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A generative model trained through the competition between two neural nets:

e Generator: G(2),z ~ Pyise(2)
¢ = (G(z) : Sample generated by the generator
Pnoise(2) : arbitrary noise distribution

e Discriminator: D(z) € [0, 1]
probability of x being from the true data distribution P, rather than a
generated sample from the generator’s distribution P .

e Optimization of both through the following minimax game:

mén mgXV(D, G) — EmNPdm [log D(:B)] + E, ~noise [log (1 - D(G(Z)))]



Structure of a Generative Adversarial Net:
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2. Motivation
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desired.

A disentangled representation would allow for one
parameter to specify an important feature of the
generated data. In the case of MNIST, this could
be the identity of the generated number.




Desired feature dimensions for MNIST dataset:

e Numerical identity (0-9)
e Angle of rotation
e Stroke thickness



Desired feature dimensions for a dataset of faces:

Facial expression
Eye color
Hairstyle

Glasses
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InfoGAN

e Learns a disentangled representation of the dataset.
e Instead of just using the noise z for the generator, the noise is split into noise
z and latent code c:
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e We know that the MNIST dataset contains ten different types of digits.

e The latent code can be modeled to have a categorical code that represents
the type of digit.

¢y ~ Cat(K =10,p =0.1)

e GAN is not required to use the specified latent code and is free to choose to
ignore it:

Pa(x|c) = Pg(x)
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To force the network to make use of the latent code, mutual information is
measured needs to be measured.

I(X;Y)=H(X)-HX|Y)=HY)-HY|X)

The value function is adjusted to achieve maximal mutual information
between the latent code and the image generated from noise and the latent
code:

m&n max Vi(D,G) =V (D,G) — M(c;G(z,¢))
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e To compute the mutual information I(c; G(z, c)), the posterior probability
P(c|x)is required.

e Calculating the posterior probability is difficult.

e Instead, an auxiliary distribution Q(c|x), that approximates the posterior
probability, is calculated with a neural network.

e With this approximation of the posterior probability, a lower boundary can be
calculated:

I(c;G(z,¢)) 2 L1(G, Q)
— ECNP(C),:BNG(z,C) [lOg Q(CIZE)] i H(C)
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Final form of the new value function:

Iéliél max Vinfocan (D, G, Q) =V (D,G) — AL (G, Q)

mC%'n mgXV(D, G) = IE:_r,deam [log D(x)] + E <noise [log (1 - D(G(Z)))]

Ly (G7 Q) = Ech(c),mNG(z,c) [lOg Q(ClZE)] + H(C)
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e In practice, the neural network approximating the posterior probability is one
fully connected layer that is attached to the final layer of the discriminator.
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Reflection

e InfoGAN is unsupervised. No labels are required for the training data.
e For MNIST, the following latent codes were specified:

¢1 ~ Cat(K =10,p =0.1)
Co,c3 ~ Unif(—1,1)
e \Without using the labels of MNIST, a 5% error rate was achieved when
matching each digit type to one category of the latent code corresponding to

the numerical identity.
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Comparison of L;(G, Q) with and without explicitly
encouraging maximal mutual information. The latent code is a
uniform categorical distribution ¢ ~ Cat(K = 10,p = 0.1).

L; (G, Q) is quickly maximized to H(c) = 2.30, as it's first term
becomes zero.

LI(G7 Q) - Ech(c),ar:NG(z,c) [log Q(Cl.’L’)] + H(C)

2.5

Ly

—0.5

400

Iteration

600

800

1000

18



4. Results
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4. Results
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4. Results

(b) Presence or absence of glasses

(a) Azimuth (pose)

(d) Emotion

(c) Hair style
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