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❖ Humans play to:

❖ learn

❖ test their abilities

❖ compete with each other

❖ Agents are trained on games:

❖ because it is easier, faster and 
safer than in the real world

❖ to benchmark their 
performance in different 
environments

1. Why do we play video games?
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ATARI2600 games
Taken from: https://gym.openai.com/envs/#atari

https://gym.openai.com/envs/#atari


❖ Humans:

1. See and hear the video 
game

❖ ?

2. interpret the input
❖ ?

3. decide to do 
something

❖ ?

1. How do we play Video Games?
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❖ Agents before DQN:

1. Get the pixels of the 
video input

2. interpret the input
❖ derive features from the 

pixels

❖ hand-crafted features 

3. decide to do something
❖ linear value functions, policy 

representations etc.



1. MARI\0 - NEAT
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Taken from: https://www.youtube.com/watch?v=qv6UVOQ0F44&t=224s

https://www.youtube.com/watch?v=qv6UVOQ0F44&t=224s


❖ Why are they used?
❖ Computervision: raw pixels of videos or images are bad features 

❖ high dimensional, highly correlated

❖ distill human knowledge into the agents

1. Hand-Crafted Features
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❖ Problems:
❖ costly and often not generalizable from a game like pac-man to 

Super Mario

❖ agents performance is limited by the features



❖ Fundamental Concept:
❖ self learning feature maps 

❖ CNN extracts features

❖ features used for a 
learned Q-function

❖ Fully connected 
network

❖ Agent trainable via 
backpropagation

2.A Deep Q Network
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2.A DQN - playing Seaquest 
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Taken from: https://www.youtube.com/watch?v=XjsY8-P4WHM

https://www.youtube.com/watch?v=XjsY8-P4WHM


❖ multiple convolutional Layers, each of those Layers uses a filter or 
kernel to create a new feature-map

❖ convolutions use the same filters on different locations of the image

2.B Convolutional Neural Network
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Taken from: https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png

https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png


2.B Features of a CNN
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Filters of a VGG- Network 
trained on IMAGENET 

visualized

Taken from: Visualizing and Understanding Convolutional Networks - Matthew D Zeiler, Rob Fergus 



❖ Optimal Value function:

❖ maximum expected Reward given any policy, state and action

2.B Value Function
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Q*(s, a) = max
π

𝔼[rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π]

π = ℙ(a |s) : Policy

rt : Reward

s : State

a : Action γ ∈ (0,1) : Discount

Qi+1(st, at) ⟵ Qi(st, at) + α(rt + γ max
at+1

Qi(st+1, at+1) − Qi(st, at))

❖ Q-learning:

Qi(s, a) ⟶i→∞ Q*(s, a)



❖ The state is a concatentation of consecutive 
downsampled and grayscaled frames 

❖ Reward is the score difference of the ATARI games 
reached within the frames

2.B Designing the Input
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rt = Scoret+1 − Scoret

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

= st



2.B State: Concept of Time
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Taken from: https://towardsdatascience.com/self-learning-ai-agents-part-ii-deep-q-learning-b5ac60c3f47

st : Stack of consecutive frames

Multiple frames allow the agent to learn a concept of movement and time



❖ Intuition: 
❖ Save past experiences so that the agent can learn from them

2.B Experience Replay
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et = (st, at, rt, st+1) Dt = {e1, e2, e3, . . . , et} (s, a, r, s′�) ∼ U(D) Q-learning updates

❖ Benefits:
❖ Avoids forgetting previous episodes

❖ Reduce correlations between experiences

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/


2.B Experience Replay 
Forgetting Previous Episodes
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Level 1 Level 2

Taken from: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/

https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8/


❖ Minimization Objective:

❖ Loss:

❖ Define 2 value functions with different updates:

❖ value function is updated by gradient descent w.r.t. target-value function

❖ target value function gets updated periodically every C iterations  

❖ Benefit: training is more stable 

2.B Training schedule
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ℒ(θi) = 𝔼(st,at,rt,st+1)∼U(D)[(rt + γ max
at+1

Q(st+1, at+1; θ−
i ) − Q(st, at; θi))2]

θi : Value function (iterative updates) θ−
i : Target-Value function (periodic updates)

D : Experience Dataset

̂θ = argminθℒ(θ)

θ−
C = θC



2.B Exploration vs. Exploitation
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ϵ-Greedy

p(a |s) = 1 − ϵ + ϵ/n
ϵ/n

: a = argmaxa0
Q(a0 |s)

: else

ϵ gets annealed during the training from 1 to 0.1

Describes the probability between exploration and exploitation by going off-policy  
during training of the agent 

n : # actions

Taken from: https://lilianweng.github.io/lil-log/
2018/01/23/the-multi-armed-bandit-problem-and-its-
solutions.html

https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html
https://lilianweng.github.io/lil-log/2018/01/23/the-multi-armed-bandit-problem-and-its-solutions.html


2.C Algorithm

!18

Exploration vs. 
Exploitation

play

Experience
 Replay

update Q-function



❖ Agents trained on 49 different 
games  

3. Performance on ATARI 2600
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Performance =
RA − RR

RH − RR
⋅ 100

RR : random play score
RH : human gaming tester score 

RA : agent score

❖ Agents have an action 
frequency of 10 Hz



3. DQN - playing Breakout
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Taken from: https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


❖ Pros:

❖ generalizes well to different environments

❖ learns important features itself

❖ minimizes human knowledge

❖ outperforms most other algorithms (before 2015) and has the 
best overall score 

❖ Cons:

❖ decision horizon is rather short

❖ algorithm learns slower than a human

4. Discussion
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❖ Scientific:
❖ Human level control through deep reinforcement learning - V. Mnih, K. Kavukcuoglu, D. 

Silver et al.

❖ Playing Atari with Deep Reinforcement Learning - Volodymyr Mnih, Koray Kavukcuoglu, 
David Silver et al.

❖ Visualizing and Understanding Convolutional Networks - Matthew D Zeiler, Rob Fergus
❖ The Arcade Learning Environment: An Evaluation Platform for General Agents - M. G. 

Bellemare, Y. Naddaf, J. Veness and M. Bowling

❖ Further Reading:

❖ Rainbow: Combining Improvements in Deep Reinforcement Learning - Ma. Hessel, J. 
Modayil, H. van Hasselt et al.

❖ The bitter lesson - Richard Sutton: http://www.incompleteideas.net/IncIdeas/
BitterLesson.html

❖ Reinforcement Learning, Fast and Slow - M. Botvinick, Sam Ritter, Jane X. Wang et al.
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http://www.incompleteideas.net/IncIdeas/BitterLesson.html

