Joint Graph Decomposition & Node Labeling: Problem, Algorithms, Applications

Evgeny Levinkov!, Jonas Uhrig??, Siyu Tang!, Eldar Insafutdinov', Mohamed Omran',
Alexander Kirillov#, Carsten Rother*, Thomas Brox?, Bernt Schiele! and Bjoern Andres’

'Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany

2Computer Vision Lab, University of Freiburg, Germany

3Daimler AG R&D, Sindelfingen, Germany

4Computer Vision Lab, Technische Universitit Dresden, Germany

Abstract

We state a combinatorial optimization problem whose
feasible solutions define both a decomposition and a node
labeling of a given graph. This problem offers a common
mathematical abstraction of seemingly unrelated computer
vision tasks, including instance-separating semantic segmen-
tation, articulated human body pose estimation and multiple
object tracking. Conceptually, the problem we state gener-
alizes the unconstrained integer quadratic program and the
minimum cost lifted multicut problem, both of which are Np-
hard. In order to find feasible solutions efficiently, we define
two local search algorithms that converge monotonously to
a local optimum, offering a feasible solution at any time. To
demonstrate their effectiveness in tackling computer vision
tasks, we apply these algorithms to instances of the prob-
lem that we construct from published data, using published
algorithms. We report state-of-the-art application-specific
accuracy for the three above-mentioned applications.

1. Introduction and Related Work

Graphs are a ubiquitous structure in the field of computer
vision. In this article, we state an optimization problem
whose feasible solutions define both a decomposition and
a node labeling of a given graph (Fig. 1). We define and
implement two local search algorithms for this problem that
converge monotonously to a local optimum. The problem
that we state is abstract enough to specialize to seemingly
unrelated computer vision tasks. This abstraction allows
us to apply the algorithms we define, without changes, to
three distinct computer vision tasks: multiple object tracking,
instance-separating semantic segmentation and articulated
human body pose estimation. We report state-of-the-art
application-specific accuracy for these three applications.

Multiple object tracking [3, 4, 8, 11, 19, 26, 28, 40, 41]
can be seen as a task requiring two classes of decisions: For
every point in an image, we need to decide whether this point
depicts an object or background. For every pair of points that

(a) Decomposition

(b) Node Labeling

Figure 1: This article studies an optimization problem whose
feasible solutions define both a decomposition (a) and a node
labeling (b) of a given graph G = (V, E)). A decomposition
of G is a partition IT of the node set V' such that, for every
V' e 11, the subgraph of GG induced by V" is connected. A
node labeling of Gisamap f : V — L from its node set V'
to a finite, non-empty set L of labels.

depict objects, we need to decide if the object is the same.
Tang et al. [35, 36] abstract this task as a graph decomposi-
tion and node labeling problem w.r.t. a finite graph whose
nodes are bounding boxes, and w.r.t. O1-labels indicating
that a bounding box depicts an object. We generalize their
problem to more labels and more complex objective func-
tions. By applying this generalization to the data of Tang
et al. [36], we obtain more accurate tracks for the multiple
object tracking benchmark [25] than any published work.

Instance-separating semantic segmentation 9, 10, 22, 31,
32, 33,42, 43] can be seen as a task requiring two classes of
decisions: To every point in an image, we need to assign a
label that identifies a class of objects (e.g., human, car, bicy-
cle). For every pair of points of the same class, we need to
decide if the object is the same. Kroeger et al. [21] state this
problem as a multi-terminal cut problem w.r.t. a (super)pixel
adjacency graph of the image. We generalize their prob-
lem to larger feasible sets. While Kroeger et al. [21] show
qualitative results, we apply our algorithms to instances of
the problem from the KITTI [13] and Cityscapes [9] bench-
marks, obtaining more accurate results for Cityscapes than
any published work.



Articulated human body pose estimation can be seen as a
task requiring two classes of decisions: For every point in
an image, we need to decide whether it depicts a part of the
human body. For every pair of points that depict body parts,
we need to decide if they belong to the same body. Pishchulin
et al. [29] and Insafutdinov et al. [15] abstract this problem
as a graph decomposition and node labeling problem w.r.t. a
finite graph whose nodes are putative detections of body
parts and w.r.t. labels that idenfity body part classes (head,
wrist, etc.) and background. We generalize their problem to
more complex objective functions. By reducing the running
time for this task compared to their branch-and-cut algorithm
(that computes also lower bounds), we can tackle instances
of the problem with more nodes. This allows us to obtain
more accurate pose estimates for the MPII Human Pose
Dataset [2] than any published work.

Formally, the problem we propose and refer to as the min-
imum cost node labeling lifted multicut problem, NL-LMP,
generalizes the NP-hard unconstrained integer quadratic pro-
gram, UIQP, that has been studied intensively in the context
of graphical models [16], and also generalizes the NP-hard
minimum cost lifted multicut problem, LMP [18]. Unlike in
pure node labeling problems such as the UIQP, neighboring
nodes with the same label can be assigned to distinct com-
ponents, and neighboring nodes with distinct labels can be
assigned to the same component. Unlike in pure decomposi-
tion problems such as the LMP, the cost of assigning nodes
to the same component or distinct components can depend
on node labels. Also unlike in the LMP, constraining nodes
with the same label to the same component constrains the
feasible decompositions to be k-colorable, with £ € N the
number of labels. For & = 2 in particular, this constrained
NL-LMP specializes to the well-known MAX-CUT problem.

In order to find feasible solutions of the NL-LMP effi-
ciently, we define and implement two local search algorithms
that converge monotonously to a local optimum, offering a
feasible solution at any time. These algorithms do not com-
pute lower bounds. They output feasible solutions without
approximation certificates. Hence, they belong to the class
of primal feasible heuristics for the NL-LMP. The first algo-
rithm we define and refer to as alternating Kernighan-Lin
search with joins and node relabeling, KLj/t, is a general-
ization of the algorithm KLj of Keuper et al. [18] and of
Iterated Conditional Modes (ICM). The second algorithm
we define and refer to as joint Kernighan-Lin search with
joins and node relabeling, KLj«r, is a generalization of KL;
that transforms a decomposition and a node labeling jointly,
in a novel manner. Both algorithms build on seminal work
of Kernighan and Lin [17].

2. Problem

In this section, we define the minimum cost node labeling
lifted multicut problem, NL-LMP. Sections 2.1-2.3 offer

an intuition for its parameters, feasible solutions and cost
function. Section 2.4 offers a concise and rigorous definition.
Section 2.5 discusses special cases.

2.1. Parameters

Any instance of the NL-LMP is defined with respect to the
following parameters:

e A connected graph G = (V, E') whose decompositions
we care about, e.g., the pixel grid graph of an image.

e A graph G’ = (V, E’) with E C E’. This graph can
contain as edges pairs of nodes that are not neighbors
in G. It defines the structure of the cost function.

e A digraph H = (V, A) that fixes an arbitrary orienta-
tion of the edges E’. That is, for every edge {v,w} of
G’, the graph H contains either the edge (v, w) or the
edge (w,v). Formally, H is such that for all v, w € V:

{v,w} € B' & (v,w) € AV (w,v) €A (1)
(v,w) ¢ AV (w,v) ¢ A )

o A finite, non-empty set L called the set of (node) labels

e The following functions whose values are called costs:

—c:V x L — R. For any node v € V and any
label I € L, the cost ¢,; is payed iff v is labeled I.

- ¢~ : Ax L?> - R. For any edge vw € A and
any labels [l € L?, the cost ¢, ;;, is payed iff v
is labeled [ and w is labeled !’ and v and w are in
the same component.

- ¢* : Ax L?> - R. For any edge vw € A and
any labels [I’ € L?, the cost Czéw,ll/ is payed iff v
is labeled [ and w is labeled I’ and v and w are in
distinct components.

2.2. Feasible Set

Every feasible solution of the NL-
LMP is a pair (z,y) of Ol-vectors Voo w
e {0,1}V*E and y € {0,1}F". o——o0
More specifically, x is constrained 1,1 e ® Tyl
such that, for every node v € V, Tv2 L2
there is precisely one label [ € L  Tv3 ® vy, ©Tw3
with z,; = 1. y is constrained so
as to well-define a decomposition of G by the set {e €
E|ye = 1} of those edges that straddle distinct compo-
nents. Formally, (x,y) € Xy X Yo with Xy 1, and Yoo
defined below.

e Xy C {0,1}V*L, the set of all characteristic func-
tions of maps from V to L, i.e., the set of all x €
{0,1}V*E such that

YveV:

val =1. (3)

leL



Foranyz € X,anyv € Vandany! € L withz,; =1,
we say that node v is labeled | by .

e Yoo CHO, 1}E/, the set of all characteristic functions
of multicuts of G’ lifted from G [1]. For any y € Yg¢
and any e = {v,w} € E’, y. = 1 indicates that v
and w are in distinct components of the decomposition
of G defined by the multicut {¢’ € F'|y.» = 1} of G.
Formally, Yg ¢ is the set of all y € {0, 1} that satisfy
the following system of linear inequalities:

VC € cycles(G) Ve e C : y. < Z Yoo (4)
e’eC\{e}
V{v,w} € E"\ EVP € vw-paths(G) :
Yoy S D Ve (5)

ecP
V{v,w} € E"\ EVC € vw-cuts(G) :

1= Yoy < DO (1—ve) - (6)
ecC
2.3. Cost Function

For every z € {0,1}V*L and every y € {0, 1}4%L°,

cost o(x,y) € R is defined by the form

(p(xa y) = Z Z Cyl Tyl

veV leL

+ Z Z C:wﬂf Tyl Tawl’ (1 - y{v,w})

vweAIll’'€L?

+ Z Z cZ)éw,ll’ Tyl Twl’ Y{v,w} - 7

vweAIll’'€L?

2.4. Definition

a

We define the NL-LMP rigorously and concisely in the
form of a linearly constrained binary cubic program.

Definition 1 For any connected graph G = (V, E), any
graph G’ = (V,E’) with E C F’, any orientation H =
(V, A) of G’, any finite, non-empty set L, any function ¢ :
V x L — R and any functions ¢™,c¢* : A x L? — R, the
instance of the minimum cost node-labeling lifted multicut
problem (NL-LMP) with respect to (G, G, H, L, ¢, ™, c*)
has the form

min z,Y) . 8
(I,y)EXVLXYGG/ SO( y) ( )

2.5. Special Cases

Below, we show that the NL-LMP generalizes the UIQP.
This connects the NL-LMP to work on graphical models with
second-order functions and finitely many labels. In addition,
we show that NL-LMP generalizes the LMP, connecting the
NL-LMP to recent work on lifted multicuts. Finally, we
show that the NL-LMP is general enough to express subgraph
selection, connectedness and disconnectedness constraints.

2.5.1 Unconstrained Integer Quadratic Program

Definition 2 For any graph G’ = (V, E’), any orientation
H = (V,A) of G', any finite, non-empty set L, any ¢ :
V xL—Randanyc : A x L? — R, the instance of the
UIQP with respect to (G', H, L, ¢, ¢') has the form

. /
min E E Cyl Tyl + E E Cow, 11’ Tol Twl’ -
zeXvyr

veEV IEL vweAIll'eL?
)

Lemma 1 For any graph G' = (V,E'), any instance
(G',H, L,c,c) of the UIQP and any x € Xy, x is a solu-
tion of this instance of the UIQP iff (z, 1 g/) is a solution of
the instance (G',G',H, L, c,c, ) of the NL-LMP.

PROOF Without loss of generality, we can assume that G’
is connected. (Otherwise, we add edges between nodes
v,w € V as necessary and set c,,,, ;;, = 0 forany [,I' € L.)

For any « € X1, the pair (z, 15/) is a feasible solution
of the instance of the NL-LMP because the map 1z : E/ —
{0,1} : e+ lissuchthat 1p € Y.

Moreover, (z, 1 5) is a solution of the instance of the NL-
LMP iff x is a solution of the instance of the UIQP because,
for ¢* = ¢, the form (7) of the cost function of the NL-LMP
specializes to the form (9) of the cost function of the UIQP.

2.5.2 Minimum Cost Lifted Multicut Problem

Definition 3 [1] For any connected graph G = (V, E), any
graph G’ = (V, E’) with E C E’ and any ¢’ : E/ — R, the
instance of the minimum cost lifted multicut problem (LMP)
with respect to (G, G’, ¢’) has the form

min CLye - (10)

€Y,
Yyerggr ecE’

Lemma 2 Let (G,G’, ') be any instance of the LMP. Let
(G,G' H, L,c,c™,c”) be the instance of the NL-LMP with
the same graphs and such that
L={1} ¢=0

Y(v,w) € A:

¢~ =0 (11)
cfw,ll = C/{v,w} . (12)

Then, for any y € {0, 1}E', y is a solution of the instance
of the LMP iff (1y « 1, y) is a solution of the instance of the
NL-LMP.

PROOF Trivially, y is a feasible solution of the instance of
the LMP iff (1« 1., y) is a feasible solution of the instance of
the NL-LMP. More specifically, y is a solution of the instance
of the LMP iff (1y « 1, y) is a solution of the instance of the
NL-LMP because, for any x € Xy 1, the cost function (7)
of the NL-LMP assumes the special form below which is
identical with the form in (10).

3),(11) (12)
90(557?/) = Z cfw}lly{v,w} = Z cleye . (13)
vweA ecE’



2.5.3 Subgraph Selection

Applications such as [15, 29, 35, 36] require us to not only
decompose a graph and label its nodes but to also select a
subgraph. The NL-LMP is general enough to model subgraph
selection. To achieve this, one proceeds in two steps: Firstly,
one introduces a special label € € L to indicate that a node is
not an element of the subgraph. We call these nodes inactive.
All other nodes are called active. Secondly, one chooses a
large enough ¢* € N, a ¢’ € Ny and ¢, ¢ such that

Vow € AVI € L\ {e}: e =Copa=c" (14
CZ)éw,le - C'Zéw,el =0 (15)
Vowe A: .. =c . (16)

VW, €€

By (14), inactive nodes are not joined with active nodes
in the same component. By (15), cutting an inactive node
from an active node has zero cost. By (16), joining inactive
nodes has cost cf, possibly zero. Choosing ¢! large enough
implements an additional constraint proposed in [35] that
inactive nodes are necessarily isolated. It is by this constraint
and by a two-elementary label set that [35] is a specialization
of the NL-LMP.

2.5.4 (Dis-)Connectedness Constraints

Some applications require us to constrain certain nodes to be
in distinct components. One example is instance-separating
semantic segmentation where nodes with distinct labels nec-
essarily belong to distinct segments [21]. Other applications
require us to constrain certain nodes to be in the same com-
ponent. One example is articulated human body pose esti-
mation for a single human in the optimization framework of
[29] where every pair of active nodes necessarily belongs to
the same human. Another example is connected foreground
segmentation [27, 30, 34, 38] in which every pair of distinct
foreground pixels necessarily belongs to the same segment.

The NL-LMP is general enough to model a combination of
connectedness constraints and disconnectedness constraints
by sufficiently large costs: In order to constrain distinct
nodes v,w € V with labels [,I’ € L to be in the same
component, one introduces an edge (v, w) € A, a large
enough c* € N and costs ¢ such that ¢l ,,, = ¢l = c*.
In order to constrain distinct nodes v, w € V with labels
[,I' € L to be in distinct components, one introduces an
edge (v, w) € A, alarge enough ¢* € N and costs ¢™ such
that ¢ )y = ¢

~ ok
vw,l'l T c.

3. Algorithms

In this section, we define two local search algorithms that
compute feasible solutions of the NL-LMP efficiently. Both
algorithms attempt to improve a current feasible solution
recursively by transformations. One class of transformations

alters the node labeling of the graph by replacing a single
node label. A second class of transformations alters the de-
composition of the graph by moving a single node from one
component to another. A third class of transformations alters
the decomposition of the graph by joining two components.

As proposed by Kernighan and Lin [17] and generalized
to the LMP by Keuper et al. [18], a local search is carried out
not over the set of individual transformations of the current
feasible solution but over a set of sequences of transforma-
tions. Complementary to this idea, we define and implement
two schemes of combining transformations of the decompo-
sition of the graph with transformations of the node labeling
of the graph. This leads us to define two local search algo-
rithms for the NL-LMP.

3.1. Encoding Feasible Solutions

To encode feasible solutions (z,y) € Xy x Ygqr of the
NL-LMP, we consider two maps: A node labeling A : V — L
that defines the * € Xy, such that

YWweVVieL: ay=1%& \v)=1, (17
and a so-called component labeling 1 : V' — N that defines
the y* € {0,1}¥ such that

Vo,wh € B yy, =0 & p(v) = p(w) . (18)

3.2. Transforming Feasible Solutions

To improve feasible solutions of the NL-LMP recursively,
we consider three transformations of the encodings A and y:

For any node v € V and any label [ € L, the transforma-
tion T,; : LY — LY : A = )\ changes the label of the node
vtol,i.e.

l ifw=v

N(w) = { ) (19)

YweV: .
A(w) otherwise

For any node v € V and any component index m € N,
the transformation 77, : NV — NV : y + u’ changes the
component index of the node v to m, i.e.

m ifw=wv

w(w) == { .0

Yw eV : .
u(w) otherwise
For any component indices m, m’ € N, the transforma-
tionT7,,., : NV — NV : yy — 1/ puts all nodes currently in
the component indexed by m into the component indexed by
m/, i.e.
/

m if u(w) =m

VweV: p(w):= { (1)

w(w) otherwise

Not every component labeling p is such that y* € Yge-.
In fact, y* is feasible if and only if, for every m € u(V),



the node set u~!(m) is connected in G. For efficiency,
we allow for transformations (20) whose output p’ violates
this condition, as proposed in [18]. This happens when an
articulation node of a component is moved to a different
component. In order to repair any p’ for which y* is infeasi-
ble, we consider amap R : NV — NV : i/ s 1 such that,
for any 1 : V' — N and any distinct v,w € V, we have
p(v) = p(w) if and only if the exists a vw-path in G along
which all nodes have the label i/ (v). We implement R as
connected component labeling by breadth-first-search.

3.3. Searching Feasible Solutions

We now define two local search algorithms that attempt to
improve an initial feasible solution recursively, by applying
the transformation defined above. Initial feasible solutions
are given, for instance, by the finest decomposition of the
graph G that puts every node in a distinct component, or by
the coarsest decomposition of the graph G that puts every
node in the same component, each together with any node
labeling. We find an initial feasible solution for our local
search algorithm by first fixing an optimal label for every
node independently and by then solving the resulting LMP,
i.e., (8) for the fixed labels z € Xy 1, by means of greedy
agglomerative edge contraction [18].

KLj/r Algorithm. The first local search algorithm we
define, alternating Kernighan-Lin search with joins and node
relabeling, KLj/r, alternates between transformations of the
node labeling and transformations of the decomposition. For
a fixed decomposition, the labeling is transformed by Func. 1
which greedily updates labels of nodes independently. For a
fixed labeling, the decomposition is transformed by Func. 2,
without those parts of the function that are written in green,
i.e., precisely the algorithm KLj of [18]. (All symbols that
appear in the pseudo-code are defined above, except the
iteration counter ¢, cost differences §, A, and 01-vectors «
used for bookkeeping, to avoid redundant operations.)

KLj*r Algorithm. The second local search algorithm
we define, joint Kernighan-Lin search with joins and node
relabeling, KLjxr, transforms the decomposition and the
node labeling jointly, by combining the transformations (19)—
(21) in a novel manner. It is given by Func. 2, with those
parts of the function that are written in green.

Like the alternating algorithm KLj/r, the joint algorithm
KLj*r updates the labeling for a fixed decomposition (calls
of Func. | from Func. 2). Unlike the alternating algorithm
KLj/r, the joint algorithm KLj+r updates the decomposition
and the labeling also jointly. This happens in Func. 3 that is
called from KLjxr, with the part that is written in green.

Func. 3 looks at two components V := pu~!(m) and
W := p~1("m) of the current decomposition. It attempts to
improve the decomposition as well as the labeling by moving
anode from V to W or from W to V' and by simultaneously
changing its label. As proposed by Kernighan and Lin [17],

Function 1: (A, ") =update-labeling( 1, A)

M:i=A A:=0 t:=0
repeat
choose (0,1) € argmin (7o) yre) — (e, yie)
(v,l)EV XL
§ i= p(aTorA) yhe) — p(ate, yh)
if 0 <0
)\t+1 = Tﬁ[(/\t)
A=A+6
t:=t+1
else

return (A, ;)

Func. 3 does not make such transformations greedily but first
constructs a sequence of such transformations greedily and
then executes the first & with k chosen so as to decrease the
objective value maximally. KLj/r constructs a sequence of
transformations analogously, but the node labeling remains
fixed throughout every transformation of the decomposition.
Thus, KLj*r is a local search algorithm whose local neigh-
borhood is strictly larger than that of KLj/r.

Our C++ implementation computes cost differences in-
crementally and solves the optimization problem over trans-

Function 2: (A’ p/, \') = update-lifted-multicut(p, \)

Mo ‘= t:=0
(6, Ao) := update-labeling (g, A)
let ap : N — {0, 1} such that ap(N) = 1
repeat
A:=0 M1 = Mt /\/+1 =N
let oy : N — {0,1} such that a;11(N) =0
for each {m,m'} € (”(QV))
if ag(m) =0Aa(m')=0
continue
(0, 41, A1) :=update-2-cut( g1, Apy1,m, m')
if6<0
ar1(m) =1 app(m):=1 A=A+
Jor each m € (V)
if ag(m) =0
continue
m’ =14 max u(V) (new component)
(0, prt41, Ae1) :=update-2-cut(fsg 41, A\pr1,m, m’)
if <0
ar1(m) =1 appi(m’):=1 A=A+
(0, A\t+1) := update-labeling(ft¢ 11, Ae+1)
A:=A+)
if y*+1 ¢ Yoo
Ht+1 = R(Mt+1)
A = ga(xk’“,y“"“) _
t:=t+1
while A < 0

. (repair heuristic)
(p(l‘ o, yuo)



formations by means of a priority queue, as described in
detail in Appendix A. The time and space complexities are
identical to those of KLj and are established in [18], as trans-
formations that take linear time in the number of labels take
constant time in the size of the graph.

Function 3: (A’, p/, \') = update-2-cut(u, A\, m, m’)

o = Ao = A t:=0
if p=t(m') =0

Vo= p~t(m)
else

Vo:={veptim)|3weputim): {v,w} € E}
if p=Hm)=10

Wo = p~t(m’)
else

Wo:i={we pt(m')|Iveputim): {v,w} € E}
let o : N — {0, 1} such that o(N) =1
while V, UW,; # 0

§:=0 =00

fVvi#0

choose (0,1) € argmin (1) yTom (1)) —
(v,)eEVEx L (p(x/\fvyll/t)

)= (p(xl"ﬁf<>\l,)’ nycm’(“t)) _ 4,0(-73)\",3]“”)
fwe#0 /
choose (1,1) € argmin @(z7w) yTwm ko)) —
(w,l)EWy x L (p(.r)\f7y#t)
& = gp(xT“ﬂl‘()‘!)?yT{bm(Ht)) _ (p(x)\l,7yltt)
ifo<¢
pet1 =T}, (1) (move node ¥ to component m')

Aeg1 = Tip(Ne) (label node % with label \)

a(?) =0 (mark ¢ as inactive)
else

pit1 :=T4, () (move node w to component 1)

Aev1 = Tpi( M) (label node 1 with label \)

afw) =0 (mark 0 as inactive)

Vi1 :={v eV ]|mg1(v) =mAalv)=1A
Ho,wt € Ev pepa(w) =m'}
Wit i={w € V| ppp1(w) =m' Aa(w) = 1A
Ho,w} € E: pyga(v) = m}

ti=t+1
t := min argmin @(z,y") — (a0, yHo)
t'€{0,...,t}

Ap = (i, yt) — p(at, yto)
Ay = (a0, yTmm 1) — p(z20, yho)
l_'fmin{Al,Ag} Z 0
return (0, j1, \)
elseif A1 < Ay
return (Aq, piz, \;)
else
return (Ao, Trym (1), \)

(join mm and m’)

4. Applications

We show applications of the proposed problem and algo-
rithms to three distinct computer vision tasks: articulated
human body pose estimation, multiple object tracking, and
instance-separating semantic segmentation. For each task,
we set up instances of the NL-LMP from published data,
using published algorithms.

4.1. Articulated Human Body Pose Estimation

We turn toward applications of the NL-LMP and the algo-
rithms KLj/r and KLj*r to the task of estimating the articu-
lated poses of all humans visible in an image. Pishchulin et
al. [29] and Insafutdinov et al. [15] approach this problem
via a graph decomposition and node labeling problem that
we identify as a special case of the NL-LMP with ¢* = 0
and with subgraph selection (Section 2.5.3). We relate their
notation to ours in Appendix B. Nodes in their graph are
putative detections of body parts. Labels define body part
classes (head, wrist, etc.). In our notation, x,; = 1 indicates
that the putative detection v is a body part of class [, and
Yuw = 1 indicates that the body parts v and w belong to
distinct humans. The test set of [15] consists of 1758 such
instances of the NL-LMP.

To tackle these instances, Insafutdinov et al. define and
implement a branch-and-cut algorithm in the integer linear
programming software framework Gurobi. We refer to their
published C++ implementation as B&C.

Cost and time. In Fig. 2, we compare the convergence of
B&C (feasible solutions and lower bounds) with the conver-
gence of our algorithms, KLj/r and KLj+r (feasible solutions
only). Shown in this figure is the average objective value
over the test set w.r.t. the absolute running time. Thanks to
the lower bounds obtained by B&C, it can be seen from this
figure that KLj/r and KL+t arrive at near optimal feasible
solutions after 10~ seconds, five orders of magnitude faster
than B&C. This result shows that primal feasible heuristics
for the NL-LMP, such as KLj/r and KLjxr, are practically
useful in the context of this application.

Application-specific accuracy. In Tab. 1, we compare
feasible solutions output by KLj/r and KLjx*r after conver-
gence with those obtained by B&C after at most three hours.
It can be seen from this table that the feasible solutions output
by KLj/r and KLj*r have lower cost and higher application-
specific accuracy (Acc) on average. KLjxr yields a lower
average cost than KLj/r with slightly higher running time.
The fact that lower cost does not mean higher application-
specific accuracy is explained by the application-specific
accuracy measure that does not penalize false positives.

The shorter absolute running time of KLj/r and KLjx*r
allows us to increase the number of nodes from 150, as in
[15], to 420. It can be seen from the last two rows of Tab. 1
that this increases the application-specific accuracy by 4%.
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Figure 2: Convergence of B&C, KLj/r and KLj«r in an appli-
cation to the task of articulated human body pose estimation.

V] Alg. AP Mean cost Mean time [s] Median time [s]

[15] 655 -3013.30 9519.26 308.28
% KLjr 665 -3352.74 0.033 0.031
KLj*r 66.6 -3419.07 0.119 0.100
S KLir 70.6 -6184.36 0.098 0.053
¥ KLjxr 70.6 -6608.53 0.534 0.254

Table 1: Comparison of B&C [15], KLj/r and KLj*r in an
application to the task of human body pose estimation.

4.2. Instance-Separating Semantic Segmentation

We turn toward applications of the NL-LMP and the al-
gorithms KLj/r and KLjx*r to the task of instance-separating
semantic image segmentation. We state this problem here
as an NL-LMP whose nodes correspond to pixels in a given
image, and whose labels define classes of objects (human,
car, bicycle, etc.). In our notation, x,; = 1 indicates that the
pixel v shows an object of class [, and y,,, = 1 indicates
that the pixels v and w belong to distinct objects.

Specifically, we apply the algorithms KLj/r and KLj*r
to instances of the NL-LMP for the task of instance-
separating semantic segmentation posed by the KITTI [13]
and Cityscapes [9] benchmarks. For KITTI, we construct
instances of the NL-LMP from data published by Uhrig et
al. [37] as described in detail in Appendix C. For Cityscapes,
we construct instances of the NL-LMP as follows. For costs
¢”, we again use data of Uhrig et al. [37]. For costs ¢, we
use a ResNet-50 [14] network with dilated convolutions [7].
We train the network in a fully convolutional manner with
image crops (768 px-512 px) subjected to minimal data aug-
mentation (horizontal flips). More details are in Appendix C.
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Figure 3: Convergence of KLj/r and KLj*r in an application
to the task of instance-separating semantic segmentation.

Data Algorithm AP AP?Y%
KITTI validation [13] KLj/r 50.5 82.9
KLj*r 50.3 82.4
KITTI test [13] [37] 41.6 69.1
KLj*r 436 714
Cityscapes validation [9] KLj/r 11.3 26.8
KLj*r 114 26.1
Cityscapes test [9] MCG+R-CNN [9] 4.6 12.9
[37] 8.9 21.1
KLj*r 9.8 232

Table 2: Comparison of KLj/r and KLj+r in an application
to the task of instance-separating semantic segmentation.

Cost and time. In Fig. 3, we compare the convergence
of KLj/r and KLj+r. Shown in this figure w.r.t. the absolute
running time are the average objective values over the KITTI
and Cityscapes validation sets, respectively. It can be seen
from this figure that KLj/r converges faster than KLj*r. Both
algorithms are practical for this application but not efficient
enough for video processing in real-time.

Application-specific accuracy. In Tab. 2, we compare
feasible solutions output by KLj/r and KLjx*r after conver-
gence with the output of the algorithm of Uhrig et al [37].
It can be seen from this table that the application of KLj/r
and KLj*r improves the application-specific average preci-
sion, AP and AP°*”. The AP of feasible solutions output by
KLj#r for the Cityscapes test set is higher than that of any
published algorithm. A higher AP is reported by Kirillov et
al. [20], who use the model and algorithms proposed in this
paper with improved pairwise ¢* and unary c costs.



Method MOTA 1T MOTP1T FAF| MT 1 ML| FPJ| FN| IDSw] Fragl Hz1T Detector
[12] 41.0 74.8 1.3 11.6% 513% 7896 99224 430 963 1.1 Public
[19] 429 76.6 1.0 13.6% 469% 5668 97919 499 659 0.8 Public
[8] 46.4 76.6 1.6 183% 41.4% 9753 87565 359 504 2.6 Public
[36] 46.3 75.7 1.1 155% 39.7% 6373 90914 657 1114 0.8 Public
KLj/r 47.6 78.5 1.0 17.0% 40.4% 5844 89093 629 768 8.3 Public
KLj*r 47.6 78.5 098 17.0% 40.4% 5783 89160 627 761 0.7 Public

Table 3: Comparison of the algorithms KLj/r and KLj*r in an application to the task of multiple object tracking.
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Figure 4: Convergence of the algorithms KLj/r and KLj*r in
an application to the task of multiple object tracking.

4.3. Multiple Object Tracking

We turn toward applications of the NL-LMP and the al-
gorithms KLj/r and KLj*r to the task of multiple object
tracking. Tang et al. [35] approach this problem via a graph
decomposition and node labeling problem that we identify
as a special case of the NL-LMP with two labels and sub-
graph selection (Sec. 2.5.3). We relate their notation to ours
rigorously in Appendix D. Nodes in their graph are putative
detections of persons. In our notation, x,; = 1 indicates that
the putative detection v is active, and y,,,, = 1 indicates that
the putative detections v and w are of distinct persons. For
the test set of the multiple object tracking benchmark [25],
Tang et al. construct seven such instances of the NL-LMP.

To tackle these large instances, in [36] Tang et al. solve
the subgraph suppression problem first and independently,
by thresholding on the detections scores, and then solve the
minimum cost multicut problem for the remaining subgraph
by means of the algorithm KLj of [18], without re-iterating.
Here, we apply to the joint NL-LMP the algorithms KLj/r
and KLjxr and compare their output to that of [36] and of
other top-performing algorithms [8, 12, 19]. We use the
same data as in [36], therefore the performance gain is due
to our algorithms that solve the full problem [35].

Cost and time. The convergence of the algorithms KLj/r
and KLjx*r is shown in Fig. 4. It can be seen from this figure
that KLj/r converges faster than KLjxr.

Application-specific accuracy. We compare the feasible
solutions output by KLj/r and KLjx*r to the state-of-the-art

for the benchmark [25]. To this end, we report in Tab. 3 the
standard CLEAR MOT metric, including: multiple object
tracking accuracy (MOTA), multiple object tracking preci-
sion (MOTP), mostly tracked object (MT), mostly lost (ML)
and tracking fragmentation (FM). MOTA combines identity
switches (ID Sw), false positives (FP) and false negatives
(FN) and is most widely used. Our feasible solutions are
published also at the benchmark website unser the names
NLLMP (KLj/r) and NLLMPj (KLj«r). It is can be seen
from Tab. 3 that the feasible solutions obtained by KLj/r and
KLj*r rank first in MOTA and MOTP. Compared to [36],
KLj/r and KLj*r reduce the number of false positives and
false negatives. The average inverse running time per frame
of a video sequence (column “Hz” in the table) is better for
KLj/r by a margin than for any other algorithm. Overall,
these results show the practicality of the NL-LMP in conjunc-
tion with the local search algorithms KLj/r and KLj*r for
applications in multiple object tracking.

5. Conclusion

We have stated the minimum cost node labeling lifted
multicut problem, NL-LMP, an NP-hard combinatorial op-
timization problem whose feasible solutions define both a
decomposition and a node labeling of a given graph. We
have defined and implemented two local search algorithms,
KLj/r and KLj+r, that converge monotonously to a local op-
timum, offering a feasible solution at any time. We have
shown applications of these algorithms to the tasks of articu-
lated human body pose estimation, multiple object tracking
and instance-separating semantic segmentation, obtaining
state-of-the-art application-specific accuracy. We conclude
that the NL-LMP is a useful mathematical abstraction in the
field of computer vision that allows researchers to apply
the same optimization algorithm to diverse computer vision
tasks. To foster collaboration between the fields of computer
vision and combinatorial optimization, we make our code
publicly available at https://github.com/bjoern-andres/graph
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A. Implementation Details

Func. 1 and 3 choose local transformations that decrease
the cost optimally. Our implementation computes cost differ-
ences incrementally, as proposed by Kernighan and Lin [17].
The exact computations are described below.

Transforming the Labeling. Func. 1 repeatedly chooses
anode % and a label [ such that labeling 0 with [ decreases
the cost maximally. I.e., Func. 1 repeatedly solves the opti-
mization problem

(8,1) € argmin (a0 yre) — e y) . (22)
(v,l)eV XL
While (¢, y#*) is constant, it is more efficient to mini-

mize the difference @(z7vt (M) ykt) — (x>t y#t) than to
minimize @(z7v*(A) yit), as the difference can be com-
puted locally, considering only the neighbors w of v in G':

(et i) — oz, )
= Cyl = Cyxi(v)
+ Z 1 ~ Y{v,w} ( Cow,Ixg(w) — va,)\t(v)/\t(w))
vwEA
+ ) (1= o (C;v,)\t(w)l - C;;v,)\t(w)kt(v)>
wVEA
" "
+ Z Y{v,w} <va,l>\t(w) - Cmu,)\t(v))\t(w))
vwEA
# #
+ Z Y{v,w} (va,kt(w)l o cwv,kt(w)/\t(v))
wvEA
Y 23)

Initially, i.e., for t = 0, we compute A ,; for every node v
and every label [. In subsequent iterations, i.e., fort € N
and the minimizer (9, Z) of (22) chosen in this iteration, we
update cost differences for all neighbors w of ¢ in G’ and
all labels [ € L. The update rule is written below for an
edge (w,0) € A. The update for an edge in the opposite
direction is analogous. Below, (24) subtracts the costs due
to v being labeled A;(¥) (which is possibly outdated), while
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(25) adds the costs due to © having obtained a new and
possibly different label /.

At-i-l,wl :At,wl

- (1- y{w,ﬁ}) (C;@,l,\t(@) - CZ@,&@;)&(@))

# #
~ Y{w,0} (Cwﬁ,lkt(f)) - Cwﬁ,At(w))\t(ﬁ)> (24)
+(1- y{wﬁf)}) (C;mi - C;@,,\t(w)i>

. ro P
T Y{w,s} (Cwﬁ,l[ cwa,,\t(w)i)

We solve (22) by means of a priority queue in time
complexity O(|V|log |[V|+ |V|(|L| +1og|V|) deg G') with
deg G’ the node degree of G’. For sparse graphs and constant
number |L| of labels, this is O(|V|log |V]).

Transformation of Labeling and Decomposition. The
algorithm KLj of [18] for the minimum cost lifted multi-
cut problem generalizes the Kernighan-Lin-Algorithm [17]
for the minimum cost multicut problem. The algorithms
KLj/r and KLj#*r we define further generalize KL to the NL-
LMP. The critical part is Func. 3 that solves the optimization
problem

(25)

o(z, y")
(26)

(@7[) € argmax (p(xTuz(At)7yT,ﬂm/(m)) _
(v,1)EVi x L

Let us consider w.l.o.g. two sets of vertices A and B repre-
senting two neighboring components of the graph G. Then
we compute Vv € AU B,VI € L:

Ayt = Cor(v) — Cut (27)
~ %*
ZU)EA\{U} va,At(v)At(w) - cvw,l)\t(w)
ZwEB Cow, e (0)Ag(w) c;w,lkt(w) ,» (28)
ngéAuB Cow e ()M (w) — Cow, i (w)

where w € Ng/(v). In eq. (28) the first two cases are exactly
the same as given in [17] for the edges between partitions
A and B. But in our case changing vertex’s class label may
affect the cut costs of edges between A and B and any other
partition. Also, we have join and cut costs.

Let us assume w.l.o.g. that vertex v was chosen to be
moved from set A to set B,i.e. A= A\ {0}. Now we can
update the expected gains of Yw € Ng/ (9),VI € L:

Ay = Dy — (C'ﬁw A (8) Ao (w) — C%Cw,xt(ﬁ)z)

# o~
t o inew) ~ Cowit 0 TWE A, (29

Awl = Awl - (C?W,)\t(ﬁ))\t(w) — CT?TH,)\f,(@)l)
X it — € ifweB . (30)

dw, X (w) dw,il



After that B = B U {0}. In the above equations, the ex-
pression in parenthesis cancels the current contribution for
vertex w, that assumed ¢ was labeled A\;(v) and belonged
to partition A. For the case when |L| = 1 and ¢ = ¢™ the
above equations simplify to exactly the ones as in [17], but
multiplied by 2, because in our objective we have two terms
that operate on the edges simultaneously.

As we generalize [18] by an additional loop over the set
L of labels, the analysis of the time complexity carries over
from [18] with an additional multiplicative factor |L|.

B. Articulated Human Body Pose Estimation
B.1. Problem Statement

Pishchulin et al. [29] introduce a binary cubic problem
w.r.t. a set C' of body joint classes and a set D of putative
detections of body joints. Every feasible solution is a pair
(z,y) withz : D x C — {0,1} and y : (}) — {0,1},
constrained by the following system of linear inequalities:

Vd € Dvec' € ()1 2qe + a0 < 1 31)
vdd' € (g) Do Ydar < Z Tde
ceC
Yddr < Z Tdre (32)
ceC
vdd'd" € () yaw + yaar — 1 < yaar  (33)

The objective function has the form below with coefficients
« and 3.

E E Ode Tde + E E Bdd’ ce' TdeTar ' Ydd!

deD ceC dd’E(g) c,c'eC

(34)
We identify the solutions of this problem with the solu-

tions of the NL-LMP w.r.t. the complete graphs G = G’
(D, (%)), the label set L = C'U {e} and the costs ¢ = 0

and
Ayl ifl e C
vl = 35
ol {0 il = (35)
Bowir ifleC Al €C
C;;U’”/ = 0 lfl — € XOr l/ = € (36)
00 ifl=10'=¢

Note that in [29], y4e» = 1 indicates a join. In our NL-LMP,
yaqar = 1 indicates a cut.

B.2. Further Results

Quantitative results for each body joint are shown in
Tab. 4. Qualitative results for the MPII Human Pose dataset
are shown in Fig. 5.
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|V| Alg. Head Sho Elb Wri Hip Knee Ank AP
[15] 849 792 664 523 655 592 512 655
% KLjr 87.1 80.0 66.8 53.6 66.1 60.0 51.8 66.5
KLj*r 86.8 80.2 67.5 535 663 603 51.9 66.6
S KLir 902 852 715 595 713 63.1 53.1 70.6
<  KLjxr 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Table 4: Comparison of B&C [15], KLj/r and KLj#r in an
application to the task of articulated human body pose esti-
mation.

C. Instance-Separating Semantic Segmentation

We tackle the problem of instance-separating seman-
tic segmentation by adapting the approach of Uhrig et
al. [37]. They propose three complementary representations,
which are learned jointly by a fully convolutional network
(FCN) [24], that facilitate the problem of separating individ-
ual objects: Semantics, depth, and directions towards object
centers. To extract object instances, a template matching
approach was proposed, followed by a proposal fusion.

Instead of template matching and clustering, we rely on
a generic graphical formulation of the problem using only
the three predicted output scores from the network of Uhrig
et al. [37], together with a suitable formulation of unary ¢
and pairwise terms ¢~ and ¢”. As there might be up to two
million nodes for a direct mapping of pixel scores to the
graph, we report performance on different down-sampled
versions to reduce overall computation time and reduce the
impact of noise in high resolutions. Results on KITTI were
achieved on half of the input resolution, for Cityscapes we
down-sample the FCN scores by a factor of eight before the
graph optimization.

C.1. Cut Costs Details

To define cut costs between connected pixels in the graph,
we use an equally weighted sum of the three following com-
ponents:

The probability of fusing two pixels v and w of different
semantic classes is 1 — p(A(v) = a, A(w) = b), the proba-
bility of confusing label class a and b, which was computed
from the training set.

To incorporate the depth and center direction channels,
we neither use scores nor argmax predictions directly. In-
stead, we weight the predicted softmax scores for all non-
background classes with their corresponding class to recover
a continuous center direction and depth map. As objects
at different depth values should be separated, we generate
higher cut probabilities for those pixels. From training data,
we found the probability of splitting two neighboring pixels
to be one when the predicted depth values differ by more
than 1.6 units.



Figure 5: Pose estimation results on the MPII Human Pose dataset.

If center directions have opposite orientations, there

should be a high probability for splitting the two pixels.

However, opposite directions also appear at the center of
an object. Therefore, we define the cut probability as the
minimum of an angular inconsistency, which punishes two
pixels that point at different directions, as well as a center
inconsistency, which punishes if two pixels do not point at
each other, c.f. Fig. 6. This induces high cut probabilities
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at the borders of objects, as directions of pixels should have
opposite center direction. The probability of splitting two
neighbors due to direction inconsistency was found to be
one at 90 degrees.

C.2. Dataset Specifics

For the KITTI dataset [6, 13], the only pixel-level anno-
tated object class is car. For Cityscapes [9] however, there



Figure 6: Instance center directions with color coding
from [37]. Near object centers, directions point towards
each other (center consistency). Within colored regions, di-
rections have similar angles (angular consistency). Along
object borders, directions are inconsistent in both ways.

are 8 different object classes (person, rider, car, truck, bus,
train, motorcycle, bicycle), together with 11 background
classes versus 1 background class for KITTI. We found that
the network model used by Uhrig et al. [37] performs close
to optimum for semantic labeling on KITTI data, however
has some flaws on Cityscapes.

Therefore we chose a more sophisticated network struc-
ture, which performs much better on the many different
classes on Cityscapes. We use a ResNet [14] with dilated
convolutions [7] for cut costs ¢, namely the unary terms con-
sisting of scores for the problem of semantic labeling, which
was trained independently on the Cityscapes dataset [9].

To obtain the unaries for Cityscapes, we use a slightly
modified ResNet-50 network. We introduce dilated convolu-
tions in the conv4_x and conv5_x layers to increase the output
resolution from 1/32 to 1/8 of the input resolution. We then
remove the final average pooling layer and for classification
use a convolutional layer with 5 x 5 dilated kernels with a
dilation size of 12. This is identical to the best performing
basic ResNet-50 variant reported in ([39], Table 1).

Due to GPU memory constraints, we train with 512pz x
768px crops randomly sampled from the full-resolution train-
ing set images. We apply minimal data augmentation, i.e.
random horizontal flips, and train with a batch size of 5. We
train the network for 60000 iterations using the Adam solver
with an initial learning rate of 0.000025, weight decay of
0.0005 and momentum of 0.9. We use the ”poly” learning
rate policy to gradually reduce the learning rate during train-
ing with the power parameter set to 0.9, which as reported
in both [23] and [5] yields better results than the commonly
used ”step” reduction policy.

At test-time we apply the network to overlapping
1024pz x 768px crops of the full-resolution test set images
and stitch the results to obtain the final predictions.

For KITTI however, we stick with the original semantic
scores. The only adaptation for our definition of the semantic
cut costs c is an additional weighting of the semantic scores:
As depth and center directions are only estimated for objects,
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Algorithm Dataset AP AP®0%
Ours KLj/r (raw) KITTIval 43.0 725
Ours KLj*r (raw) KITTIval 43.5 72.6
Ours KLj/r (fused) KITTIval 50.5 82.9
Ours KLj*r (fused) KITTIval 50.3 824
Pixel Encoding [37] KITTItest 41.6 69.1
Ours KLjxr (fused)  KITTItest 43.6 71.4

Table 5: Comparison of algorithms for instance segmentation
on the KITTI [6] datasets using the mean average precision
metrics introduced in [9].

all three channels contain knowledge of the objectness of a
certain pixel. We therefore use the semantic scores weighted
by the depth and direction scores for objects as unaries. This
increases robustness of the semantics as all three channels
must agree to achieve high scores.

C.3. Post Processing

Using the unary and pairwise terms defined above, we
solve the graph for labels and components with our proposed
algorithms KLj/r and KLj#r. As the center direction repre-
sentation inherently cannot handle cases of full occlusions,
e.g. if a bicycle is split into two connected components by
a pedestrian in front of it, we apply a similar component
fusion technique as proposed in [37]: We accumulate di-
rection predictions within each component and fuse it with
another suitable component when direction predictions are
clearly overshooting into a certain direction. We compare
performance of the raw graph output as well as the fused
instances in Tab. 5 (top).

C.4. Detailed Results

As there are different metrics used by related approaches,
we report performance on the Cityscapes [9] and KITTI [6,
13] dataset using both proposed metrics. The instance score
required for the evaluation on Cityscapes was chosen as the
size of the instance in pixels multiplied by its mean depth
- this score achieved slightly better results compared to a
constant score.

For KITTI, we outperform all existing approaches us-
ing the Cityscapes metric (without adapting the semantic
scores of Uhrig et al. [37]), which averages precision and
recall performance for multiple overlaps, c.f. Tab. 5 (bottom).
We evaluate the performance using KLj/r or KLj+r and raw
graph output (raw) or the post-processed results using above
described fusion (fused) in Tab. 5 (top). Using the KITTI
metrics, we perform among the best results while having a
slight preference of Recall over Precision, c.f. Tab. 6.

For Cityscapes, we report evaluation metrics using both
the raw scores of Uhrig et al. [37] as well as our final pro-
posed model using the semantic scores of a ResNet [14]



Alg. IoU AvgFP AvgFN InsPr InsRe InsF1

[43] 774 0479 0.840 48.9 43.8 46.2
[42]  77.0 0375 1.139 653 50.0 56.6
[37] 84.1 0201 0.159 86.3 741 79.7
[31] 87.4 0.118 0278 - - -

Ours 839 0555 0.111 692 76.5 727

Table 6: Comparison of algorithms for instance segmentation
on the KITTT test dataset [6] using metrics proposed in [42].
Ours describes the performance of our KLj*r variant.
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[9] 56 39 26.0 13.8 26.3 15.8 86 3.1

[37] 31.8 33.8 37.8 7.6 12.0 85 205 17.2
Ours 18.4 29.5 38.3 16.1 21.5 24.5 21.4 16.0

Table 7: Comparison of performance on Cityscapes test
using the mean average precision metric AP [9]. Ours
describes the performance of our KLj*r (ResNet) variant.

together with the center direction and depth scores of Uhrig
et al. [37], c.f. Tab. 8 (top). Using our adapted ResNet
version, we outperform the currently published state-of-the
art, c.f. Tab. 8 (bottom). Note that we report significantly
better performance for the large vehicle classes truck, bus,
and trains despite starting from the same FCN output, c.f.
Tab. 7. This comes from incorporating confusion probabili-
ties between unreliable classes as well as optimizing jointly
for semantics and instances.

C.5. Qualitative Results

See Fig. 7 for some qualitative results for our instance-
separating semantic segmentation on the Cityscapes valida-
tion dataset [9]. It can be seen that we perform equally well
for large and small objects, we only tend to fuse pedestrians
too often, which explains the worse performance on pedes-
trians - c.f. the mother with her child on the right in the
last row of Fig. 7. Also, the impact of the proposed post-
processing based on the fusion algorithm proposed by Uhrig
et al. [37] can be seen clearly: Due to noisy predictions, the
raw graph output is often highly over-segmented. However,
after applying the fusion step, most objects are correctly
fused.

C.6. Outlook

The reason for the varying performance for objects of
different semantic classes certainly comes from their very
different typical forms, which we do not incorporate in our
general approach. Uhrig et al. [37] use different aspect

Dataset AP AP°°%

CSval 9.9 22.5
CSval 94 22.1
CSval 11.3 26.8
CSval 114 26.1

CStest 4.6 12.9
CStest 8.9 21.1
CStest 9.8 23.2

Algorithm

Pixel Encoding [37]
Ours ([37] scores)
Ours KLj/r (ResNet)
Ours KLj+r (ResNet)

MCG+R-CNN [9]
Pixel Encoding [37]
Ours KLj#r (ResNet)

Table 8: Comparison of algorithms for instance segmentation
on the Cityscapes (CS) dataset [9] using the mean average
precision metrics introduced in [9].

ratios for their sliding object templates to cope for these
changes. In future work, we would like to combine multiple
graphs for different semantic classes to boost individual class
performance. Also, the predicted FCN representation and
scores will be adjusted for better suiting the requirements of
our graph optimization.

D. Multiple Object Tracking
D.1. Problem Statement

Tang et al. [35] introduce a binary linear program w.r.t. a
graph G = (V, E)) whose nodes are candidate detections of
humans visible in an image. Every feasible solution is a pair
(z,y) with x € {0,1}V and y € {0,1}, constrained such
that

V{v,w} € E: Yo < (37)

Yow < Tay (38)

VC € cycles(G)Vee C: 1 —y, < z (1—yyr) (39
feC\{e}

The objective function has the form below with coefficients
a and B.

> e+ Beve (40)
veV ecl

We identify the solutions of this problem with the solu-
tions of the NL-LMP w.r.t. the graphs G’ = G, the label set
L = {e,1} and the costs ¢* = 0 and

a, ifl=1
ol (= 41
ol {0 il = @1
Bow HI=1A1=1
Cowr =4 0 ifl=1xorl’'=1 . 42)

oo ifl=0=¢

Note that in [35], y4¢r = 1 indicates a join. In our NL-LMP,
yaar = 1 indicates a cut.



RGB Image Semantics GT ~ Semantics Pred. Instance GT Raw Inst. Pred.  Fused Inst. Pred.

Figure 7: Visualization of our predictions on the Cityscapes validation dataset [9], where we can compare with corresponding
ground truth (GT) and show respective RGB images.

D.2. Further Results

A complete evaluation of our experimental results in
terms of the Multiple Object Tracking Challenge 2016 can
be found at http://motchallenge.net/tracker/NLLMPa.
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