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1 Introduction

In the following we will give an overview to the paper "Metric Learning With
Adaptive Density Discrimination” [ ] by Oren Rippel (MIT, Facebook Al
Research), Manohar Paluri (Facebook AI Research), Piotr Dollar (Facebook Al
Research) and Lubomir Bourdev (UC Berkeley). In their paper they introduced
a new method to improve the important field of metric learning.

1.1 Similarity Learning

In the days of big data came up the problem of managing all the data. In the
area of classification of images and object detection there were made big steps
in the last few year. But one big open field of research is called image retrieval
that should automatically sort a database by their content or a wanted prop-
erty. So one should be able to feed in a picture to the algorithm and it should
return similar pictures. This field of research is also called Metric Learning or
Similarity Learning which tries to find a good metric that is able to connect dis-
tance to semantic similarity. It has also many great benefits as it could enable
zero-shot learning or visualization of high dimensional data. This leads us also
to the field of interpretability because as a human you can assess the quality
of an classifier if it is able to present you similar pictures to a given one. In
this report we are going to discuss a method of distance metric learning (DML)
which should be able to learn by itself important intra- and inter-class similar-
ities.

One simple approach in similarity learning might be to define a metric on RGB-
channels to distinguish classes of images. But this approach has limited appli-
cability for real world problems if one uses only standard metrics as L; or Lj.
Now one could choose manually difficult metrics that could be appropriate for
a problem but also this gets soon impracticable.

Instead of using handcrafted metrics we can learn a appropriate metric for our
problem. This leads us to the field of metric learning which we will introduce
in the following. In general one can give a basic recipe after which one can
generate a metric learning algorithm [ 1.

As a first step one has to choose a parametric distance or similarity function
called Dy;(x, x") which returns a measurement of similarity. This function can
be simple with few parameters but it could also be a complex function as a
neural network. Then one needs to build a dataset on which the learning al-
gorithm can be trained. The dataset should contain data pairs/triplets that
contain information about similarity. There is the set S = {(x;,xj) : x; and x;
are similar }, the set D = {(x;, x;) : x; and x; are dissimilar } and then a set of
triplets R = {(x;, xj, xg) : x; is more similar to x; than to xg }.

The next step is to define an objective function L to be minimized with respect
to the parameters M of the similarity function:

M = argminy[L(M, S, D, R) + Areg(M)] 1)

with a regularization function reg. By minimizing this similarity function we
learn hopefully a metric which is able to find meaningful similarities in images.



2 Motivation

In the following we will discuss several known problems of metric learning.
One problem is the so called "predefined target neighborhood structure"” that is
a phenomena that occurs when one defines a relationship between similarity
and distance. In practice one tries to define similarity in-prior by giving sim-
ilar objects of the dataset the same label. This leads to the fact that one uses
the input space as a notion of similarity. But this is contradictory to the wanted
property of a similarity notion that is independent of the original feature space.
So the authors suggest to use a similarity function that depends on the distance
in representation space. Due to the fact that the representation is changed dur-
ing training we can define an adaptive similarity.

Another common problem occurs when one tries to find out the right objective
function or the so called loss. The widely spread Triplet Loss [ ] that is
used for several metric learning task has some problems that we will discuss
by introducing the triplet loss.

To gain a representation space in which similarity correspondence to distance
with the triplet loss you need to define triplets of the seed example 7, the pos-
itive example r;; and the negative example ;,. The positive example should be
similar and the negative example dissimilar to the seed example. The notion
rm tells us that we are using the representations of the samples in the repre-
sentation space. To train now a representation space one has to minimize the
following objective:

1 M
Ltriplet(e) = M Z {Hrm - Trﬁ”i - H”m - 7’%”; + ‘X}-l— (2
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with {}+ the hinge function and 6 the parameters of the function that maps
the original input data to the representation space. As one can see the objective
penalizing only single triplets at once and so you get no insights to the distribu-
tion of the data. Another bad side effect is the cubic growth of computational
effort with the number of triplets.
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(a) Triplet: before. (b) Triplet: after. (c) Magnet: before. (d) Magnet: after.

Figure 1: Graphical explanation of the intuition behind triplet loss and magnet
loss

3 Magnet Loss

With the mentioned problems in mind we now go further and discuss a possi-
ble solution. The ideal DML approach should contain a similarity notion that
depends adaptively on the current representation instead of using a prede-
fined notion of similarity. Then the algorithm should be able to separate class



distributions even if they overlap locally. This could be done by a loss that is
informed about the distribution. Now we can introduce the magnet loss that
is based on the upper ideas. This loss uses a clustering technique to get in-
formed about the distribution that can so be manipulated. The basic intuition
is showed in 1. It forces cluster attraction and repulsion instead of manipulat-
ing only single triplets.

3.1 Model

In the following we will denote our training set of images/data with the corre-
sponding labels as: D = {x,,y,})_; where y belongs to one of C classes. The
map between the images to the representation space f(0) is in our case a CNN,
precisely a GoogLeNet [ ], whereas 6 describes the learnable parameters
of the CNN. By the notion I C ., IkC we refer to k clusters for each class C which
are returned by the clustering algorithm (in our case K-means):

I, g = argminge e Z Y I = wgll3 ®)

.....

k=1rel}

with p the center of the class c and cluster k in the representation space. Now
we can define our objective called Magnet Loss:
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the variance of the samples to their cluster. By normalizing with the variance
we get our loss function invariant to the characteristic length scale of the prob-
lem and this has the consequence that the desired gap between the clusters a
is in units of the variance. The objective function penalizes samples that have
a bigger distance than a from their own cluster center and penalizes samples
that are close to cluster means from other classes.

3.2 Training

The first step of training is called "neighborhood sampling". In each iteration
the mini batch is constructed under the following way (to sample the entire
neighborhood): First one chooses a cluster I; o« pj() where p; is chosen to
adapt the neighborhood. In our case its proportional to the loss of cluster I.
Next we get the nearest clusters that do not belong to the same class, called
nearest impostor clusters I, ..., Ip1. Then we sample D examples x’lﬂ, .y xlD for
each cluster.

With these samples we compute an approximation of the magnet loss:
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where fl,, = 5 Y50 7" and 0 = 3 Loy Ly |71 — .ﬁm”g are the ap-
proximated mean and deviation of the clusters. By backpropagating through

u(r)l3



the whole CNN we can change the the representation space.

The second important training component is the indexing of the clusters. The
representations are indexed by pausing training and compute a forward pass
of the training inputs and by applying K-means++ to the representations we
get the indices. These are refreshed frequently.

The first component leads to the effect that we change our representation ac-
cording to the distribution which is approximated by the clusters. Another nice
side effect is the reduction of computational effort for the training procedure
by manipulating entire clusters instead of only triplets. Moreover by penaliz-
ing whole clusters of points that are far away from each other we get a more
consistent representation than by only penalizing triplets.

3.3 Evaluation

To evaluate a trained model the we need to assign a label to each example x;,.
To manage that we use a technique called "k-nearest cluster" which computes
the L closest clusters, approximated by piq, ..., . and then chooses the label c},
by the following formula:
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(6)

This is computationally less expensive than the kNN classifier because it scales
only with the number of clusters. In the experiments L = 128 was used as
number of clusters.

4 Experiments

The experiments were made with a GoogLeNet as mapping f(.;0) to the rep-
resentation space. The net was slightly pretrained on ImageNet for 3 epochs.

4.1 Fine-Grained Classification

As a first experiment they tried to solve with their new approach the task of vi-
sual categorization on datasets where the classes differ only slightly from each
other as Stanford Dogs, Oxford-IIIT Pet and Oxford 102 Flowers.

As comparison to Magnet Loss there were also trained a softmax classifier and
triplet loss. To create an equitable comparison the hyperparameter search was
done for all three models. To evaluate triplet loss KNN was used and for Mag-
net Loss the above mentioned kNC was used. The results can be found in 2.
As one can see Magnet Loss is slightly better than softmax and a lot better than
the standard similarity learning approach Triplet Loss.

4.2 Attribute Distriburtion

One major goal to achieve by Magnet Loss was to get an expressive represen-
tation, in which similar objects of different classes are close together and dis-
similar objects of the same class are far away from each other. To check this in



practice the model was trained with the attributes of the neighborhood struc-
ture and the learned representations were checked and compared to those of
Triplet Loss, as can be seen in 6.

To get a quantitative measurement the Object Attributes dataset was used in
are which 25 attribute annotations of 90 classes. These attributes were kept
back during training. During testing the intra- and inter- class variance should
be discovered by Magnet Loss and ideally correspond to the attributes. This
was done by measuring the mean attribute precision as a function of the neigh-
borhood size. This score can be found in 2. It can be seen that Triplet and Soft-
max were outperformed by Magnet.

A qualitative comparison of the representation space was done for Magnet
Loss and Triplet Loss. In 6 are shown two projections of the representation
space, created by t-SNE [ ]. There one can see clearly that Magnet Loss
learns a structured representation that is meaningful. The intra-class clusters
correspond to Attributes and one can see that close inter-class clusters share
same attributes from different classes. However, Triplet Loss creates an repre-
sentation that is uniform and only separates the classes.

4.3 Hierarchy Recovery

In the last experiment the goal was to compare the latent class hierarchy by
giving only a broad supclass. The models were trained with random pairs of
classes of ImageNet Attributes and each pair was given an random Attribute
which leaded to corrupted labels. After that it was tried to recover the original
higher labels.

The results show that Magnet outperformes the two other approaches and is
able to recover intra-class variations.

Approach Error Approach Error Approach Error
Angelova & Long  51.7% 233% Angelova & Zhu 49.2%
Gavves et al 49.9% 19.6% Parkhi et al. 46.0%
Xie etal. 43.0% y 15.4% Angelova & Long ~ 44.6%
Gavves et al 43.0% Sharif Razavian et al 13.2% Murray & Perronnin ~ 43.2%
Qian et al 309% Qian et al 11.6% Qian et al 19.6%
Softmax 26.6% Softmax 11.2% Softmax 11.3%
Triplet 35.8% Triplet 17.0% Triplet 135%
Magnet 24.9% Magnet 8.6% Magnet 10.6%
(a) Stanford Dogs. (b) Oxford 102 Flowers. (c) Oxford-IIIT Pet.

Approach  Error
Softmax 14.1%
Triplet 26.8%
Magnet 15.9%

Approach Error@1 Error@5
Softmax 30.9% 15.0%
Triplet 44.6% 23.4%
Magnet 28.6% 7.8%

Magnet  Triplet  Softmax
(d) ImageNet Attributes. (e) Different metrics on Stanford Dogs. (f) Hierarchy recovery on ImageNet Attributes.

Figure 2: (a)-(d) showing the results on classification tasks on fine-grained cate-
gorization datasets (e) comparison of different evaluation metrics (f) testing the
ability of reconstructing fine-grained labels by training with corrupted pairs of
coarse superclasses

5 Discussion

This paper tried to figure out the modern problems of metric learning and pre-
sented a novel approach with a theoretical explanation and the authors were



able to present an improvement to state-of-the-art techniques. To further op-
timize the method the used clustering technique (K-means++) that is applied
on the representations, could be interchanged by a more natural candidate as
a tree-based algorithm.

6 Appendix
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Figure 3: t-SNE projection of representation space learned by Magnet Loss
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Figure 4: t-SNE projection of representation space learned by Triplet Loss
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