
Seminar: AI for Games 6/15/2019

Human level control
through deep
reinforcement learning

Paper by: V. Mnih, K.
Kavukcuoglu, D. Silver et al.
Presented by: Carsten Lüth
Supervisor: Professor U. Köthe

!1

Taken from: https://nervanasystems.github.io/coach/

1. Video Games

2. Deep Q Network

A. Idea

B. Methods

C. Algorithm

3. Experiments

4. Discussion

Contents

!2

❖ Humans play to:

❖ learn

❖ test their abilities

❖ compete with each other

❖ Agents are trained on games:

❖ because it is easier, faster and
safer than in the real world

❖ to benchmark their
performance in different
environments

1. Why do we play video games?

!3

ATARI2600 games
Taken from: https://gym.openai.com/envs/#atari

https://gym.openai.com/envs/#atari

❖ Humans:

1. See and hear the video
game

❖ ?

2. interpret the input
❖ ?

3. decide to do
something

❖ ?

1. How do we play Video Games?

!4

❖ Agents before DQN:

1. Get the pixels of the
video input

2. interpret the input
❖ derive features from the

pixels

❖ hand-crafted features

3. decide to do something
❖ linear value functions, policy

representations etc.

1. MARI\0 - NEAT

!5

Taken from: https://www.youtube.com/watch?v=qv6UVOQ0F44&t=224s

https://www.youtube.com/watch?v=qv6UVOQ0F44&t=224s

❖ Why are they used?
❖ Computervision: raw pixels of videos or images are bad features

❖ high dimensional, highly correlated

❖ distill human knowledge into the agents

1. Hand-Crafted Features

!6

❖ Problems:
❖ costly and often not generalizable from a game like pac-man to

Super Mario

❖ agents performance is limited by the features

❖ Fundamental Concept:
❖ self learning feature maps

❖ CNN extracts features

❖ features used for a
learned Q-function

❖ Fully connected
network

❖ Agent trainable via
backpropagation

2.A Deep Q Network

!7

2.A DQN - playing Seaquest

!8
Taken from: https://www.youtube.com/watch?v=XjsY8-P4WHM

https://www.youtube.com/watch?v=XjsY8-P4WHM

❖ multiple convolutional Layers, each of those Layers uses a filter or
kernel to create a new feature-map

❖ convolutions use the same filters on different locations of the image

2.B Convolutional Neural Network

!9

Taken from: https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png

https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png

2.B Features of a CNN

!10

Filters of a VGG- Network
trained on IMAGENET

visualized

Taken from: Visualizing and Understanding Convolutional Networks - Matthew D Zeiler, Rob Fergus

❖ Optimal Value function:

❖ maximum expected Reward given any policy, state and action

2.B Value Function

!11

Q*(s, a) = max
π

𝔼[rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π]

π = ℙ(a |s) : Policy

rt : Reward

s : State

a : Action γ ∈ (0,1) : Discount

Qi+1(st, at) ⟵ Qi(st, at) + α(rt + γ max
at+1

Qi(st+1, at+1) − Qi(st, at))

❖ Q-learning:

Qi(s, a) ⟶i→∞ Q*(s, a)

❖ The state is a concatentation of consecutive
downsampled and grayscaled frames

❖ Reward is the score difference of the ATARI games
reached within the frames

2.B Designing the Input

!12

rt = Scoret+1 − Scoret

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

= st

2.B State: Concept of Time

!13

Taken from: https://towardsdatascience.com/self-learning-ai-agents-part-ii-deep-q-learning-b5ac60c3f47

st : Stack of consecutive frames

Multiple frames allow the agent to learn a concept of movement and time

❖ Intuition:
❖ Save past experiences so that the agent can learn from them

2.B Experience Replay

!14

et = (st, at, rt, st+1) Dt = {e1, e2, e3, . . . , et} (s, a, r, s′�) ∼ U(D) Q-learning updates

❖ Benefits:
❖ Avoids forgetting previous episodes

❖ Reduce correlations between experiences

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

2.B Experience Replay
Forgetting Previous Episodes

!15

Level 1 Level 2

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

❖ Minimization Objective:

❖ Loss:

❖ Define 2 value functions with different updates:

❖ value function is updated by gradient descent w.r.t. target-value function

❖ target value function gets updated periodically every C iterations  

❖ Benefit: training is more stable

2.B Training schedule

!16

ℒ(θi) = 𝔼(st,at,rt,st+1)∼U(D)[(rt + γ max
at+1

Q(st+1, at+1; θ−
i) − Q(st, at; θi))2]

θi : Value function (iterative updates) θ−
i : Target-Value function (periodic updates)

D : Experience Dataset

̂θ = argminθℒ(θ)

θ−
C = θC

2.B Exploration vs. Exploitation

!17

ϵ-Greedy

p(a |s) = 1 − ϵ + ϵ/n
ϵ/n

: a = argmaxa0
Q(a0 |s)

: else

ϵ gets annealed during the training from 1 to 0.1

Describes the probability between exploration and exploitation by going off-policy  
during training of the agent

n : # actions

Taken from: https://lilianweng.github.io/lil-log/
2018/01/23/the-multi-armed-bandit-problem-and-its-
solutions.html

https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html

2.C Algorithm

!18

Exploration vs.
Exploitation

play

Experience
 Replay

update Q-function

❖ Agents trained on 49 different
games

3. Performance on ATARI 2600

!19

Performance =
RA − RR

RH − RR
⋅ 100

RR : random play score
RH : human gaming tester score

RA : agent score

❖ Agents have an action
frequency of 10 Hz

3. DQN - playing Breakout

!20
Taken from: https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

❖ Pros:

❖ generalizes well to different environments

❖ learns important features itself

❖ minimizes human knowledge

❖ outperforms most other algorithms (before 2015) and has the
best overall score

❖ Cons:

❖ decision horizon is rather short

❖ algorithm learns slower than a human

4. Discussion

!21

❖ Scientific:
❖ Human level control through deep reinforcement learning - V. Mnih, K. Kavukcuoglu, D.

Silver et al.

❖ Playing Atari with Deep Reinforcement Learning - Volodymyr Mnih, Koray Kavukcuoglu,
David Silver et al.

❖ Visualizing and Understanding Convolutional Networks - Matthew D Zeiler, Rob Fergus
❖ The Arcade Learning Environment: An Evaluation Platform for General Agents - M. G.

Bellemare, Y. Naddaf, J. Veness and M. Bowling

❖ Further Reading:

❖ Rainbow: Combining Improvements in Deep Reinforcement Learning - Ma. Hessel, J.
Modayil, H. van Hasselt et al.

❖ The bitter lesson - Richard Sutton: http://www.incompleteideas.net/IncIdeas/
BitterLesson.html

❖ Reinforcement Learning, Fast and Slow - M. Botvinick, Sam Ritter, Jane X. Wang et al.

Sources

!22

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

