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Below we provide two proofs of Theorem 2. The first one is restricted to pairwise energies. It is based
on representing the submodular Joint-DivMBest problem (2) in the form of minimizing a convex
multilabel energy. This problem is known as Convex MRF or as total variation (TV) regularized
optimization with convex data terms. Thresholding theorems [8, 6, 5, 3, 9] then allow to break the
problem into independent minimization and connect it to parametric mincut. This approach reveals an
important link between our problem and the mentioned methods. It is also the shorter one. However,
it is limited by the existing thresholding theorems and does not fully cover e.g. the higher order case
(as discussed below).

The second proof is both more general (applies to arbitrary submodular energies) and simpler than the
respective proves of the related results. It is self contained and uses only basic concepts of submodular
function minimization, revealing the true simplicity of central fact that allows the problem to decouple.

7 Pairwise Case

For pairwise energies it holds f = {u, v}, u, v ∈ V . Therefore, we will denote θf as θu,v. The
energy of the master problem (1) then reads

E(y) =
∑

v∈V
θv(yv) +

∑

uv∈F
θu,v(yu, yv) . (13)

It is known [2] and straightforward to check that in the binary case it holds

E(y) = const +
∑

v∈V
avyv +

∑

uv∈F
Θu,v|yu − yv| , (14)

where av = θv(1)−θ(0) andΘu,v = θu,v(0, 1)+θu,v(1, 0)−θu,v(0, 0)−θu,v(1, 1). For submodular
E, the values Θu,v are non-negative. In what follows, we will use the representation (14) and omit
the constant in it, since it does not influence any further considerations.

A nested M -tuple {y} is unambiguously specified by |V| numbers m0
v ∈ {0, . . . ,M}, v ∈ V , where

m0
v defines a number of labelings, which are assigned the label 0 in the node v. The link between the

two representations is given by

m0
v =

∑

m

Jymv = 0K, (15)

ymv = m ≤ m0
v. (16)

In other words, labelings ym are superlevel sets of m0 : V → {0, . . . ,M}.
Let us write the Joint-DivMBest objective (2) as a function of m0. The label m ∈ {0, . . . ,M}
denotes that exactly m out of M labelings in {y} are assigned the label 0 in the node v. The unary
cost assigned to a label m in the node v is equal to av(M −m), since exactly (M −m) labelings
out of M are assigned the label 1 in the node v. The pairwise cost for a pair of labels {m,n} in the
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neighboring nodes {u, v} ∈ F is equal to Θu,v|m− n|, since exactly |m− n| labelings switch their
label 0 to the label 1 between nodes u and v. Therefore

M∑

i=1

E(yi) =
∑

v∈V
av(M −m0

v) +
∑

uv∈F
Θu,v|m0

u −m0
v| , (17)

where m0
v is defined as in (15).

Adding a node-wise diversity measure
∑

v∈V λ∆
M
v ({y}v) =

∑
v∈V λ∆

M
v (m0

v) and regrouping
terms, one obtains that the Joint-DivMBest objective (2) is equivalent to

∑

v∈V

(
av(M −m0

v)− λ∆M
v (m0

v)
)

+
∑

uv∈F
Θu,v|m0

u −m0
v| (18)

and must be minimized with respect to the labelingm0 ∈ {0, . . . ,M}V .

Since the diversity measure λ∆M
v (m0

v) is concave w.r.t. m0
v, the unary factors av(M − m0

v) −
λ∆M

v (m0
v) are convex. The pairwise factors Θu,v|m0

u −m0
v| are also convex w.r.t. m0

u −m0
v due to

non-negativity of Θu,v .

For concave diversity the problem can be solved efficiently in time O(T (n,m)+n logM) [8], where
n = |V|, m = |E| and T (n,m) is the complexity of a minimum s-t cut procedure that can be
implemented efficiently as parametric. Even for m0 ranging in the continuous domain the complexity
of the method [8] is polynomial, essentially matching the complexity of a single mincut. In particular,
[8, Theorem 3.1] shows that a solution of such convex multilabel energy minimization problem
decouples into M problems of the form (12). Our Theorem 2 then follows.

7.1 Related Results and Limitations

For a general (not necessarily concave) permutation invariant nodewise diversity, the problem (17)
can be still solved efficiently in time O(nm log n2

mM2 logM) by either [10] or [1, 9]. On the other
hand, the reformulation (14) expressing the regularizer as the function |m0

u − m0
v| holds for the

pairwise case only. The results of Hochbaum [8] are as well limited to the pairwise case and involve
min-cut / max-flow arguments.

Other related results are as follows. Chan and Esedoglu [5] give a thresholding theorem (related
to Theorem 2) for the Rudin-Osher-Fatemi denoising model [11], Darbon and Sigelle [6] for TV-
regularized L1 and L2 data fidelity problems, Chambolle [3] proposes further generalization towards
thresholding of TV-like regularized convex problems in a finite dimensional space. The thresholding
theorem of Chambolle [3] is applicable to higher order models, however the conditions on the
regularizer are stricter than in Theorem 2: only a certain convex subclass of submodular functions
qualifies.

8 General Case

In the following, we identify a simple and general thresholding theorem, applicable to arbitrary
submodular (not only pairwise) functions. This constitutes a basis for a general proof of Theorem 2.

8.1 Nestedness

The set of labeling LV together with the coordinate-wise maximum and minimum operations ∨,
∧ forms a distributive lattice. The respective partial order x ≤ y is the coordinate-wise order
(∀v ∈ V) xv ≤ yv .
Definition 3. Function F : LV → R is monotone (resp. antitone) if for all x ≤ y there holds
F (x) ≤ F (y) (resp. F (x) ≥ F (y)).

For example, a linear function 2V → R : y 7→ ∑V
v=1 avyv is monotone for av ≥ 0; a multilabel

modular function
∑V

v=1 θv(yv) is monotone if θv(y′v) ≥ θv(yv) for all y′v ≥ yv and all v ∈ V . The
sum, minimum and maximum of monotone (resp. antitone) functions is monotone (resp. antitone).
Note that, e.g., minimum of modular functions is in general not modular.
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The following lemma provides sufficient conditions under which the parametric min-cut and the
parametric submodular function minimization are monotone. It is essential for the subsequent
derivation that we formulate it in a constructive form, i.e., not only existence of nested minimizers is
shown but also the way to restore nestedness.

Lemma 1 (See [12] Theorem 6.1). Let E : LV → R be submodular and F : LV → R be antitone.
Then for any minimizer x of E and any minimizer y of E+F , the solution y′ = y∨x is a minimizer
of E + F and x ≤ y′.

Proof. Since x is a minimizer of E, E(x) ≤ E(y ∧ x). Adding this inequality to the submodularity
inequality,

E(x ∨ y) + E(x ∧ y) ≤ E(x) + E(y), (19)

we obtain

E(x ∨ y) ≤ E(y). (20)

For antitone F and x ∨ y ≥ y we have F (x ∨ y) ≤ F (y). Adding to (20), we get

(E + F )(x ∨ y) ≤ (E + F )(y). (21)

Since y was a minimizer of E + F , it follows that x ∨ y is a minimizer of E + F as well.

It follows that the minimal minimizer of E is nested (contained in the case of set functions) in the
minimal minimizer of E+F . Symmetrically, if E is submodular and F is monotone, then x∧y ≤ y
is a minimizer of E + F . Similar results appear in [8], [4, Lemma 3.4] in a somewhat less general
form. Fleischer and Iwata [7, Lemma 3.1] proves nestedness under a related condition called a strong
map. It can be easily shown that for submodular E +F the map E → E +F is a strong map iff F is
antitone.

8.2 Thresholding Theorem

Let a function E : (LV)M → R of a tuple {y} has the expression

E({y}) =

M∑

m=1

Em(ym), (22)

for some functions Em : LV → R. We will show that such a decomposition holds for the Joint-
DivMBest objective EM (2) under conditions of Theorem 2 (cf. coarea formula in [3]). Consider
minimizing the function E over nested tuples {y}.
Theorem 3 (Thresholding). Let Em : LV → R be submodular for each m and (Em − Em−1) be
antitone for each m > 1. Then the joint problem,

min
{y}

M∑

m=1

Em(ym) s.t. {y} is nested, (23)

decouples into independent problems
∑

m

min
y∈LV

Em(y). (24)

Where “decouples” means that the optimal values of both problems are equal and there is a simple
mapping between their optimal solutions.

Proof. We will prove the theorem by constructing, out of independent minimizers ŷm, m = 1, . . .M ,
a nested tuple of independent minimizers {ȳ}.
Assume that ŷk 6≥ ŷm for k > m. The function Ek can be expressed as

Ek = Em + F, (25)
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where F =
∑k

l=m+1(El−El−1) is antitone (by conditions of the theorem). We have: ŷm minimizes
Em, ŷk minimizes Ek. By the nestedness Lemma 1, it must be that ŷk ∨ ŷm also minimizes Ek.
Moreover, ŷk ∨ ŷm ≥ ŷm.

By going in m in order from 1 to M and replacing ŷm+1 with ŷm+1 ∨ ŷm we obtain a tuple which
is nested and each modifications has preserved optimality to (24). Let {ȳ} be the resulting nested
tuple. It is feasible to the joint problem (23) and optimal to decoupled problem (24). Since also (23)
is lower bounded by (24), the tuple {ȳ} is optimal to (23).

Corollary 4. Let elements of the tuple {ŷ} be defined as the highest minimizers of Em:

ŷm =
∨

arg min
y∈LV

Em(y) . (26)

Then under conditions of Theorem 3 the tuple {ŷ} is nested and optimal to (23).

Proof. The highest minimizer in (26), i.e., the maximum of the set of optimal solutions exists since
the set of minimizers to a submodular function on a lattice is a lattice itself [12]. Since for each
k > m, (i) the replacement ŷk ∨ ŷm is a minimizer of Ek(y) (with the same substantiation as in the
proof of Theorem 3) and (ii) ŷk is the highest minimizer of Ek, it therefore holds ŷk ∨ ŷm ≤ ŷk.
This is however the case only when ŷk ≥ ŷm.

8.3 Application to Submodular Joint-DivMBest Problem

Let LV = {0, 1}V and the master energy E be submodular. Then the Joint-DivMBest problem
according to Theorem 1 has the form

min
{y}

M∑

m=1

E(ym)−∆M ({y}) s.t. {y} is nested. (27)

In order to apply Theorem 3, we need to express the objective of this problem in the form (23). Since
the master energy E(ym) is the same for all m, clearly E − E ≡ 0 is an antitone function of y.
It remains to express ∆M ({y}) in the form (23). Recall that any permutation invariant diversity
measure ∆M

v ({yv}) expresses as a function gv(x), where x =
∑M

m=1Jymv = 0K. Any function
gv : {0, . . .M} → R can be expressed as a prefix (cumulative) sum:

gv(x) = gv(0) +

M∑

m=1

γmv Jm ≤ xK = gv(0) +
∑

m≤x
γmv , (28)

where γmv = gv(m)− gv(m− 1) for m ∈ {1, . . . ,M}.
For concave diveristy measures, the discrete derivatives γmv of gv are monotone non-increasing in m.
For a nested tuple {y} we have ymv = Jm ≤ xK, and it holds

∆M ({y}) =
∑

v∈V
gv(0) +

M∑

m=1

Fm(ym) (29)

for Fm(ym) =
∑

v∈V γ
m
v y

m
v .

Since the constant term
∑

v∈V gv(0) can be ignored we proved that ∆M ({y}) decomposes as (22).
It remains to show that −(Fm(y) − Fm−1(y)) is antitone to fulfill conditions of Theorem 3 w.r.t.
−∆M ({y}).

Indeed, the difference Fm(y)−Fm−1(y) expresses as
∑

v∈V avyv with av = γmv −γm−1v . Since γmv
is non-decreasing w.r.t. m, it holds av ≥ 0 and Fm − Fm−1 is monotone. It implies −(Fm − Fm−1)
is antitone.

As a result, the Joint-DivMBest problem (27) has the expression satisfying conditions of Theorem 3.
Thus Theorem 2 holds.

The study of the question which multilabel diversity measures have expression as a sum with
monotone differences is left for the future work.
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