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CAUSAL INFERENCE

* Association vs. Causation (Pearl, 2010)

* Standard statistical analysis — infer parameters of a distribution from
from finite samples; discover associations between parameters, for

instance via:

e Correlation

* Regression

* Conditional independence

* Virtually any method that relies on a joint distribution of observed variables
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CAUSAL INFERENCE

* Association vs. Causation (Pearl, 2010)

« Causal analysis — infer probabilities under changing conditions;
discover changes in distributions due to external influences, for instance
via:

* Randomization

* “Holding constant”

* Intervention

* Virtually any method that does not rely on the distribution of observed variables alone



CAUSAL INFERENCE

“This distinction further implies that causal
relations cannot be expressed in the language
of probability and, hence, that any
mathematical approach to causal analysis
must acquire new notation — probability
calculus is insufficient.” (Pearl, 2010, p.2).

Judea Pearl (b. 1936)
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* Representing linear causation (Pearl, 2010)

Path diagram
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CAUSAL INFERENCE

Linear structural equation

X = €éy

y=pBx+e,

Interpretation

{E X Ey}: exogenous variables
or errors (unexplained factors)
{X,Y}: endogenous variables
(variables of interest)

X — Y: causal hypothesis, X
(possibly) causes Y

B = Cov(X,Y): path coefficient,
quantifies the causal effect of
XonY



CAUSAL INFERENCE

* Beyond linear models — redefining the notion of effect as a general way

of transmitting changes between variables
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Path diagram
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Structural equation

z = fz(ez)
X = fX(Z; eX)
y = fr(x, ey)

Interpretation

Each function represents a causal
process that determines the value
of the LHS variable (output) from
the RHS variables (input).



CAUSAL INFERENCE

* Representing interventions via the do(-) operator

Path diagram Modified path diagram
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CAUSAL INFERENCE

* Pre-intervention vs. post-intervention distribution
* P(x,y) — initial pre-intervention distribution

* P(y|do(x)) — post-intervention distribution after modification of the
original model

* Central question in causal analysis (Identifiability): Can the post-
intervention distribution be estimated from data generated by the
pre-intervention distribution?



IMPLICIT GENERATIVE MODELS

* Implicit generative models (IGM): Implement a mechanism to sample from

a (complicated) probability distribution without an explicit parametrization
(e.g. GANs)

* GAN: Implement the sampling process via forward computation given
random noise vectors

 ¢GAN: Extend GANs by feeding class labels to the generator along random
noise vectors



CAUSAL IMPLICIT GENERATIVE MODELS

* Previous cGAN architectures do not capture dependencies between labels

* Idea of causal IGMs:
I. Capture dependencies between labels

II. Consider causal effects between labels

* Abstractly, model conditional generation as a causal process L — [



CAUSAL IMPLICIT GENERATIVE MODELS

* Intervention vs. Conditioning (Gender, Mustache, Image)

EERY- 1B T
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(b) Top: Intervened on Mustache=1. Bottom: Con-
ditioned on Mustache = 1. Male — Mwustache.

* Note: P(Image, Gender|Mustache = true) # P(Image, Gender|do(Mustache = true))
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CAUSAL IMPLICIT GENERATIVE MODELS

* Aside on assumptions:

Piqia(Gender = female|Mustache = true) # 0

ASSUMPTIONS
A\

- i
i 0 « { ‘
ASSIIMPTIONS EVERYWHERE. ., B ,

Image taken from: http://www.conchitawurst.com/

1/217/2018
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CAUSAL IMPLICIT GENERATIVE MODELS

* Representing causal structural equations via neural networks

Naive NN Causal IGM
implementation implementation

NH}Z

Path diagram




e Full architecture
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CAUSAL GAN ARCHITECTURE
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CAUSAL GAN ARCHITECTURE

1. Causal controller (WGAN) l_[ Causa | l
ontrolier
N I

* Produces labels according to a causal graph

Note: Each mapping from
parents to children is a neural
network.

» Controls which distribution the images will be sampled from (conditional or
interventional)



CAUSAL GAN ARCHITECTURE

 Aside on Wasserstein GAN

o No log in the loss

o Clip the weight of D

o Train D more than G

o Use RMSProp instead of ADAM

o Lower learning rate

e Aim: stabilize GAN training!

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used

the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «a, the learning rate. ¢, the clipping parameter. m, the batch size.

Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 0y, initial generator’s parameters.

1: while ¢ has not converged do
2 fort =0, ....1

3: Sample {
4
5

Sample -

w < clip(w, —¢, ¢)
end for

: end while

Arjovsky et al., (2017),p. 8



CAUSAL GAN ARCHITECTURE

[ Generator

X

Label estimate
2. Labeler [ Ao ] ¢

Ly
* Trained to estimate the labels of images in the dataset

* Optimization criterion (single binary label [):

max p[Ex~[PT(x|l=1) [log (Dpr(x))] + (1 — P)EvaIP’r(xu:o) [log(1 — D r(x))]

Dir

(P,- - data distribution; p - label prior; D; z (x) - mapping due to labeler)



CAUSAL GAN ARCHITECTURE

Anti- :
Labetler —p [abel estimate
3. Anti-Labeler [ —

« Trained to estimate the labels of images sampled from generator

* Optimization criterion (single binary label [):

max PIEx~]Pg(x|l=1) [log (Drg(x))] + (1 — P)Ex~IPg(x|l=0) [log(1 — Dy (x))]

DiRr

(P, - generator induced distribution; p - label prior; D, ;(x) - mapping due to anti-labeler)



CAUSAL GAN ARCHITECTURE
Discriminator ]—> P(Real)

Generator

4. Discriminator

Dataset

* Trained to discriminate between real and fake images
* Optimization criterion (single binary label [):
mgx [E(l,x)N]Pr(l,x) llog (D(x))] + IE(l,x),v]P)g(l,x) llog(1 — D(x))]

(P, - data distribution; P, - generator induced distribution; p - label prior; D, ;(x) - mapping due to
discriminator)



CAUSAL GAN ARCHITECTURE

H Causal
Controller

5. Generator N

* Optimization criterion (single binary label [):

5 oo (L =P
mG}n (1x)~IP4(1,x) 08 D(x)

Generator

— G(L¢,2)

Maximize discriminator
loss

— pE,_p, [log (DLr(x)] = (1 = PIE,_p [log(1 — Dyr(x))| Minimize labeler loss
+ pIExN]pg llog (D;c(x)] + (1 — p)Ex~Pg [log(1 — D, (x))] Maximize anti-labeler loss



CAUSAL GAN ARCHITECTURE

6. Theoretical guarantees
» Given a perfect causal controller, as well as an optimal labeler, anti-labeler, and discriminator,
the global minimum of the generator loss is achieved iff P.(l,x) = Py(l,x), i.e. iff P (G (1, z)) =
Pr(x|1))
* Proof sketch: substitute expressions for optimal labelers and discriminator into generator
objective and show that it yields KL(P, || P;)



RESULTS

* Train causal GAN on the CelebA data set in a two stage procedure

1. Train the Causal Controller on the image labels

2. Train the Causal GAN on the images conditioned on the labels from the causal controller



RESULTS

1. Convergence of Causal Controller to the true marginal distributions of the labels

Label, L

Bald

B TR |
Mot STghtly Oper
004231

0.48766 0.48730 0.48208
i i 0.48111 0.46789 0.47243
0.76737 0.77663 0.77362

Table 2: Marginal distribution of pretrained Causal Controller labels when Causal Controller is
trained on CelebA Causal Graph (Pg1) and its completion(FP,.g1), where ¢G1 is the (nonunique)
largest DAG containing G'1 (see appendix). The third column lists the actual marginal distributions
in the dataset




RESULTS

2. CausalGAN: Sampling from the conditional/interventional dsitributions

BRoRELRal

Top: Intervene Mustache=1, Bottom: Condition Mustache=1

Figure 4: Intervening/Conditioning on Mustache label in CelebA Causal Graph with Causal GAN.
Since Male — Mustache in CelebA Causal Graph, we do not expect do( M ustache = 1) to affect
the probability of Male = 1, i.e., P(Male = 1|do(Mustache = 1)) = P(Male = 1) = 0.42.
Accordingly, the top row shows both males and females with mustaches, even though the generator
never sees the label combination { M ale = 0, M ustache = 1} during training. The bottom row of
images sampled from the conditional distribution P(.|Mustache = 1) shows only male images.




RESULTS

2. CausalGAN: Sampling from the conditional/interventional distributions (2)
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Top: Intervene Mouth Slightly Open=1, Bottom: Condltlon Mouth Slightly Open=1

Figure 5: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal Graph with
CausalGAN Since szlmJ — \[outh SlightlyOpen in CelebA Causal Graph, we do not ex-
pect do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However on the bottom row, condi-
tioning on Mouth Slightly Open = 1 increases the proportion of smiling images (From 0.48 to 0.76
in the dataset), although 10 images may not be enough to show this difference statistically.




RESULTS

2. CausalGAN: Sampling from the conditional/interventional distributions (2)
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Top: Intervene Mouth Slightly Open=1, Bottom: Condltlon Mouth Slightly Open=1

Figure 5: Intervening/Conditioning on Mouth Slightly Open label in CelebA Causal Graph with
CausalGAN Since szlmJ — \[outh SlightlyOpen in CelebA Causal Graph, we do not ex-
pect do(Mouth Slightly Open = 1) to affect the probability of Smiling = 1, i.e., P(Smiling =
1|do(Mouth Slightly Open = 1)) = P(Smiling = 1) = 0.48. However on the bottom row, condi-
tioning on Mouth Slightly Open = 1 increases the proportion of smiling images (From 0.48 to 0.76
in the dataset), although 10 images may not be enough to show this difference statistically.




RESULTS

CausalGAN: Sampling from the conditional/interventional distributions (3)

Py Y Ok
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Intervening vs Conditioning on Wearing Lipstick, Top: Intervene Wearing Lipstick=1,
Bottom: Condition Wearing Lipstick=1

Figure 12: Intervening/Conditioning on Wearing Lipstick label in CelebA Causal Graph. Since
Male — WearingLipstick in CelebA Causal Graph, we do not expect do(Wearing Lipstick = 1)
to affect the probability of Male = 1, i.e., P(Male = 1|do(Wearing Lipstick = 1)) = P(Male =
1) = 0.42. Accordingly, the top row shows both males and females who are wearing lipstick.
However, the bottom row of images sampled from the conditional distribution P(.|Wearing Lipstick =
1) shows only female images because in the dataset P(Male = 0|Wearing Lipstick = 1) ~ 1.




RESULTS
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2. CausalGAN: Diversity

1/21/2018
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SUMMARY AND DISCUSSION

. Causal GANs allow us to obtain samples with desired properties that may not be
present in the training set

. Causal GANs assume the causal graph structure but learn the functions of the
structural equations

. What are the advantages of causal GANs over Bayesian networks?

. Do causal GANs offer the possibility for simulating “real” science experiments?



THE END

Thank you!
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