
Einführung ins
Reinforcement Learning

~ Patrick Dammann ~
~ Ist künstliche Intelligenz gefährlich? ~



how to cheat in an exam cheat

don’t cheat
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markov decision process

the given problem:

● set of states S = {s1,...,sn}
● set of actions A = {a1,...,am}
● transition between states via 

actions (and randomness)
● rewards for transitions
● markov property is given
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markov decision process ~ cont.

what we want:

● maximize rewards (just a value)
● a policy π* that defines the best 

action for every state
● π: S → A 
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another example

● 4x4 states (visualized as 2d grid)
● 4 actions (north, south, east, west)
● chance to take random orthogonal 

direction (e.g. 10%)
● invalid movement results in 

transition to same state
● negative reward for moving
● terminal fields (colored) end game 

on any action, giving noted reward

X -100 +100

S X -100 -100

0 1 2 3

0

1

2

3

5



some notation ● T(s, a, s’)  # transition
○ probabillity of getting into state s’ when using 

action a in state s
○ T(s0,2 ,aE ,s0,3) = 0.8  # go E, as planned

T(s0,2 ,aE ,s0,2) = 0.1  # go N, bump against wall
T(s0,2 ,aE ,s1,2) = 0.1  # go S
T(s0,2 ,aE ,s0,1) = 0.0  # go W

● R(s, a, s’)  # reward
○ reward for getting into state s’ when using 

action a in state s
○ R(s1,2,__,__)  = -100  # lose

R(s2,0,aN,s1,0) = -2    # moved
R(s1,3,__,__)  = +100 # win 

● γ ∈ [0,1] := discount factor
○ in timestep t, rewards are worth γt ·R(s,a,s’)
○ makes sooner rewards worth more
○ γ = 1: don’t care when rewards are achived
○ γ = 0: only care about immediate rewards
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the V-values

V*(s) is the estimated reward when starting in s, taking the optimal action and continue to act optimally.

● V*(s) = maxaΣs’ T(s,a,s’) [ R(s,a,s’) + γ·V*(s’) ]

● V*(s) = maxaΣs’ T(s,a,s’) [ R(s,a,s’) + γ·V*(s’) ]

● V*(s) = maxaΣs’ T(s,a,s’) [ est. reward when taking action a, landing in state s’ and continue acting optimally ]

● V*(s) = maxaΣs’ [ est. reward when taking action a, landing in state s’ and continue acting optimally, weighted by probabillity ]
● V*(s) = maxa [ est. reward when taking action a and continue acting optimally ]
● V*(s) = [ est. reward when taking best action and continue acting optimally ]
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value iteration

Vk(s) is the estimated reward when starting in s, 
taking the optimal action and continue to act 
optimally with only k timesteps left.

● find V* via bottom up, iterative approach
● V1 is known (by problem definition)
● calculate Vk+1 via information from Vk

Vk+1(s) = maxaΣs’ T(s,a,s’) [ R(s,a,s’) + γ·Vk(s’) ]

● for k ⟶ ∞: Vk ⟶ V*
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value iteration ~ example

Vk(s) = maxaΣs’ T(s,a,s’) [ R(s,a,s’) + γ·Vk-1(s’) ]

γ = 0.9
r = -2 (moving reward)

p(random)       = 0.2
⇒T(s,aN,sN) = 0.8
⇒T(s,aN,sW) = 0.1
⇒T(s,aN,sE) = 0.1 9
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value iteration ~ example steps
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immediate reward for 
best option V2 

probability weighted 
average over immediate 
rewards and discounted 
reward from there for 
best action

V3=
maxaΣs’ T(s,a,s’) [ R(s,a,s’) + γ·V2(s’) ]



live demo
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policy extraction

● assume we have V*, how to get π* ?
● simulate one timestep for every action, take 

best action

V*(s) =    maxaΣs’T(s,a,s’)[ R(s,a,s’) + γ·V*(s’) ]

π*(s) = argmaxaΣs’T(s,a,s’)[ R(s,a,s’) + γ·V*(s’) ]

what we want:
● maximize rewards
● a policy π* that defines 

the best action for every 
state

● π: S → A 
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policy extraction ~ example

● value iteration might give 
approximations for V* 
converged to machine ε

● policy extraction then 
generates the optimal policy 
π*

● we now have the perfect 
action for every state in a 
game with unlimited time
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live demo
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a slightly different problem

● assume having an MDP
● set of action A = {a1, ..., an} is known
● current state s is known

T(s,a,s’) and R(s,a,s’) are not known and must be 
determined by trial and error

⇉ the agent must actively explore the 
environment
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reinforcement
learning
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model based approach

● approximate T(s,a,s’) and R(s,a,s’)
○ by collecting as many samples as possible

● solve MDP
○ e.g. via value iteration and policy extraction

● problematic, since the agent often can’t 
move “freely”

● requires huge amount of samples

Why not learn V directly, without a model?

T(s,a,s’) & R(s,a,s’)

normal MDP
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temporal difference learning

● initialize V randomly

1. take action based on your policy
2. update V based on your experience

(only for state you came from)
3. update policy
4. if terminated, go to start state
5. go to 1.

( 2. and 3. can be made batchwise every n actions )
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td learning ~ update V based on your experience

Took action a in state s.
Landed in state s’ gaining reward r.

V(s) ← V(s) + α(r + γ·V(s’) - V(s))
( α : learning rate )

● adjust V(s) a little into the direction of the sample
● let α decay over time
● converges to V* under certain circumstances

TD
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td learning ~ update policy

π*(s) = argmaxaΣs’T(s,a,s’)[ R(s,a,s’) + γ·V*(s’) ]
● can’t use policy extraction, since R and T are not 

present
● other methods not that trivial

Can we directly learn a policy?

Emoji on this page provided free by EmojiOne

R T
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the Q-values

V*(s) is the estimated reward when
starting in s, taking the optimal action
and continue to act optimally.

Q*(s,a) is the estimated reward when
starting in s, taking the action a
and continue to act optimally.

⇒ |A| values per state instead of one
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V(s) =    maxa Q(s,a)
π(s) = argmaxa Q(s,a)

How to learn those Q-values?



Q-learning

● temporal difference learning on Q-values

⊖ needs more samples to converge
⨁ policy is learned implicitly
⨁ no V values needed

V(s) ← V(s) + α(r + γ·V(s’) - V(s))

Q(s,a) ← Q(s,a) + α(r + γ·V(s’) - Q(s,a))

Q(s,a) ← Q(s,a) + α(r + γ·maxa’Q(s’,a’) - Q(s,a))

22



where to go?

imagine this situation:

● all Q-values are initialized with some random 
value

● worst action a has initially highest Q-value
● other actions have initially lower Q-values 

than the optimal Q-value of a 

⇉ the agent will never try the other actions
⇉ we need to motivate him doing so
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exploration

ε-greedy exploration

● new hyperparameter 0 ≤ ε ≤ 1
(this can change during training) 

● agent will perform a random action with a 
chance of ε

● at test time, ε is usually set to 0

24

optimistic initial conditions

● estimate maximum Q-values
● initialize all Q-values higher
● updates will decrease Q-values

(since Q-learning converges) 
● agent will prefer other action in later 

iterations



exploration ~ cont.

exploration function

● artificially boost Q-values of state-actions
that were not used frequently

● choose an exploration function E(s,a,n)
with E ⟶ 0 for n ⟶ ∞
( n: number of state-action uses )

● add this function during Q-value updates

e.g.: E(s,a,n) = k/n , k ∈ ℚ

Q(s,a) ← Q(s,a) + α[ r + γ·maxa’(Q(s’,a’) + E(s’,a’,ns,a)) - Q(s,a) ]
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the state space

|S| = 1513·11 · 2768484 · 180

|S| ≈ 1.5·10168 · 5.9·1021 · 180

|S| ≈ 1.593·10192

(~ 3.4·1021 · possible constellations in Go)

⇉ enormous state space in realistic scenarios
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|S| ≈ 1593000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

|S| = ( 1 + 1 + 1 + 4 + 4 + 4 )13·11 · ( 13 · 44 )4 · ( 11 · 44 )4 · ( 3  · 60 ) · ...



the state space and its redundancies

● these states are completely different for 
our agent

● the optimal action here is (most likely) the 
same
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state features

● generate powerful features from states
● use features to generate continuous Q-function 

instead of lookup table

Q(s,a) = w1·f1(s,a) + w2·f2(s,a) + ... + wn·fn(s,a)

● during training: tweak weights instead of entries

Q(s,a) ← Q(s,a) + α · <error>
      wi ←       wi + α · <error>  · fi(s,a)

28

feature 
generation

f1 f2 ... fn

w1 w2 ... wnΣ
Q1 Q2 Q3 ... Qm



does this sound familiar..?
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wi ← wi + α · <error>  · fi(s,a)

f1 f2 fn...

w1 ...w2 wn



deep Q-learning

● Q-function is approximated by neural network
○ input: state
○ output: vector w/ Q-values for all actions

● CNNs allow use of pixel data (game screens, 
camera) as input

● train with the same samples as in normal 
Q-learning (s,a,r,s’)
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s a r s’

Q(   )⇒s

→    ← Q(    )s
a

a

Q(   )⇒s’ max(   ) ⇒

Y = 
→    ⇐        + γ· a r

● output “label” for training contains:
○ r + γ·maxa’Q(s’)a’ for a action taken
○ Q(s)b for all other actions b ∈ A

(⇒ no error)



sources

● AI Course CS188 (University Berkley)
○ http://ai.berkeley.edu/home.html
○ https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos

● Harmon & Harmon: Reinforcement Learning: A Tutorial
○ http://web.cs.iastate.edu/~honavar/rltut.pdf

● qlearning4k (deep Q-learning framework)
○ https://github.com/farizrahman4u/qlearning4k
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The End.
Thank you for your attention!

Any Questions?
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