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Abstract. We describe three modifications to the structure tensor ap-
proach to low-level feature extraction. We first show that the structure
tensor must be represented at a higher resolution than the original image.
Second, we propose a non-linear filter for structure tensor computation
that avoids undesirable blurring. Third, we introduce a method to simul-
taneously extract edge and junction information. Examples demonstrate
significant improvements in the quality of the extracted features.

1 Introduction

Since the pioneering work of Förstner [3] and Harris and Stevens [5], the structure
tensor has become a useful tool for low-level feature analysis. It gained high
popularity for corner detection (see [12] for a review), but applications in edge
detection [4], texture analysis [10] and optic flow [9] have also been reported.

However, despite the popularity, applications of the structure tensor for edge
and junction detection are facing a number of problems. First, we are showing
that the standard method for structure tensor calculation violates Shannon’s
sampling theorem. Thus small features may get lost, and aliasing may occur.
Second, to calculate structure tensors from gradient vectors, spatial averaging is
performed by means of linear filters (e.g. Gaussians). The resulting blurring is
not adapted to the local feature arrangement and orientation, which may cause
nearby features to diffuse into each other. Third, cornerness measures derived
from the structure tensor have rather low localization accuracy [12].

A more fundamental problem is the integration of edge and junction de-
tection. From topology we know that a complete boundary description must
necessarily incorporate both edges and junctions [7]. Usually, edges and cor-
ners/junctions are detected independently. This makes the integration problem
quite difficult. Attempts to derive edges and junctions simultaneously from the
structure tensor [5,4] have not been very successful. The difficulties are partly
caused by the other problems mentioned above, but also stem from the lack of
a good method for the simultaneous detection of both feature types.

In this paper we propose three improvements to the structure tensor approach
that address the aforementioned problems: we use a higher sampling rate to
avoid aliasing; we describe a non-linear spatial averaging filter to improve corner
localization and to prevent nearby features from merging; and we develop a new
method for the integration of corner/junction and edge detection.



2 The Structure Tensor

Given an imagef(x, y), the structure tensor is based on the gradient of f , which
is usually calculated by means of Gaussian derivative filters:

fx = gx,σ ? f, fy = gy,σ ? f (1)

where ? denotes convolution, and gx,σ, gy,σ are the spatial derivatives in x- and
y-direction of a Gaussian with standard deviation σ:

gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2)

The gradient tensor Q is obtained by calculating, at each point of the image,
the Cartesian product of the gradient vector (fx, fy)

T with itself.
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Spatial averaging of the entries of this tensor, usually with a Gaussian filter,
then leads to the structure tensor:

Sσ′,σ = (sij), sij = gσ′ ? qij (i, j ∈ {1, 2}) (4)

σ′ is the scale of spatial averaging. Averaging is necessary because the plain
gradient tensor has only one non-zero eigenvalue and thus represents only in-
trinsically 1-dimensional features (edges). Spatial averaging distributes this in-
formation over a neighborhood, and points that receive contributions from edges
with different orientations will have two positive eigenvalues, which allows them
to be recognized as intrinsically 2D. Cornerness is then measured by the strength
of the intrinsically 2D response, for example:

c1 =
det(Sσ′,σ)

tr(Sσ′,σ)
or c2 = det(Sσ′,σ) − 0.04(tr(Sσ′,σ))2 (5)

The first measure is commonly known as Förstner’s operator [3], although it
was independently proposed by several authors. The second one originates from
Harris and Stevens [5] and is called corner response function. Rohr [11] later
simplified these measures by searching for local maxima of the determinant alone.

3 Improvement I: Correct Sampling

Let us assume that the original image f(x, y) was properly sampled at the
Nyquist rate. Setting the pixel distance λN = 1 in the spatial domain, this
means that f must be band-limited with cut-off frequency ωN = π:

|ω1|, |ω2| ≥ π ⇒ F (ω1, ω2) = 0 (6)



Fig. 1. Original images and their Canny edges at the original and doubled resolutions.
The small white tiles in the left image have a diameter of about 3 pixels. Characters
in the license plate have a line width of 2 pixels. More examples can be found in [6].

where F denotes the Fourier transform of f , and ω1, ω2 are the frequency coor-
dinates. Convolution of f with Gaussian derivative filters corresponds to a mul-
tiplication of the spectrum F with the Fourier transforms Gx, Gy of the filters.
Since Gaussian derivatives are not band-limited, the derivative images fx and fy

are still band-limited with ωN = π. Next, we calculate the Cartesian product of
the gradient vector with itself. Pointwise multiplication of two functions in the
spatial domain corresponds to convolution in the Fourier domain:

f1f2
c s F1 ? F2 (7)

Convolution of two spectra with equal band width doubles the band width.
Therefore, in order to avoid aliasing and information loss, the elements of the
gradient tensor must be represented with half the sample distance of the original
image. Surprisingly, this important fact has been overlooked so far. As we will
see, correct sampling leads to significant improvements in the quality of the edges
and corners obtained later on. Oversampling is best realised directly during the
calculation of the derivative images. Consider the definition of the convolution
of a discrete image f with an analog filter kernel g:

(f ? g)(x, y) =
∑

i,j

f(i, j)g(x − i, y − j) (8)

Despite f being discrete, the right-hand side of this equation is an analog func-
tion that can be evaluated at arbitrary points (x, y). We obtain an oversampled
derivative image by evaluating f ? gx and f ? gy at both integer and half-integer
positions.

The problem of insufficient sample density is not limited to structure tensor
based methods, it affects all algorithms that take products of derivatives. In
fig. 1 we compare edges detected with Canny’s algorithm [2] at the original
and doubled resolutions. The differences in quality are clearly visible. Of course,
oversampling is not necessary if the original image does not contain fine scale
structure.



(a) (b) (c) (d)

Fig. 2. (a) gradient magnitude at original resolution; (b) trace of structure tensor –
original resolution, linear averaging; (c) trace of structure tensor – doubled resolution,
linear averaging; (d) trace of structure tensor – doubled resolution, non-linear averaging

4 Improvement II: Non-linear Spatial Integration

The gradient tensor has only one non-zero eigenvalue and thus only represents in-
trinsically 1-dimensional features (edges). Spatial averaging, usually with Gaus-
sian filters, distributes this information over a neighborhood. Unfortunately, lo-
cation independent filters do not only perform the desirable integration of mul-
tiple edge responses into corner/junction responses, but also lead to undesirable
blurring of structure information: If two parallel edges are close to each other,
they will be merged into a single edge response, and the narrow region between
them is lost. Similarly, edges around small circular regions merge into single
blobs, which are erroneously signalled as junctions. Figures 2 b and c demon-
strate these undesirable effects.

The reason for the failure of the integration step lies in the linear nature
of the averaging: the same rotationally symmetric averaging filter is applied
everywhere. This is not what we actually want. Structure information should
be distributed only along edges, not perpendicular to them. Hence, it is natural
to use non-linear averaging filters. Such filters were proposed in [9] (based on
unisotropic Gaussians) and [13] (based on unisotropic diffusion). In both cases
the local filter shape resembles an oriented ellipse whose orientation equals the
local edge direction. However, in our experiments elliptic filters did not lead to
significant improvements over the traditional isotropic integration.

Therefore, we propose to use oriented filters that are shaped like hour-glasses

rather than ellipses (fig. 3). This type of filter can be interpreted as encoding the
likely continuations of a local piece of edge. Our filter was inspired by methods
used in perceptual grouping, e.g. tensor voting [8] and curve indicator random
fields [1]. In contrast to those, in our application short-range interaction (over



Fig. 3. Hour-glass like filter according
to (9), with ρ = 0.4 amd φ0 = 0.

at most a few pixels) is sufficient, and there is no need for separate treatment of
straight and curved edges. Thus, we can use a very simple filter design.

We define our non-linear filter kernels as polar separable functions, where the
radial part is a Gaussian filter, but the angular part modulates the Gaussian so
that it becomes zero perpendicular to the local edge direction φ0(x, y):

hσ′,ρ(r, φ, φ0) =
1

N
e
−

r2

2σ′2 e
−

tan(φ−φ0)2

2ρ2 (9)

where ρ determines the strength of orientedness, and N is a normalization con-
stant that makes the kernel integrate to unity. At every point in the image, this
kernel is rotated according to the local edge orientation defined by a unit vector
n(x, y) = (cos(φ0), sin(φ0))

T which is perpendicular to the gradient. In the local
coordinate system defined by n and n⊥, φ0 is zero. Let p, q be Cartesian coor-
dinates in this local coordinate system. Then r2 = p2 + q2 and tan(φ− φ0) = q

p
.

When r = 0, we set φ := 0 in order to avoid damping the radial Gaussian at
the center of the filter. Given n, p and q can be calculated very efficiently from
the global coordinates x = (x, y), namely p = n

T
x and q = n

T
⊥

x. In Cartesian
coordinates, our kernel thus reads:

hσ′,ρ(x, n) =
1
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The nonlinear integration operator T is defined as:

Tσ,σ′,ρ =Tσ′,ρ[Qσ ]

tij(x, y) =
∑

x′,y′

hσ′,ρ

(

x − x′, y − y′, n(x′, y′)
)

qij(x
′, y′) (i, j ∈ {1, 2}) (11)

Fig. 3 depicts this filter for a horizontal edge. The parameter ρ should be
as small as possible in order to obtain pronounced orientedness. We have found
experimentally that the filter results are not very sensitive to the choice of ρ –
values between 0.3 and 0.7 give essentially the same results. However, for ρ < 0.3,
the filter becomes susceptible to noise in the estimated direction n. For ρ > 0.7,
undesirable blurring becomes visible again. In the examples, we use ρ = 0.4.
This means that the kernel amplitude at φ = φ0 ± 25◦ is half the maximal
amplitude at φ0. The parameter σ′ must be large enough to ensure sufficient



overlap between the different edge contributions coming from the neighborhood
of a junction. We have found that the averaging scale should be about twice as
large as the scale of the gradient filter. Since the structure tensor is represented
with doubled resolution, this means that σ′ = 4σ. Experiments were done with
σ = 0.7. A theoretical investigation of optimal choices for ρ and σ′ will be
conducted. The possibility to improve efficiency by means of steerable filters will
also be explored.

Fig. 2 shows the trace of the structure tensor obtained by our new filter
and compares it with the trace of the structure tensor calculated with linear
integration. It can be seen that nearby edges are merged in the linearly smoothed
version, which causes small and narrow regions to disappear. This does not
happen with non-linear averaging.

5 Improvement III: Integrated Edge and Junction

Detection

In many cases the structure tensor is subsequently used to derive a cornerness
measure, e.g. c1 or c2 in (5). Since a complete boundary description needs both
edges and corners, edges are then detected with another algorithm, such as
Canny’s [2]. This poses a difficult integration problem of edge and corner re-
sponses into a single boundary response. Displacements of the detected corners
from their true locations and erroneous edge responses near corners and junc-
tions often lead to topologically incorrect boundaries (gaps, isolated “junction”
points etc.). These problems have to be repaired by means of heuristics or dealt
with by robust high level algorithms. Obviously, it were better if the errors would
be avoided rather than repaired. This should be possible if edges and junctions
arose from a unified, integrated process. However, this is not straightforward.
For example, Förstner [4] tried to derive edge information from the structure
tensor as well, but reliablility was not really satisfying.

The improvements to the structure tensor proposed above open up new pos-
sibilities for simultaneous edge and junction detection. We base our new edgeness
and cornerness measures on the fact that any positive semi-definite second or-
der tensor can be decomposed into two parts, one encoding the intrinsically
1-dimensional properties of the current location (edge strength and orientation),
and the other the intrinsically 2D properties:

T = Tedge + Tjunction = (µ1 − µ2)n1n
T
1 + µ2I (12)

where µ1,2 are the eigenvalues of the tensor, n1 is the unit eigenvector associated
with µ1, and I is the identity tensor. The eigenvalues are calculated as:

µ1,2 =
1

2

(

t11 + t22 ±
√

(t11 − t22)2 + 4t212

)

(13)

and the eigenvector is
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)
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(14)
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Fig. 4. (a, c) integrated edge and junction detection – linear structure tensor cal-
culation; (b, d) integrated edge and junction detection – non-linear structure tensor
calculation. All images are calculated at doubled resolution.

Corners and junctions can now be detected as local maxima of tr(Tjunction),
whereas Tedge can be transformed back into a gradient-like vector

√
µ1 − µ2 n1

that can be fed into Canny’s algorithm instead of the normal gradient. Thus,
the detected corners/junctions and edges arise from a decomposition of the same
original tensor representation which leads to much fewer errors in the resulting
boundary.

Fig. 4 compares edges and junctions derived from the standard structure ten-
sor with those from the improved one. This figure reinforces what fig. 1 already
demonstrated for edge detection alone: doubling of the resolution and non-linear
tensor filtering indeed improve the boundary quality. In fig. 4a, the most severe
error is that junctions are hallucinated in the centers of the small triangular
regions, because the edges of these regions are merged into a single blob during
blurring. Fig. 4c exhibits low quality of the detected edges, again because nearby
edges diffuse into each other. Fig. 5 shows an example where the traditional ten-
sor already performs reasonably. But by looking closer one finds the corners to
be displaced by 3 pixels from their true locations, whereas the displacement in
the non-linearly smoothed tensor is at most 1 pixel.

6 Conclusions

In this paper we improved structure tensor computation in two important ways:
increased resolution and non-linear averaging. These improvements allowed us
to define a new integrated edge and junction detection method. The experiments
clearly indicate that the new method is superior, especially if the image contains
small features near the resolution limit, as is typical for natural images.

In order to improve the method further, a better theoretical understanding of
the non-linear averaging is required. It should also be investigated if Canny-like
non-maxima suppression is optimal for the linear part Tedge of our tensor. Fur-
thermore, quantitative comparisons with existing approaches will be conducted.



(a)

(b)
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Fig. 5. (a) integrated edge and junction detection in a lab scene; (b) detail of (a) com-
puted with linear tensor averaging; (c) the same region as (b) obtained with nonlinear
averaging. Note the corner displacements in (b).
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