
Learning to play Pac-Man

Seminar Artificial Intellgience for Games
Prof. Dr. Ullrich Köthe

by
Christian Buschmann

Immatriculation number 3492195
M.Sc. Applied Computer Science

July 2019

Contents

1 Introduction 1

2 Pac-Man 2
2.1 The Game . 2
2.2 Game Playing Agent . 3
2.3 Evolutionary Approach . 4
2.4 Conclusions . 6

3 Ms. Pac-Man 7
3.1 The Game . 7
3.2 Game Playing Agent . 7
3.3 Action Modules . 8

3.3.1 Actions . 8
3.3.2 Conditions . 9

3.4 Policies . 9
3.5 Policy Learning . 10
3.6 Experiments . 11
3.7 Conclusions . 12

4 Conclusion 14

i

List of Figures

2.1 Pac-Man . 3
2.2 Pac-Man Turn Types . 4

3.1 Hand coded policy . 10
3.2 Agent setup . 11
3.3 Agent setup . 13

List of Tables

2.1 Pac-Man hand-coded performance 5

3.1 Ms. Pac-Man Actions . 8
3.2 Ms. Pac-Man Observations . 9
3.3 Ms. Pac-Man Results . 12

ii

Chapter 1

Introduction

Artificial Intelligence has existed in games for a very long time. Games provide
both an excellent testing ground for new technologies in the field of artificial intel-
ligence as well as having a very intuitive connection to humans. Games provide a
way for humans to visualize, understand, and design artificial intelligences based
on knowledge of the game and an easy - and often fun - way to then test these new
technologies. This leads to a much lowered entry barrier into the field, due to which
artificial intelligence was able to be designed and tested very early, in the case of for
example chess even on paper before computers capable of running these artificial
intelligences existed. Over the course of this report I will cover two different pa-
pers describing their approaches of playing the popular arcade game “Pac-Man” as
well as their findings. The first papercovered is titled “Learning to Play Pac-Man:
An Evolutionary, Rule-based Approach” by Gallagher and Ryan [2] and covers
a very simplified version of Pac-Man on which an agent based on intuitive and
human-readable parameters is trained. The second paper, titled “Learning to play
using low-complexity rule-based policies: Illustrations through Ms. Pac-Man” by
Szita and Lõrincz [4] attempts to learn the game of Ms. Pac-Man, a variation of
Pac-Man, by learning action rules based on observations of the entire surrounding
area, greatly increasing the agent’s ability to perceive the current game state.

1

Chapter 2

Pac-Man

In this section, the game of Pac-Man will be introduced, after which the agent
trained by Gallagher and Ryan [2] will be explained as well as evaluated.

2.1 The Game

Pac-Man is an arcade game in which the player control a continuously moving
character called “Pac-Man” through a maze by changing the direction the character
moves. Two sides of the maze contain a “warp exit”, a path that will let the player
wrap around the screen to the other side. This maze is filled with a set number of
dots and power pills - larger dots. In the standard game, fruits also appear from
time to time randomly, which grant a large sum of points when eaten. The goal of
the game is to collect all the dots without dying to any of the four ghosts present
who attempt to chase the player as he’s collecting the dots. Eating a power pill
turns the ghosts blue and makes them run away for a short duration while also
grantint the player the ability to “eat” them, resetting them to a jail in the center
of the map, which they can leave again after a certain delay. These ghosts move
with mostly predetermined behaviours by switching between three modes - Chase,
Patrol, and Retreat - of which only the Retreat mode is randomized.

2

Figure 2.1: A typical game state of Pac-Man. [5]

2.2 Game Playing Agent

In order to play this game, Gallagher and Ryan first define a model of an agent that
has the capability of playing the game upon which the actual algorithms can be
ran. For this, they first simplified the game to only one ghost being preset as well
as there not being any power pills. While this obviously significantly cuts down on
usefulness of the agent, they felt that this would allow a good environment to test
the viability of such an agent before attempting to extend it to the full game. They
modeled the agent as a simple state machine consisting of “Explore” and “Retreat”
states, the transition of which is defined by distance to the ghost. Additionally, they
modeled all possible moves as their eleven distinct turn types.
By setting the agent up as such, its behaviour can now be modeled by a parameter
vector of 85 parameters. The first parameter defined the threshold for the state tran-
sitions. The next seventeen parameters defined the likelihoods for each direction at
each distinct turn type in the “Explore” state, the remaining 76 parameters define
the behaviour in the “Retreat” state. In each turn, the ghost’s position is mapped

3

(a) (b)

Figure 2.2: The state machine and distinct types of turns. [2]

to eight different cases for the eight different quadrants around the player the ghost
can be in - for example “back”, “back-left”, “back-right”, and so on. The ghost
positions are only included in the retreat state, as in the explore state the ghost is
assumed to be far enough away to not have to worry about its position. Further-
more, only in the case of an intersection are all eight directions handled differently,
otherwise only the four general directions are used in order to keep the parameter
vector from exploding in size. This parameter vector can now be used to define the
full behaviour of the agent and can therefore be easily trained.

2.3 Evolutionary Approach

Due to the agent’s behaviour now being entirely defined by this parameter vector,
each parameter of which defines a probability of movement (with the exception of
the distance to the ghost), its movement is very stochastic. To account for this,
training is run 10 times per instance. Gallagher and Ryan do this by applying a

4

genetic algorithm to this vector, as all that is needed to perform this algorithm is a
well-defined fitness function. They define this function as follows:

f =
∑
level

scorelevel
maxscorelevel

+min

{
timelevel

maxtimelevel
, 1

}
Since the maximum score for a level is defined by the number of dots available

to collect, this part of the function can at most reach a value of 1 for collecting all
points. In order to contain the amount of score available by sheer dodging of the
ghost, the minimum of the second term makes sure that if the agent survives longer
than a manually defined “maximum time” for the level, it can still only gain a value
of 1. The maximum fitness for a level is therefore 2.

As baseline comparison, three parameter vectors are hard-coded: Ph1, which
sets every parameter to the same probability, Ph2, which makes it slightly less
likely to turn around and prevents the agent from moving towards the ghost dur-
ing the retreat phase, and Ph3, which makes it even more unlikely to turn around
than Ph2. Out of these, only Ph3 actually ever clears a level fully and can evade
the ghost for extended periods of time, while Ph2 at least gets close to clearing it,
although not often. Both Ph1 and Ph2 display heavy oscillations in their movement
patterns due to them being able to turn around at each turn somewhat likely.

Vector Mean Std. Dev Min. Max

Ph1 0.215 0.080 0.104 0.511

Ph2 0.613 0.316 0.187 1.699

Ph2 1.372 0.522 0.276 2.062

Table 2.1: Performance of the hand-coded parameter sets [2]

In these tests, limitations of the setup of the agent already become visible. For
instance, the agent has no knowledge of the position and count of dots remaining
in the maze and can therefore only “accidentally” collect them. Additionally, the
estimation of the ghost’s position is relatively rough, the agent can become stuck

5

in corners due to the movement leading out of the corner putting the agent closer to
the ghost, even if this movement would be safe. Even still, evolutionary algorithms
were used to try and improve performance.
For this, Population-Based Incremental Learning (PBIL [1]) is used. Each genera-
tion plays 250 games via a population count of 25, each parameter set of which
would run 10 games, as previously mentioned. The End results proved to be
slightly better than Ph1 andPh2, yet still slightly worse than Ph3, while converging
to similar values.

2.4 Conclusions

In these tests, the limitations of a simple rule-based agent become clear very quickly.
Firstly, an issue of parameter bloat exists. For example for straight lines, proba-
bilities for each direction are not needed, as the probability for turning around can
be calculated as 1− the probability to move forwards. Additionally, even more pa-
rameters would be needed to cover every possible case of even this simple agent.
The next issue arising is the fact that the agent is, as previously mentioned, lacking
“intelligence”, due to it having a very simplified view of the board and next to no
knowledge of its actual contents. This leads Gallagher and Ryan to believe that
extending on such a simple rule set is impractical, it therefore being only useful as
a benchmark, not as an actual playing agent.

6

Chapter 3

Ms. Pac-Man

In this section, I will cover Szita and Lõrincz’s paper on playing Ms. Pac-Man, a
variation of Pac-Man, using rule-based policies.

3.1 The Game

Ms. Pac-Man is a variation of the regular game of Pac-Man in which two addi-
tional warp exists are added, fruits are more random, and ghosts don’t follow strict
behaviour patterns via an added randomness factor, in addition to a differing base
behaviour than in the standard game. This leads to the agent having to actually
“learn” how to play more, as it can’t just exploit movement patterns of the differ-
ent ghost types.

3.2 Game Playing Agent

Szita and Lõrincz define their game playing agent by a set of rules it should follow,
which include a tie-breaking mechanism in case multiple rules tell the agent to be-
have differently. These rules should be human-readable to make it easy to include
domain knowledge. They therefore define a concept of an Action Module, which
should contain conditions based on game observations as well as actions to take.
These Action Modules determine the behaviour of the agent. The requirements
needed to define this approach are therefore a list of possible actions, possible con-

7

ditions, a rule on how to create a rule from conditions and actions, as well as a rule
on how to combine these rules into policies.

3.3 Action Modules

Each Action Module is ranked by a priority and can be either switched on or off.
The Agent can use any subset of these modules at once, while the highest ranked
module determines the direction of movement. Equally ranked directions are de-
cided via a tie-breaker by letting the next highest ranked direction decide. If no
tie-breaker is possible, a direction is chosen randomly. These decisions are made
each full grid cell in order to force the agent to “commit” to its movement instead
of turning around or changing direction in the middle of it.

3.3.1 Actions

The actions used in these modules are easy to manually implement, meaning do-
main knowledge can be induced easily. For example, an action called “ToDot” can
be defined to simply tell the agent to move towards the nearest dot. These actions
are not exclusive, as there can for example be dots in multiple directions, while
only some of these directions may fulfill another action. In order to determine a fi-
nal direction, these modules are assigned a priority, which has to be learned during
training.

Name Description

ToDot Go towards the nearest dot.
ToPowerDot Go towards the nearest power dot.
FromPowerDot Go in direction opposite to the nearest power dot.
ToEdGhost Go towards the nearset edible ghost.
ToLowerGhostDensity Go in the direction where the cumulative ghost density decreases fastest.

Table 3.1: Some example actions [4]

8

3.3.2 Conditions

The next part necessary to build the action module is a condition. Here, conditions
are made up of one or more observations, all of which are manually defined. While
these could obviously be improved, they provide a good baseline to build rules out
of. These observations can be for example distances to objects, ghosts, pills, or
others. They default to the maximum value if unknown. The nature of these means
that the agent can easily calculate these in every step in order to maintain perfor-
mance and accuracy.

Name Description

Constant Constant 1 value.
NearestDot Distance of nearest dot.
NearestGhost Distance of nearest Ghost
GhostDensity Cumulative ghost density.

Table 3.2: Some example observations [4]

These observations are then used to build conditions by joining them with logic
operators. Each condition can contain multiple observations. An example condi-
tion could be (NearestDot < 5)and(NearestGhost > 8)and(FromGhost+),
which would evaluate to true if the nearest dot is under 5 tiles away from the agent,
the nearest ghost is over 8 tiles away, and the agent is currently avoiding a ghost.
Joining these conditions with an action then builds a finished rule.

3.4 Policies

The action modules defined in the previous section can then be combined into a
finalized policy determining the entire behaviour of the agent.
In these policies, a rule stays switched on until it is explicitly switched off or re-
placed by a higher priority rule. In the example hand-coded policy 3.1, the first

9

Figure 3.1: An example hand-coded policy. [4]

two rules simply state that if the ghost is too close, the agent should flee until it
reaches a safe distance, using these rules as highest priority. The next two rules
dictate that if there is an edible ghost, chase it (to gain points by eating it). The
next rule determines that the ghost should never turn back if all previous directions
are of the same value, to avoid oscillations, while the remaining rules determine
that a power dot should only be eaten when enough ghosts are around to eat them
all at once in order to gain the increasing points for each subsequent ghost eaten
within the same power dot timespan.

3.5 Policy Learning

In order to automatically learn such a policy, both a set of rules as well as a set of
rule slots (or policy slots) are required. In the paper, each rule slot i is assigned a
fixed priority and has a probability pi to contain a rule. If a slot is picked to contain
a rule, it has a probability of qi,j to contain any given rule j. These probabilities
are then learned by a learning algorithm.
The required ruleset can be defined in two manners: It can either be manually pre-
defined, or it can be automatically generated. This is dojne by randomly picking
two conditions and then selecting their threshold value uniformly from a set for
each condition module, based on the histogram of seen values in prior games. Af-
ter this, an action is randomly picked and given a 50 percent chance to either turn

10

Figure 3.2: The overall setup of the agent. [4]

on or off in this rule.

3.6 Experiments

To create these random rulesets, 100 rules were generated. Additionally, one hand-
coded ruleset of 42 rules was defined. Policies generated from the random ruleset
were given a maximum of 100 ruleslots with evenly distributed priorities, policies
generated from the hand-coded ruleset were given a maximum of 30 rule slots. For
a baseline comparison, a policy of 10 random rules was used in addition to one
fully hand-coded policy.

11

Method Avg. Score (25%/75% percentiles)

CE-randomRB 6382 (6147/6451)
CE-fixedRB 8186 (6682/9369)
SG-randomRB 4135 (3356/5233)
SG-fixedRB 5449 (4843/6090)

CE-randomRB-1Action 5417 (5319/5914)
CE-fixedRB-1Action 5631 (5705/5982)
SG-randomRB-1Action 2267 (1770/2694)
SG-fixedRB-1Action 4415 (3835/5364)

Random policy 676 (140/940)
Hand-coded policy 7547 (6190/9045)
Human play 8064 (5700/10665)

Table 3.3: Results of the experiments [4]. CE denotes Cross-Entropy Method [3],
SD denotes Stochastic Gradient. 1Action are the versions of the algorithm that
were limited to only activating one action module at a time.

3.7 Conclusions

While overall, the random ruleset policies behaved similarly to the fixed ruleset,
yet the random ruleset contains a lot of superfluous rules, as well as superfluous
conditions (such as always-true conditions) due to them being picked randomly.
As you can see, the ability to perform more than one action at once is essential, as
the agent could otherwise for example not walk away from a ghost and also try to
collect dots at the same time, severely limiting its capabilities. Another observa-
tion that can be made is that, at least in this setup of experiments, Cross-Entropy
Method performed a lot better than Stochastic Gradient, although this could be
fixed with a more thorough search over the entire parameter space. One thing of
note, however, is that no agent ever evolved the tactic of “luring ghosts in” before
eating a power pill, a tactic which is very common in human players. Further im-
provements could be made by adding time-related conditions such as time until a
ghost reaches a player, as this could let the agent decide whether it can “cut ahead”

12

(a)

(b)

Figure 3.3: The best policy learned via fixed ruleset (a) and random ruleset (b) [4]

of a ghost in a turn or whether it can reach a ghost to eat it before the power pill
runs out, and other similar tactics.

13

Chapter 4

Conclusion

Overall it can be said that, while rule-based approaches are easy for a human to
read, they lack in functionality as observations have to be defined manually in order
for rules to be able to be built out of them. Automatic generation of features by for
example a neural network looking at the entire playing field would be a lot stronger,
while only having the downside of not being easily humanly readable. Not relying
on domain knowledge being induced and gathered by these agents could free these
agents up to more powerful methods that could more confidently beat human play.

14

Bibliography

[1] Shumeet Baluja. Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive learning.
Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh,
PA, January 1994.

[2] Marcus Gallagher and Anthony J Ryan. Learning to play pac-man: an evolu-
tionary, rule-based approach. The 2003 Congress on Evolutionary Computa-
tion, 2003. CEC ’03., 4:2462–2469 Vol.4, 2003.

[3] Reuven Y. Rubinstein. The cross-entropy method for combinatorial and con-
tinuous optimization. Methodology And Computing In Applied Probability,
1:127–190, 1999.

[4] István Szita and András Lõrincz. Learning to play using low-complexity rule-
based policies: Illustrations through ms. pac-man. Journal of Artificial Intelli-
gence Research, 30:659–684, 2007.

[5] Wikipedia, the free encyclopedia. Pac-man, 2019. [Online; accessed July 10,
2019].

15

