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OUTLINE

1. An introduction to causal inference

2. Causal implicit generative models (CIGMs)

3. Causal GAN: architecture and components

4. Results

5. Discussion



CAUSAL INFERENCE

• Association vs. Causation (Pearl, 2010)

• Standard statistical analysis – infer parameters of a distribution from 

from finite samples; discover associations between parameters, for 

instance via: 

• Correlation

• Regression

• Conditional independence 

• Virtually any method that relies on a joint distribution of observed variables



CAUSAL INFERENCE

• Association vs. Causation (Pearl, 2010)

• Causal analysis – infer probabilities under changing conditions; 

discover changes in distributions due to external influences, for instance 

via: 

• Randomization

• “Holding constant”

• Intervention  

• Virtually any method that does not rely on the distribution of observed variables alone



CAUSAL INFERENCE

“This distinction further implies that causal 

relations cannot be expressed in the language 

of probability and, hence, that any 

mathematical approach to causal analysis 

must acquire new notation – probability 

calculus is insufficient.” (Pearl, 2010, p.2).

Judea Pearl (b. 1936)



CAUSAL INFERENCE

• Representing linear causation (Pearl, 2010)

Linear structural equation

𝑥 = 𝑒𝑋

𝑦 = 𝛽𝑥 + 𝑒𝑦

𝐸𝑋 𝐸𝑌

𝑋 𝑌
𝛽

Path diagram Interpretation

• 𝐸𝑋, 𝐸𝑦 : exogenous variables 

or errors (unexplained factors)

• 𝑋, 𝑌 : endogenous variables 

(variables of interest)

• 𝑋 → 𝑌: causal hypothesis, 𝑋
(possibly) causes 𝑌

• 𝛽 = Cov X, Y : path coefficient, 

quantifies the causal effect of 

𝑋 on 𝑌



CAUSAL INFERENCE

• Beyond linear models – redefining the notion of effect as a general way 

of transmitting changes between variables

Structural equation

𝑧 = 𝑓𝑍(𝑒𝑍)

𝑥 = 𝑓𝑋 𝑧, 𝑒𝑋

𝑦 = 𝑓𝑌(𝑥, 𝑒𝑌)

𝐸𝑍 𝐸𝑋

𝑍 𝑋

Path diagram 

𝑌

𝐸𝑌

Interpretation

Each function represents a causal 

process that determines the value 

of the LHS variable (output) from 

the RHS variables (input).  



CAUSAL INFERENCE

• Representing interventions via the 𝑑𝑜(∙) operator

Structural equation

𝑧 = 𝑓𝑍(𝑒𝑍)

𝑥 = 𝑓𝑋 𝑧, 𝑒𝑋

𝑦 = 𝑓𝑌(𝑥, 𝑒𝑌)

𝐸𝑍 𝐸𝑋

𝑍 𝑋

Path diagram 

𝑌

𝐸𝑌

Modified structural equation

𝑧 = 𝑓𝑍(𝑒𝑍)

𝑥 = 𝑥0

𝑦 = 𝑓𝑌(𝑥, 𝑒𝑌)

𝐸𝑍 𝐸𝑋

𝑍 𝑋

Modified path diagram 

𝑌

𝐸𝑌

𝑥0
𝑑𝑜(𝑥0)

(Delete a function from 

the model by replacing 

it with a constant)



CAUSAL INFERENCE

• Pre-intervention vs. post-intervention distribution

• 𝑃(𝑥, 𝑦) – initial pre-intervention distribution

• 𝑃 𝑦 𝑑𝑜 𝑥 – post-intervention distribution after modification of the 

original model

• Central question in causal analysis (Identifiability): Can the post-

intervention distribution be estimated from data generated by the 

pre-intervention distribution?



IMPLICIT GENERATIVE MODELS

• Implicit generative models (IGM): Implement a mechanism to sample from 

a (complicated) probability distribution without an explicit parametrization

(e.g. GANs)

• GAN: Implement the sampling process via forward computation given 

random noise vectors

• cGAN: Extend GANs by feeding class labels to the generator along random 

noise vectors



CAUSAL IMPLICIT GENERATIVE MODELS

• Previous cGAN architectures do not capture dependencies between labels

• Idea of causal IGMs:

I. Capture dependencies between labels

II. Consider causal effects between labels 

• Abstractly, model conditional generation as a causal process 𝐿 → 𝐼



CAUSAL IMPLICIT GENERATIVE MODELS

• Intervention vs. Conditioning (Gender, Mustache, Image)

• Note: 𝑃 𝐼𝑚𝑎𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟 𝑀𝑢𝑠𝑡𝑎𝑐ℎ𝑒 = 𝑡𝑟𝑢𝑒) ≠ 𝑃(𝐼𝑚𝑎𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟|𝑑𝑜 𝑀𝑢𝑠𝑡𝑎𝑐ℎ𝑒 = 𝑡𝑟𝑢𝑒 )



CAUSAL IMPLICIT GENERATIVE MODELS

• Aside on assumptions: 

𝑃𝑑𝑎𝑡𝑎 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑓𝑒𝑚𝑎𝑙𝑒 𝑀𝑢𝑠𝑡𝑎𝑐ℎ𝑒 = 𝑡𝑟𝑢𝑒) ≠ 0

Image taken from: http://www.conchitawurst.com/



CAUSAL IMPLICIT GENERATIVE MODELS

• Representing causal structural equations via neural networks

𝐸𝑋 𝐸𝑌

𝑋 𝑌

Path diagram 

𝑍

𝐸𝑍

Naïve NN 

implementation

Noise Feedforward NN

X

Y

Z

X

𝑁𝑋

Z

𝑁𝑍

Y𝑁𝑌

Causal IGM 

implementation



CAUSAL GAN ARCHITECTURE

• Full architecture

Anti-

Labeler

Labeler

DiscriminatorGenerator

Causal 

Controller

𝐿𝐺𝑁

𝑍
Dataset

𝑋

𝐿𝑅

ℙ(𝑅𝑒𝑎𝑙)

𝐿𝑎𝑏𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐿𝑎𝑏𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐺(𝐿𝐺 , 𝑍)



CAUSAL GAN ARCHITECTURE

1. Causal controller (WGAN)

• Produces labels according to a causal graph

• Controls which distribution the images will be sampled from (conditional or 

interventional)

Causal 

Controller

𝐿𝐺𝑁

Note: Each mapping from 

parents to children is a neural 

network. 



CAUSAL GAN ARCHITECTURE

• Aside on Wasserstein GAN

o No log in the loss

o Clip the weight of D

o Train D more than G

o Use RMSProp instead of ADAM

o Lower learning rate

• Aim: stabilize GAN training!

Arjovsky et al., (2017), p. 8



CAUSAL GAN ARCHITECTURE

2. Labeler

• Trained to estimate the labels of images in the dataset

• Optimization criterion (single binary label 𝑙):

max
𝐷𝐿𝑅

𝜌ॱ𝑥~ℙ𝑟(𝑥|𝑙=1)
log ( 𝐷𝐿𝑅 𝑥 ) + 1 − 𝜌 ॱ𝑥~ℙ𝑟(𝑥|𝑙=0)

log(1 − 𝐷𝐿𝑅 𝑥 )

(ℙ𝑟 - data distribution; 𝜌 - label prior; 𝐷𝐿𝑅 𝑥 - mapping due to labeler)

Labeler

Dataset

𝑋

𝐿𝑅

𝐿𝑎𝑏𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Generator



CAUSAL GAN ARCHITECTURE

3. Anti-Labeler

• Trained to estimate the labels of images sampled from generator

• Optimization criterion (single binary label 𝑙):

max
𝐷𝐿𝑅

𝜌ॱ𝑥~ℙ𝑔(𝑥|𝑙=1)
log (𝐷𝐿𝐺 𝑥 ) + 1 − 𝜌 ॱ𝑥~ℙ𝑔(𝑥|𝑙=0)

log(1 − 𝐷𝐿𝐺 𝑥 )

(ℙ𝑔 - generator induced distribution; 𝜌 - label prior; 𝐷𝐿𝐺 𝑥 - mapping due to anti-labeler)

Anti-

Labeler
𝐿𝑎𝑏𝑒𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Generator



CAUSAL GAN ARCHITECTURE

4. Discriminator

• Trained to discriminate between real and fake images

• Optimization criterion (single binary label 𝑙):

max
𝐷

ॱ(𝑙,𝑥)~ℙ𝑟(𝑙,𝑥)
log ( 𝐷 𝑥 ) + ॱ(𝑙,𝑥)~ℙ𝑔(𝑙,𝑥)

log(1 − 𝐷 𝑥 )

(ℙ𝑟 - data distribution; ℙ𝑔 - generator induced distribution; 𝜌 - label prior; 𝐷𝐿𝐺 𝑥 - mapping due to 

discriminator)

Discriminator

Dataset

ℙ(𝑅𝑒𝑎𝑙)Generator

𝑋



CAUSAL GAN ARCHITECTURE

5. Generator

• Optimization criterion (single binary label 𝑙):

min
𝐺
ॱ(𝑙,𝑥)~ℙ𝑔(𝑙,𝑥)

log
1 − 𝐷(𝑥)

𝐷(𝑥)

− 𝜌ॱ𝑥~ℙ𝑔
log (𝐷𝐿𝑅 𝑥 ) − 1 − 𝜌 ॱ𝑥~ℙ𝑔

log 1 − 𝐷𝐿𝑅 𝑥

+ 𝜌ॱ𝑥~ℙ𝑔
log (𝐷𝐿𝐺 𝑥 ) + 1 − 𝜌 ॱ𝑥~ℙ𝑔

log(1 − 𝐷𝐿𝐺 𝑥 )

Generator

Causal 

Controller

𝑁 𝐿𝐺

𝑍

𝐺(𝐿𝐺 , 𝑍)

Minimize labeler loss

Maximize anti-labeler loss

Maximize discriminator 

loss



CAUSAL GAN ARCHITECTURE

6. Theoretical guarantees

• Given a perfect causal controller, as well as an optimal labeler, anti-labeler, and discriminator, 

the global minimum of the generator loss is achieved iff ℙ𝑟 𝑙, 𝑥 = ℙ𝑔 𝑙, 𝑥 , i.e. iff ℙ 𝐺 𝑙, 𝑧 =

ℙ𝑟 𝑥|𝑙 )

• Proof sketch: substitute expressions for optimal labelers and discriminator into generator 

objective and show that it yields 𝐾𝐿(ℙ𝑔 || ℙ𝑟)



RESULTS

• Train causal GAN on the CelebA data set in a two stage procedure

1. Train the Causal Controller on the image labels 

2. Train the Causal GAN on the images conditioned on the labels from the causal controller



RESULTS

1. Convergence of Causal Controller to the true marginal distributions of the labels 



RESULTS

2. CausalGAN: Sampling from the conditional/interventional dsitributions



RESULTS

2. CausalGAN: Sampling from the conditional/interventional distributions (2)



RESULTS

2. CausalGAN: Sampling from the conditional/interventional distributions (2)



RESULTS

2. CausalGAN: Sampling from the conditional/interventional distributions (3)



RESULTS

2. CausalGAN: Diversity



SUMMARY AND DISCUSSION

1. Causal GANs allow us to obtain samples with desired properties that may not be 

present in the training set

2. Causal GANs assume the causal graph structure but learn the functions of the 

structural equations

3. What are the advantages of causal GANs over Bayesian networks?

4. Do causal GANs offer the possibility for simulating “real” science experiments?



THE END

Thank you!
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