themselves apart from any other living beings.

This level of abstractivity however also requires a prize when it comes to the simplicity of finding 

the right answers. While first and second rung questions can be answered by simply performing an 

experiment, setting up an experiment to answer "What would have been if...?" question would 

require us to be able to turn back time; which, unfortunately(?), we aren't. This is one of the main 

problems that statistics historically had with counterfactuals and also probably the reason why it had

such a bad relationship with causality. After all the "Why"-Question is very closely connected to 

counterfactuality. Asking for causes implies that nature adheres to certain rules which would allow 

the creation of a model and with that the simulation of alternative worlds where certain variables 

would have been different. This strongly contradicts the approach of the classic statistics of the late 

19th and the 20th century of trying to keep statistics free of models and the idea that everything can 

be gained from only looking at the data.
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At this point I can't help but draw a line to austrian Philosophist Karl Popper, in whose scientifical 

and philosphical tradition I see Pearl. Popper's field was not statistics but the philosophy of science, 

however those two fields definetely have quite a few connective points. In his famous book The 

Logic of Scientific Discovery Popper introduces the principle of falsification, under which in his 

opinion science should operate. According to this principle the task of science would be to postulate

hypothesises and then do everything to try and disprove them and the value of a theory would be 

measured by how often and how strongly it was tried and not falsified. Obviously if a hypothesis 

was falsified it would have to be abandoned. This theory was a stark contrast to that of his academic

opponents, the so called Positivists, who believed that a scientist's job was to observe and document

nature and then accumulate his findings to postulate a theory which he should try to justify and 

prove using the principle of induction. For example a positivist would observe swans for a long 

time and only see white swans and could then use the principle of induction (e.g. the uniformity of 

nature) to prove that all swans are white. The weak point in this logic was quite obviously the 

principle of induction which lacked logical justifications and created contradictions and was the 

main point of Popper's attack on Positivism. Another argument of Popper against Positivism was the

fact that implications, which are the forms rules of nature take, can only be falsified but never 

verified, since no matter how many examples one might find where a certain rule applies, one may 

never be certain that one won't find a counter example; and after all one counter example is enough 

to falsify an implication while it can never be verified, no matter how many positive examples one 

might find.

In this way Positivism can be compared to  the classic statisticians as they want to only rely on data 

and shy away from making presumptions that they cannot justify with data as they are afraid of 

being accused of being non-empirical. They see metaphysics as useless and believe only purely 

empirical science is worth practicing (page 28  The Logic of Scientific Discovery), while Popper 

acknowledges the fact that he cannot gain true knowledge and that he is not interested in data itself 

but rather in trying to understand how the world works. To that he is happy to make presumptions 

that he expects will turn out to be false, but nonetheless by doing so achieving progress and learning

more about the world. In this way Popper and Pearl share common traits as they both advocate a 

model based approach to science and both are of the opinion that one has to make strong 

assumptions in order to progress and should not be afraid of being wrong, but rather use it as a 

learning opportunity.

I would like to conclude by describing an example from Pearl's book which shows very nicely how 
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counterfactuals and causal models can play a big role in answering current pressing questions.

"Is [insert weather catastrophe] caused by climate change?" is a question that one reads quite often 

these days, the answers however are often rather timid. On the one hand extreme weather events are

obviously nothing new on the other hand they are trending upwards in both frequency and severity. 

More clarity can be achieved by using the counterfactual concepts of Probability of Necessity (short

PN) and Probability of Sufficiency (short PS) which estimate how likely something was necessary 

or sufficient to cause an event. When using these terms in cases of extreme weather events, we 

suddenly get very clear and drastic answers. When one asks whether climate change was necessary 

to cause the 2003 European heatwave for example, the answer will be yes with a probability of 0.9, 

the likelihood of it being sufficient however is only 0.0072. These answers make a lot of sense if 

one looks at a causal model of what affects weather events. On one hand there is the natural 

variability which basically symbolises the fact that weather does not stay the same but instead is 

constantly changing, sometimes leading to extreme conditions and then there is the factor of climate

change which for the most part increases the overall temperature. Now if one looks at the 2003 

heatwave, it was likely that climate change was necessary for it to occur since internal weather 

variability was unlikely to cause such high temperatures on its own, but it couldn't be sufficient as 

that would mean internal variability wouldn't be necessary for the heat wave to occur in which case 

the temperatures of the heat wave would have been the standard temperatures, which obviously 

wasn't the case since then it wouldn't have been a heatwave anymore. Therefore we are clearly 

interested in the PN and the question of "Was climate change responsible for the 2003 heatwave?" 

can be answered with "Yes, it was, with a likelihood of 90%."

This demonstrates the importance of using a model-based approach when analysing data as without 

one, one could not create this conclusion but would instead only be able to recite how the data looks

and that one cannot draw conclusions from it.
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