Einfuhrung ins
Reinforcement Learning

~ Patrick Dammann ~
~ Ist kiinstliche Intelligenz gefahrlich? ~

cheat

el don't cheat

how to cheat 1n an exam

markov decision process

the given problem:

e setofstatesS={s,.s}

e setofactionsA={a . a }

e transition between states via
actions (and randomness)

e rewards for transitions

e markov property is given

(transition

probability) (reward)
+5

markov decision process ~ cont.

W,
n - —
(;)

what we want:

maximize rewards (just a value)
a policy 11" that defines the best
action for every state

mS—A

another example

e 4x4 states (visualized as 2d grid)
e 4 actions (north, south, east, west)

e chance to take random orthogonal
direction (e.g. 10%) 1 .

e invalid movement results in

transition to same state
e negative reward for moving 2
e terminal fields (colored) end game

on any action, giving noted reward

some notation e T(s a) #transition

O

0 1 2 3
d Gl &

O

3

probabillity of getting into state s’ when using
action ain state s

T(sy,.8¢.5,.) = 0.8 #goE, as planned

T(s 'SO,Z) =0.1 # go N, bump against wall
T(sy,,.8,,) =0.1 #go S

T(sq, 8,)=0.0 #go W

0,2 ’aE

e R(s,a,s') #reward

reward for getting into state s’ when using
action ain state s

R(s = -100 #lose

1’21_1_)
R(s, jrays,) = -2 # moved

R(Sl,3’—’) = +100 #win

in timestep t, rewards are worth y! -R(s,a,s’)
makes sooner rewards worth more

y = 1: don’t care when rewards are achived
y = 0: only care about immediate rewards

6

the V-values

V*(s) is the estimated reward when starting in s, taking the optimal action and continue to act optimally.

o Vi(s)= mavaS, T(sas) [Rsas) + y-V(s)]
o V(s)= maXaZS,T(s,a,s') [Rsas) +yVi(s)]
° V*(S) = maxazs, T(s,a,s') [est. reward when taking action a, landing in state s"and continue acting optimally]

) V*(S) = maxazs, [est. reward when taking action a, landing in state s’ and continue acting optimally, weighted by probabillity]

o V*(S) = maxa [est. reward when taking action a and continue acting optimally]

® V*(S) = [est. reward when taking best action and continue acting optimally]

value 1teration

V(s)

with only k timesteps left.

e find V" via bottom up, iterative approach 100 +100
e V'is known (by problem definition) 1 . .
e calculate V¥ via information from V¥
2
VK (s) = mavaS, T(sas) [R(sas) + y-VE(s) |

o fork— 00:VKk— V"

value iteration ~ example

WOE maXazS,T(s,a,s') [R(s,a,s’) + y-VK'(s)]

y=0.9

= '2 (moving reward)

p (random)
=T(s,a,,s,)
=T (s ,aN,sW)
=T (s,a,,s;)

mon on n
o oo ©°
R R oo N

value iteration ~ example steps

0 1 2 K
]
' [
: K
- B8

V1

n

immediate reward for
best option

0 1 2 3
 EIRE

'
- I R

n

V2

probability weighted
average over immediate
rewards and discounted
reward from there for
best action

0 1 2 3
. EEme
-
. EIEEE
g op

maXazS,T(s,a,s') [R(s,as) + y-V3(s)]
10

live demo

value 1teration

policy extraction

what we want:

maximize rewards

a that defines
the best action for every \

state

e assume we have V*, how to get " ?
e simulate one timestep for every action, take
best action

AOE maxazs,T(s,a,s’)[R(sas’) + y-V(s)]

(s) = argmaxazS,T(s,a,s')[R(sas) + y-V'(s)]

12

policy extraction ~ example

e value iteration might give
approximations for V*

0 1 2 3 0 1 2 3
converged to machine €
e CEEE EEE
generates the optimal policy
: - [| [l v i * [+
e we now have the perfect -
game with unlimited time 3 n 3 HH

13

live demo

policy extraction

a slightly different problem

e assume having an MDP
e setofactionA={a,,..,a}isknown

?
? e current state s is known
\\\% W, T(s,a,s’) and R(s,a,s’) are not known and must be
. = i, = determined by trial and error
> %4 >

-

3 the agent must actively explore the
environment

15

reinforcement
learning

f@h

Environment

Interp reter
'|

Sta te
-H-H_‘_-__'h"

16

model based approach

0
W
Y)
Ny
o
e

L
y
4
0

i
4
1o
(Q
0

—
T(s,a,s’) & R(s,a,s’)

ﬁ

normal MDP

e approximate T(s,a,s’) and R(s,a,s")
o by collecting as many samples as possible

e solve MDP
o e.g.viavalue iteration and policy extraction

e problematic, since the agent often can't
move “freely”
e requires huge amount of samples

Why not learn V directly, without a model?

17

temporal difference learning

‘_
v

mHEP>»UOmc @

)
)
L

/

|

TR
.

mHEa>»U0mnc @

MHP»Owa @

j
A

4

mMHa>»0mc @

MH»Owa @

e initialize V randomly

1. take action based on your policy

2. update V based on your experience
(only for state you came from)

3. update policy

if terminated, go to start state

5. gotol.

>

(2. and 3. can be made batchwise every n actions)

18

td le arning ~ update V based on your experience

Took action a in state s.
Landed in state s’ gaining reward r.

V(s) V(s) +alr + v V(s) - V(s))

(a: learning rate)

e adjust V(s) a little into the direction of the sample
e let adecay overtime
e converges to V' under certain circumstances

19

td learning ~ update policy

- -y

Emoji on this page provided free by EmojiOne

m(s) = argmavaS,T(s,a,s')[R(sas) + y-V(s)]

e can't use policy extraction, since R and T are not
present
e other methods not that trivial

Can we directly learn a policy?

20

0 1 2 3
the Q-values . WWNW
estimated reward A A A A
Q’(s,a) is the estimated reward when
s s g veocions pvé }V{ }vq }V{
= |A| values per state instead of one A A A A

V(s)= max_Q(sa) 3 H -100 -100
T(s) = argmax_Q(sa) A

How to learn those Q-values?

Q-learning

temporal difference learning on Q-values
needs more samples to converge

policy is learned implicitly

no V values needed

® D O e

V(s) — V(s) + a(r +yV(s) - V(s))

Q(s,a) < Q(s,a) + a(r +y-V(s) - Q(s,a))

Q(s.a) < Q(sa) + a(r + y-maxa.Q(s',a') - Q(s,a))

22

where to go?

imagine this situation:

WoW

all Q-values are initialized with some random
value

worst action a has initially highest Q-value
other actions have initially lower Q-values
than the optimal Q-value of a

the agent will never try the other actions
we need to motivate him doing so

23

exploration

optimistic initial conditions

e estimate maximum Q-values
e initialize all Q-values higher

e updates will decrease Q-values
(since Q-learning converges)
e agent will prefer other action in later

iterations

e-greedy exploration

e new hyperparameter0<e=<1
(this can change during training)

e agent will perform a random action with a
chance of €
e attesttime, gis usually setto0

24

exploration ~ cont.

exploration function

artificially boost Q-values of state-actions
that were not used frequently
choose an exploration function E(s,a,n)

with E— 0 for n — oo
(n: number of state-action uses)
add this function during Q-value updates

E(s,a,n) =k/n, k € @

Q(s,a) < Q(s,a) + a[r+ y-maxa,(Q(s',a') + E(s',a',ns’a)) -Q(s,a)]

25

the state space

] =

. . ~ B> 2.8, 2.
IS| = ('I+'I+'I+4+4+4)1311 (13- 44) (11-44)4'(

13

>
IS| =151 - 276848* - 180

IS| = 1.5-10'%8 - 5,.9-10%" - 180

»
=
=

]

IS| = 1.593:10"%2

(~3.4:10%" - possible constellations in Go)

|

gl | I
I I

3 e

-

3 enormous state space in realistic scenarios

u
.
E E

ENE
.

|S] = 1593000

the state space and 1ts redundancies

e these states are completely different for
our agent

e the optimal action here is (most likely) the
same

(31
A
b

il

- -||H|1.||H||.

0

i i
EEEEEEEEEEEEE|

]

&N N
L

27

state features

e generate powerful features from states
e use features to generate continuous Q-function
instead of lookup table

Q(s,a) = w.f, (sa) + Wz-fz(s,a) +...+ Wn-fn(s,a)

e during training: tweak weights instead of entries

Wo— W +a- <emr> - f(sa)

does this sound familiar..?

deep Q-learning

Q-function is approximated by neural network
o input: state
o output: vector w/ Q-values for all actions
CNNs allow use of pixel data (game screens,
camera) as input
train with the same samples as in normal
Q-learning (s,ar.s’)
output “label” for training contains:
o r+ymax_Q(s’), foraaction taken

o Q(s), for all other actions b = A
(= no error)

30

sources

e Al Course CS188 (University Berkley)

o http://ai.berkeley.edu/home.html
o https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos

e Harmon & Harmon: Reinforcement Learning: A Tutorial
o http://web.cs.iastate.edu/~honavar/rltut.pdf

e glearning4k (deep Q-learning framework)
o https://qgithub.com/farizrahman4u/glearning4k

31

http://ai.berkeley.edu/home.html
http://ai.berkeley.edu/home.html
https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos
https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos
http://web.cs.iastate.edu/~honavar/rltut.pdf
http://web.cs.iastate.edu/~honavar/rltut.pdf
https://github.com/farizrahman4u/qlearning4k
https://github.com/farizrahman4u/qlearning4k

The End.

Thank you for your attention!

Any Questions?

32

