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Abstract

We consider the task of finding M -best diverse solutions
in a graphical model. In a previous work by Batra et al. an
algorithmic approach for finding such solutions was pro-
posed, and its usefulness was shown in numerous applica-
tions. Contrary to previous work we propose a novel formu-
lation of the problem in form of a single energy minimiza-
tion problem in a specially constructed graphical model.
We show that the method of Batra et al. can be considered
as a greedy approximate algorithm for our model, whereas
we introduce an efficient specialized optimization technique
for it, based on alpha-expansion. We evaluate our method
on two application scenarios, interactive and semantic im-
age segmentation, with binary and multiple labels. In both
cases we achieve considerably better error rates than state-
of-the art diversity methods. Furthermore, we empirically
discover that in the binary label case we were able to reach
global optimality for all test instances.

1. Introduction
A large variety of computer vision tasks can be for-

mulated in the form of an energy minimization problem,
known also as maximium a posteriori (MAP) inference in
an undirected graphical models (related to Markov or con-
ditional random fields). Its modeling power and importance
are well-recognized, which recently resulted into special-
ized benchmarks for its solvers [31, 17]. This underlines
the importance of finding the most probable variable con-
figuration. Following [4] we argue, however, that finding
M > 1 diverse configurations with low energies is also
of importance in a number of scenarios, such as: (a) Ex-
pressing uncertainty of the found solution [27]; (b) Faster
training of model parameters [14]; (c) Ranking of inference
results [35]; (d) Empirical risk minimization [26].

It is important to note that in many application scenarios,
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such as [35], the diverse solutions are computed for an en-
ergy that has been trained in a discriminative fashion such
that the solution with lowest energy should correspond to
the most accurate result. We will also use such pre-trained
energies. However, we observe that at test time a result
which is different to the lowest energy solution, but still
has a low energy, can achieve higher accuracy. This has
also been observed in previous works. The task of train-
ing one or more energies for producing optimal M diverse
solutions, as e.g. in [13, 15], is not the subject of this work.

In this work we propose a novel formulation for the prob-
lem of finding M-best-diverse solutions as a MAP-inference
problem in a specially constructed graphical model. Any
variable configuration in this model corresponds toM solu-
tions of the original problem and the best configuration then
corresponds to the M best diverse solutions. We introduce
an efficient, specialized solver for our model, although other
standard MAP-inference techniques are potentially applica-
ble as well. In fact, we empirically observe that with this
solver is able to reach global optimality for all test instances
of a binary labelling problem.
Related work. The importance of the considered problem
is demonstrated by the number of works addressing it from
different perspectives.

A procedure of computing M -best solutions to discrete
optimization problems was proposed in [21], which dates
back to 1972. Later, more efficient specialized procedures
were introduced for MAP-inference on a tree [30, Ch. 8],
junction-trees [22] and general graphical models [36, 11, 3].
These methods are well-suited for certain scenarios, how-
ever in typical structured computer vision problems (like
e.g. pixel-level image segmentation) M -best solutions dif-
fer from each other only by a small number of variables
(pixels) and from an application point of view are all equiv-
alent and hence practically useless.

Sampling methods allow to approximate marginal prob-
abilities and therefore can be used for estimating solutions
uncertainty. Though the methods like [24, 33] are designed
to address different modes of the underlying distribution,
they do not enforce diversity explicitly, hence can hardly be
used for faster discriminative training of model parameters
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(a)
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Batra et al. no diversity
E = 200
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(b)

E = 200 E = 200
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E = 1180

(c)

E = 200 E = 200

Batra et al. large diversity
E = 2500

E = 200 E = 1180

Ours large diversity
E = 1480

(d)

Figure 1: Comparing our approach to Batra et al. [4] for a toy image. (a) the unary terms of the energy (red/blue means
more likely fore-/background). The Inlet shows the original image. (b-d) Results for three different levels of diversity. For
each diversity level we ask for three output images, where E is the associated energy. (b) Both methods produce three times
the same MAP solution. (c) When forcing diversity both methods give different results. Note that the sum of the pairwise
Hamming distances between the results is the same for both methods. However, our result is visually better, since it contains
solutions that are more coherent. This is also reflected in the energy. The sum of the energy of the three solutions is lower
with our method (2270 compared to 2310). Our method directly optimizes for this energy. (d) When forcing strong diversity,
the set of solutions becomes more diverse for both methods. Again, our result is superior, visually and in terms of total
energy, while both results have the same overall Hamming distance.

or ranking of inference results. Local techniques like e.g.
Gibbs sampling [12] may take prohibitively long to trans-
fer between modes of the underlying distribution. Perturb-
and-map [23] does not have these drawbacks, but is limited
to the cases where an exact MAP-solution can be obtained
relatively fast due to the need of its multiple computation.
Indeed, this method can be seen as the closest probabilis-
tic counterpart to the deterministic ones considered in this
work.

Structured Determinant Point Processes [20] is a tool
to model probabilistic distributions over structured models.
Unfortunately an efficient sampling procedure is feasible
for tree-structured graphical models only. The recently pro-
posed algorithm [7] to find M best modes of a distribution
is limited to the same narrow class of problems.

Training of M independent graphical models to produce
diverse solutions was proposed in [13, 15]. In contrast, we
assume a single fixed model supporting reasonable MAP-
solutions.

The most relevant for us is the work [4], addressing the
problem of the M best diverse solutions to energy mini-
mization. It proposes an algorithm, which starts with find-
ing a MAP-solution. On each iteration it penalizes already
found labelings and obtains the next optimal one. The pe-
nalization enforces diversity of the found solutions. The
greedy character of the method is its main disadvantage,
which leads (as we show in Section 5) to suboptimal re-
sults. The recent follow-up work [25] proposes a subclass
of new diversity penalties, for which the greedy nature of
the algorithm can be substantiated.
Contribution. We formulate the problem of findingM best
diverse solutions to energy minimization as a problem that
has the same format as the energy minimization itself. In

other words, a single labeling in our specially constructed
graphical model corresponds to M labelings in the initial
model. Based on this formulation we show that

(i) the algorithm proposed in [4] (and used in [14, 27, 35,
26]) can be viewed as an approximate greedy energy mini-
mization to our model;

(ii) if the initial MAP-inference problem was (approxi-
mately) solvable with α-expansion or α-β-swap our model,
deliveringM best diverse solutions, maintains this property.
Furthermore, we empirically found that in case the original
energy was binary and submodular, we were always able to
minimize the energy of our model exactly.

We demonstrate superiority of our approach in terms of
the quality of found solutions on several computer vision
datasets published in [4] and [25].
Paper structure. In Section 2 we briefly describe the di-
versity method of Batra et al. [4]. Section 3 is devoted to an
explicit formulation of our novel diversity model. Here we
also provide an overview of existing diversity measures and
show that the method [4] can be seen as a greedy inference
for it. In Section 4 we present a reformulation of our model,
which allows for efficient inference with graph-cuts and LP-
relaxation based techniques. Finally, Sections 5 and 6 are
devoted to the experimental evaluation and conclusions.

2. DivMBest Method of Batra et al. [4]

Preliminaries. Let 2A denote the powerset of a set A.
The pair G = (V,F) is called a factor graph and has V
as a finite set of variable nodes and F ⊆ 2V as a set of
factors. Each variable node v ∈ V is associated with a
variable yv taking its values in a finite set of labels Lv . The
set LA =

∏
v∈A Lv denotes a Cartesian product of sets



of labels corresponding to the subset A ⊆ V of variables.
Functions θf : Lf → R, associated with factors f ∈ F ,
are called potentials and define local costs on values of
variables and their combinations. The set {θf : f ∈ F} of
all potentials is described by θ. For any factor f ∈ F the
corresponding set of variables {yv : v ∈ f} will be denoted
by yf . The energy minimization problem then consists
of finding a labeling y∗ = {yv : v ∈ V} ∈ LV which
minimizes the total sum of corresponding potentials:

y∗ = arg min
y∈LV

E(y) = arg min
y∈LV

∑
f∈F

θf (yf ) . (1)

Problem (1) is also known as MAP-inference. Labeling y∗

satisfying (1) will be later called a solution of the energy-
minimization or MAP-inference problem, shortly MAP-
labeling or MAP-solution. Finally, a model is defined by
the triple (G, LV ,θ), i.e. the underlying graph, the sets of
labels and the potentials.
Diversity Method [4]. We will refer to this method as
DivMBest. In order to find the M diverse, low energy,
labellings y1, . . . ,yM , the method proceeds by solving a
sequence of problems of the form

ym = argmin
y

[
E(y)− λ

m−1∑
i=1

∆(y,yi)

]
(2)

for m = 1, 2 . . . ,M , where λ > 0 determines a trade-off
between diversity and energy, y1 is the MAP-solution and
the function ∆ : LV × LV → R defines the diversity of
two labelings. In other words, ∆(y,y′) takes a large value
if y and y′ are diverse, in a certain sense, and a small
value otherwise. This problem can be seen as an energy
minimization problem, where additionally to the initial
potentials θ the potentials −λ∆(·,yi), associated with an
additional factor V , are used. In the simplest and most
commonly used form, ∆(y,y′) is represented by a sum of
node-wise diversities ∆v : Lv × Lv → R,

∆(y,y′) =
∑
v∈V

∆v(yv, y
′
v) , (3)

and the potentials are split to a sum of unary potentials, i.e.
those associated with additional factors {v ∈ V}. This im-
plies that in case efficient graph-cut based inference meth-
ods (including α-expansion [6], α-β-swap [6] or their gen-
eralizations [2]) are applicable to the initial problem (1) then
they remain applicable to the augmented problem (2), which
assures efficiency of the method.

Although the DivMBest method (2) shows impressive
results in a number of computer vision applications, we ar-
gue that it suffers from its greedy nature. Each new labeling
is obtained based on previously found solutions only, and is
not influenced by upcoming labelings. As we show in this
work, optimization for all M labelings jointly allows to im-
prove the resulting solutions. A toy example illustrating our
claim is presented in Fig. 1. Another scenario is sketched in

(a) Sequentially inferred solutions (b) Jointly inferred solutions

Figure 2: Energy landscape with two different couples of
solutions depicted by red points. (a) Corresponds to the Di-
vMBest algorithm (2), which finds solutions sequentially.
(b) Joint inference of diverse solutions may lead to lower
total energy.

Fig. 2. Note that with our approach we do not enforce that
the MAP solution is part of the set of solutions. This is in
contrast to the DivMBest [4] method. If this is a require-
ment then we can run a MAP solver and add the solution to
our set.

3. Diversity Model - Explicit Representation

In the following, we use brackets to distinguish between
upper index and power, i.e. (A)n means the n-th power
of A, whereas n is an upper index in the expression An.
The notation fM ({y}) will be used as a shortcut for
fM (y1, . . . ,yM ), for any function fM : (LV)

M → R.
Instead of the greedy sequential procedure (2) we suggest
to infer all M labelings jointly, by minimizing

EM ({y}) =
M∑
i=1

E(yi)− λ∆M ({y}) (4)

for y1, . . . ,yM . Function ∆M defines the total diversity
of any M labelings. Though the expression (4) looks com-
plicated we will show that it can be nicely represented in
the form (1) and hence constitutes an energy minimiza-
tion problem. To achieve this, let us first create M copies
(Gi,LiV ,θi) = (G,LV ,θ) of the initial model (G,LV ,θ).
We define the factor-graph GM1 = (VM1 ,FM1 ) for the new
task as follows. The set of nodes in the new graph is the
union of the node sets from the considered copies VM1 =⋃M
i=1 Vi. Factors are FM1 = VM1 ∪

⋃M
i=1 F i, i.e. again the

union of the initial ones extended by a special factor cor-
responding to the diversity penalty. Each node v ∈ Vi is
associated with the label set Liv = Lv . The corresponding
potentials θM1 are defined as {−λ∆M ,θ1, . . . ,θM}, see
Fig. 3a for illustration. The model (GM1 ,LVM

1
,θM1 ) cor-

responds to the energy (4). An optimal M -tuple of these
labelings, corresponding to a minimum of (4), is a trade-
off between low energy of individual labelings yi and their
total diversity.
Diversity measures. We now discuss three specific differ-
ent diversity measures which are illustrated in Fig. 3. The
split-diversity measure is written as the sum of pairwise
diversities, i.e. those penalizing pairs of labelings
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Figure 3: Examples of factor graphs for 3 diverse solutions of the original MRF (1) with different diversity measures. The
circles represent the nodes of the original model that are copied 3 times. For clarity only the newly introduced factors of order
higher than 2 are shown as squares. Pairwise factors are depicted by edges connecting the nodes. We omit λ for readability.
(a) The most general diversity measure (4), (b) the split-diversity measure (5), (c) the node-diversity measure (6), (d) the
node-split-diversity measure (7). Note that (b-d) are special cases of (a). Also, note that (d) is a special case of (c) and also
of (b).

∆M ({y}) =
M∑
i=2

i−1∑
j=1

∆(yi,yj) . (5)

This means that VM1 splits into M(M − 1)/2 factors of the
form Vi ∪ Vj , 1 ≤ i < j ≤M , as shown in Fig. 3b.

We define the node-diversity measure as

∆M ({y}) =
∑
v∈V

∆v(y
1
v , . . . , y

M
v ) (6)

where ∆v : (Lv)
M → R are arbitrary node-wise diversity

functions (see Fig. 3c).
Finally the special case of the split-diversity and node-

diversity measures is the node-split-diversity measure

∆M ({y}) =
∑
v∈V

M∑
i=2

i−1∑
j=1

∆v(y
i
v, y

j
v) , (7)

which is a sum of pairwise factors, as illustrated in Fig. 3d.
The special case of this diversity measure is the Hamming
distance, i.e.

∆v(y, y
′) = Jy 6= y′K , (8)

where expression JAK equals 1 if A is true and 0 otherwise.
In the recent work [25] the three alternative diversity

measures of general form Fig. 3a were used in combina-
tion with DivMBest method (2):
• Label Cost diversity enforces the upcoming m-th la-

beling to contain labels that were not present in the already
obtainedm−1 labelings. In each iteration of the DivMBest
algorithm (2) the α-expansion with label cost potentials was
used (see [8]) for efficient inference.
• Label Transitions enforces m-th labeling to contain

previously unseen pairs of labels of adjacent variables. Co-
operative cuts [16] were used for inference in each iteration.



• Hamming Ball greedily enforces the volume of a union
of Hamming balls around current m solutions to be as big
as possible. The HOP-MAP [32] algorithm was applied for
the MAP-inference in each iteration.

In the following we concentrate on the node-diversity
measure. We show that when using the Hamming distance,
which is its special case, we empirically outperform the
methods introduced in [4] and [25].

DivMBest [4] as Greedy Minimization of the Split-
diversity measure. Plugging (5) into (4) gives

EM ({y}) =
M∑
i=1

E(yi)− λ
M∑
i=2

i−1∑
j=1

∆(yi,yj) . (9)

Comparing function minimized in (2) and (9) one can see
that the algorithm DivMBest (2) performs a greedy approx-
imate minimization of (9). On the i-th iteration it optimizes
over variables corresponding to yi, given fixed states of
variables corresponding to y1, . . . ,yi−1. Connections to
variables corresponding to yj , j > i, are ignored and will
be taken into account only later, on the j-th iteration.

Analyzing the optimization problem. Let us consider
a specific form of our model (4) with the Hamming dis-
tance (8) as a diversity measure. The diversity constraint
adds many pairwise potentials which are all of repulsive
form (see also Fig. 3d), i.e. they penalize equal labels and
do not penalize different ones. This makes efficient graph-
cut based methods inapplicable and moreover, as shown in
Section 5, the bounds delivered by LP-relaxation [34] based
solvers are practically very bad as well. Indeed, solutions
delivered by such solvers are significantly inferior even to
the results of the greedy DivMBest method (2) (see Ta-
ble 2). This motivates an alternative representation of the
problem (4), which we discuss next.

4. Diversity Model - Clique Encoding
We now present an alternative representation of the

model (4) with the node-diversity measure. This represen-
tation has fewer number of nodes but at the same time a
larger label space. We will see that this representation is
easier to optimize. With the node-diversity measure (6) the
energy (4) can be rewritten as

EM ({y}) =
M∑
i=1

E(yi)− λ
∑
v∈V

∆v(y
1
v , . . . , y

M
v )

=

M∑
i=1

∑
f∈F
|f|=1

θf (y
i
f ) +

∑
f∈F
|f|>1

θf (y
i
f )

−λ∑
v∈V

∆v(y
1
v , . . . , y

M
v ) .

Assume w.l.o.g. that {v} ∈ F for all v ∈ V . Then we
denote unary potentials θf for |f | = 1 as θv and regrouping

terms, the above equation can be written as

=
∑
v∈V

[
M∑
i=1

θv(y
i
v)− λ∆v(y

1
v , . . . , y

M
v )

]
+
∑
f∈F
|f|>1

M∑
i=1

θf (y
i
f ) .

Let us introduce the new variables zv = (y1v , . . . , y
M
v ),

v ∈ V and the respective label sets L̂v = (Lv)
M . In-

formally, each label of a new variable zv in a node v
corresponds to an M -tuple of labels from the original
task. In other words, we simply enumerate all possible
label combinations in each node v, that are possible by M
solutions. The new potentials θ̂v : L̂v → R, v ∈ V and
θ̂f : (Lf )

M → R, f ∈ F : |f | > 1 are defined as

θ̂v(zv) =

M∑
i=1

θv(y
i
v)− λ∆v(y

1
v , . . . , y

M
v ) , (10)

θ̂f (zf ) =

M∑
i=1

θf (y
i
f ) . (11)

In this notation the energy is given as

EM ({y}) =
∑
v∈V

θ̂v(zv) +
∑
f∈F
|f|>1

θ̂f (zf ) . (12)

Special Case: Pairwise Model For second order models
(i.e. the cardinality of factors is two at most) equation (12)
is written as

EM ({y}) =
∑
v∈V

θ̂v(zv) +
∑
uv∈F

θ̂uv(zu, zv) . (13)

The following Theorem 1 basically states that in case the
original MAP-inference problem is (approximately) solv-
able with α-β-swap [6] (α-expansion [6]) then minimiza-
tion of EM ({y}) in (13) can be performed with α-β swap
(α-expansion) as well.

Definition 1. For any set L the function f : L × L → R
is called a semi-metric if for all x, x′ ∈ L there holds: (i)
f(x, x′) ≥ 0; (ii) f(x, x′) = 0 iff x = x′; (iii) f(x, x′) =
f(x′, x).

Definition 2. Function f : L× L→ R is called a metric if
it is a semi-metric and additionally there holds:
f(x, x′) + f(x′, x′′) ≥ f(x, x′′), ∀x, x′, x′′ ∈ L.

Theorem 1. Let Lv = Lu, uv ∈ F and functions θuv be
semi-metrics (metrics). Then functions θ̂uv(zu, zv) defined
as in (11) are semi-metrics (metrics) as well.

We refer to the supplementary material for the proof.
For instance, in the special case of Potts model

θuv(y, y
′) = Jy 6= y′K the pairwise factors defined by (11)

constitute the Hamming distance between vectors zv
representing the new labels:

θ̂uv(zu, zv) :=

M∑
i=1

θuv(y
i
u, y

i
v) =

M∑
i=1

Jyiu 6= yivK . (14)



Both Potts potentials and Hamming distance are metrics,
which defines a special case of Theorem 1.
K-truncated Clique Encoding The disadvantage of the
clique encoding representation (12) is an exponential
growth of cardinality of the label set L̂v = (Lv)

M , which
implies inefficiency for inference with large Lv and espe-
cially a large M . For these cases we propose an efficient
approximative Algorithm 1 combining clique encoding (12)
and greedy minimization for the energy (4). Though it can
be used with the node-diversity measures (3) we describe it
for the special case of the node-split-diversities (7), as it is
used in our experiments.

Algorithm 1 K-truncated Clique Encoding
Require: (G, LV ,θ) – original model,

λ ∈ R – diversity parameter,
M ∈ N – total number of diverse labelings,
K < M – num. of processed labelings in each step.

1: for i = 0, . . . , bMK c do
2: s = iK + 1; t = min{M, (i+ 1)K}
3: {ys, . . . ,yt} = arg min

{xs,...,xt}

[
EK(xs, . . . ,xt)

−λ
∑
v∈V

t∑
l=s

s−1∑
m=1

∆v(x
l
v, y

m
v )
]

4: end for
5: return {y1, . . . ,yM}

In each iteration Algorithm 1 performs optimization with
respect to at mostK labelings {ys, . . . ,yt}, t−s+1 = K,
(less thanK in the last iteration, ifM is not dividable byK)
given already computed labelings {y1, . . . ,ys−1}. Diver-
sity of {ys, . . . ,yt} with respect to {y1, . . . ,ys−1} is pro-
vided by taking into account the sum of corresponding di-

versity terms λ
∑
v∈V

t∑
l=s

s−1∑
m=1

∆v(x
l
v, y

m
v ) playing the role of

addition to unary potentials in line 3 of Algorithm 1. Min-
imization (possibly approximate) in line 3 is done with the
clique encoding approach (12).

Overall, algorithm performs a greedy optimization simi-
lar to DivMBest (2) with the difference that in each iteration
K labelings are inferred jointly instead of a single one. The
method coincides with DivMBest (2) for K = 1 and with
clique encoding for K =M .

As we show in Section 5, Algorithm 1 significantly out-
performs DivMBest (2) already for K = 2. Larger values
of K lead to further improvements.

5. Experimental evaluation
We show benefits of our approach in two applied sce-

narios: (a) interactive foreground/background segmenta-
tion for images with provided scribbles annotations [4] and
(b) Category level segmentation on PASCAL VOC 2012
data [10].

Notation Appr. MAP Inference Div. measure

DivMBest (2) α-expansion [6] HD
ADSal (4) ADSal [28] HD
CE (13) α-expansion HD
CE-TRWS (13) TRW-S[18] HD
CEK Alg. 1 α-expansion HD
LC∗ (2) α-expansion [8] LC
LT∗ (2) Coop. cuts [16] LT
HB∗ (2) HOP-MAP [32] HB

Table 1: Diversity methods used in our experiments. Col-
umn Appr. corresponds to the selected approach: either it
is a greedy optimization of DivMBest (2) or direct opti-
mization of the energy (4), its clique encoding representa-
tion (13) or the mixed K-truncated clique encoding Algo-
rithm 1. (∗)- methods were not run by us and the results
were taken from [25] directly.

Diversity measures used in experiments are: the Hamming
distance (8) HD, Label Cost LC, Label Transitions LT and
Hamming Ball HB. The last three measures were introduced
in [25] and are briefly described in Section 3. Follow-
ing [25] we useD1⊗D2 · · ·⊗Dn to denote that the diversity
measures D1, D2, . . . Dn were sequentially applied to ob-
tain the next Mn solutions within DivMBest algorithm (2),
e.g. HD⊗LC for M = 4 means the first 2 labelings were
found with HD diversity measure and the following two –
with LC. Notation ⊕ means that diversity measures were
linearly combined. We refer to [25] for a detailed descrip-
tion.
MAP-Inference Algorithms In our experiments we used
α-expansion [6], which turns into the max-flow algorithm
in case of two labels. To estimate accuracy of infer-
ence we used TRW-S [18] and ADSal [28], which pro-
vide lower bounds. We used ADSal because contrary to
TRW-S it guarantees convergence to a solution of the LP-
relaxation [34] of the energy minimization problem and
moreover provides accuracy of the found LP solution. We
used implementations of TRW-S and ADSal provided with
OpenGM2 [1] library.

We summarized notation of the compared diversity
methods in Table 1.

5.1. Interactive segmentation

Interactive image segmentation is a possible application
scenario for diversity techniques. Instead of returning a sin-
gle segmentation corresponding to a MAP-solution, diver-
sity methods return a small number of possible low-energy
results. Following [4] we model only the first iteration of
such an interactive procedure, i.e. we consider user scrib-
bles to be given and compare the sets of segmentations re-
turned by the compared diversity methods.

Authors of [4] kindly provided us their 50 graphical



ADSal DivMBest CE-TRWS CE

M = 2, λ = 0.45 0.009 0.005 0.0 0.0
M = 2, λ = 0.5 0.013 0.008 0.0 0.0
M = 6, λ = 0.15 0.074 0.002 0.0 0.0
M = 6, λ = 0.25 0.301 0.034 0.0 0.0

Table 2: Interactive segmentation: comparison of attained
relative precisions (EM ({y}) −D)/D, where D is a dual
bound obtained by CE-TRWS. The first two methods are ap-
plied to (4), the second two used representation (13). The
LP relaxation was solved by ADSal with the relative accu-
racy of 0.001.

model instances, corresponding to the MAP-inference prob-
lem (1). They are based on a subset of the PASCAL
VOC 2010 [9] segmentation challenge with manually added
scribbles. Pairwise potentials constitute contrast sensitive
Potts terms [5], which implies that the MAP-inference is
submodular and therefore solvable by min-cut/max-flow al-
gorithms [19].
Energy comparison. Table 2 provides comparison of dif-
ferent inference methods for the diversity model (4) and its
clique encoding representation (13), for the interactive seg-
mentation dataset (λ is the same in all cases). It can be seen
that LP-relaxation of the explicit formulation (4) is far from
being LP-tight and moreover returns even worse results than
the greedy DivMBest method. As mentioned in Section 3
we believe that the reason is the repulsive diversity poten-
tials. However the same problem in its clique encoding
representation empirically turns to be LP-tight though the
problem (13) is not (permuted [29]) submodular. Moreover,
α-expansion found its optimal solutions in all considered
cases. We believe that inference results improved due to
moving the repulsive potentials to unary costs.
Quantitative and Qualitative Comparison. Table 3 and
Fig. 5 show comparison of several techniques for this
dataset. As a quality measure we used per pixel accuracy
of the best solution for each sample averaged over all test
images. Parameter λ has been chosen for each method sep-
arately via cross-validation. In Fig. 4 we show accuracy of
the CE method against DivMBest for a range of different
values of λ and number M of diverse solutions. In all these
experiments, our CE method shows significantly better ac-
curacy than its competitors.
Running time of our CE method is, as expected, higher
than those for DivMBest, however it still can be con-
sidered as practically useful: for M = 2 the average
DivMBest time is 0.45 ms whereas CE runtime is 2.9 ms,
for M = 6 times are 2.4 ms and 47.6 ms per image respec-
tively.
Energy of Labelings for a Given Diversity Level. We
also compared the total energy for M = 6 labelings for

M=1 M=2 M=6

DivMBest∗[4] 91.57 93.16 95.02
HB[25]∗ 91.57 93.95 94.86
DivMBest∗⊗HB∗[25] - - 95.16
DivMBest∗⊕HB∗[25] - - 95.14
CE 91.57 95.13 96.01

Table 3: Interactive segmentation: averaged pixel accura-
cies.
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Figure 4: Pixelwise accuracy comparison for interactive
segmentation for different values of λ and M .

DivMBest and CE methods. Parameter λ for DivMBest
was fit for each sample to get equal or less diversity than
those provided by CE algorithm. We managed to attain al-
most equal diversities for 44 out of 50 instances and in all
these cases the total energy

∑m
i=1E(yi) of obtained label-

ings yi was smaller for CE compared to DivMBest. This
shows practical superiority of our approach.

5.2. Category level segmentation

The category level segmentation from PASCAL VOC
2012 challenge [10] contains 1449 validation images with
known ground truth, which we used for evaluation of diver-
sity methods. Corresponding pairwise models with contrast
sensitive Potts terms were used in [25] and kindly provided
us by authors. Contrary to interactive segmentation label
sets contain 21 elements and hence the respective MAP-
inference problem (1) is not submodular anymore. However
it still can be approximatively solved by α-expansion.

Because of a significant number of labels we were un-
able to use CE approach forM > 5 and resorted to CE2 and
CE3. Results of the quantitative evaluation are presented
in Table 4, where each method was used with parameter
λ optimally tuned via cross-validation on validation set in
PASCAL VOC 2012. Exemplary comparison of CE and



Image

y1

D
iv
M
B
es
t 62.14

y2

60.71

y3

63.16

y4

61.77

y5

83.87

y6

60.80

GT

y1

O
u
r
A
p
p
ro
ac
h 89.95

y2

66.96

y3

62.16

y4

60.54

y5

59.78

y6

56.18

Image

y1

D
iv
M
B
es
t

93.15

y2

94.35

y3

88.67

y4

86.36

y5

86.75

y6

91.41

GT

y1O
u
r
A
p
p
ro
ac
h 92.18

y2

97.89

y3

96.25

y4

83.01

y5

78.29

y6

76.67

Image

y1

D
iv
M
B
es
t 89.17

y2

90.47

y3

93.30

y4

87.85

y5

89.40

y6

83.58

GT

y1

O
u
r
A
p
p
ro
ac
h 80.30

y2

96.48

y3

90.46

y4

89.01

y5

87.93

y6

86.67

Image

y1

D
iv
M
B
es
t

75.34

y2

84.31

y3

76.86

y4

74.28

y5

80.23

y6

68.05

GT

y1O
u
r
A
p
p
ro
ac
h 88.61

y2

90.68

y3

84.87

y4

67.36

y5

59.63

y6

57.12

Figure 5: Comparison for samples from interactive segmen-
tation dataset. Number above each solution is a correspond-
ing per pixel accuracy.

DivMBest is shown in Fig. 6. It turns out that even the
suboptimal optimization method CE2 outperforms all com-
petitors, except CE3 and CE, which show even better seg-
mentation accuracy.
Average running times per image for M = 5 for
DivMBest, CE2, CE3 and CE methods are 0.01, 0.14, 2.28
and 733 seconds, respectively. For M = 15 times are 0.03,
0.39 and 5.87 seconds for DivMBest, CE2, and CE3, re-
spectively. We observe approximately linear growth of run-
ning time wrt number of nodes in the original problem for
for DivMBest, CE2, CE3 and CE.

6. Conclusions and Outlook
We proposed a novel non-greedy approach for the prob-

lem of finding M diverse low energy labelings. This is
done by solving an energy minimization in a specially con-
structed graphical model. We show that inference in this
model can be addressed by graph-cut based methods like α-
expansion if the MAP-inference in the original model was
solvable by these methods. Our experiments suggest that
even with a Hamming distance as diversity measure our
method qualitatively and quantitatively outperforms com-
peting diversity techniques using more involved measures.

M=1 M=5 M=15 M16

DivMBest∗[4] 43.43 51.21 52.90 -
HB∗[25] - 51.71 55.32 -
LC∗[25] - 46.28 50.39 -
LT∗[25] - 45.92 46.89 -
DivMBest∗⊕HB∗[25] - - 55.89 -
HB∗⊗LC∗⊗LT∗[25] - - 56.97 -
DivMBest∗⊗HB∗⊗LC∗⊗LT∗[25] - - - 57.39
CE - 54.22 - -
CE2 - 53.08 57.46 57.76
CE3 - 54.14 57.76 58.36

Table 4: PASCAL VOC 2012. Intersection over union qual-
ity measure. The best segmentation out of M is considered.
Notation ’-’ correspond to absence of result due to compu-
tational reasons or inapplicability of the method.
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Figure 6: Comparison for samples from Pascal VOC 2012
dataset. Number above each solution is a corresponding in-
tersection over union quality measure.

In future we plan to improve the computational effi-
ciency of our method.
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Proof of Theorem 1: “Let Lv = Lu, uv ∈ F and
functions θuv be semi-metrics (metrics). Then functions
θ̂uv(zu, zv) defined as in (11) are semi-metrics (metrics)
as well.”

Proof. Let yiv ∈ L, v ∈ V and i = 1, . . . ,M be arbitrary
|V||M | labels. Let zv be defined as zv = (y1v , . . . , y

M
v ) like

in Section 4. We show that if conditions of Definitions 1
and 2 hold for θuv , uv ∈ E , then they hold for θ̂uv as well:

(i) Summing up θuv(y
i
u, y

i
v) ≥ 0 over i = 1, . . . ,M

gives that θ̂uv(zu, zv) =
∑M
i=1 θuv(y

i
u, y

i
v) ≥ 0.

(ii) From θuv(y
i
u, y

i
v) = 0 iff yiu = yiv and

θuv(y
i
u, y

i
v) ≥ 0 otherwise, follows that θ̂uv(zu, zv) =∑M

i=1 θuv(y
i
u, y

i
v) = 0 iff zu = zv .

(iii) Summing up θuv(yiu, y
i
v) = θuv(y

i
v, y

i
u) over i =

1, . . . ,M gives that θ̂uv(zu, zv) =
∑M
i=1 θuv(y

i
u, y

i
v) =∑M

i=1 θuv(y
i
v, y

i
u) = θ̂uv(zv, zu).

(iv) Inequality θuv(yiu, s
i) + θuv(s

i, yiv) ≥ θuv(y
i
u, y

i
v)

holds for any si ∈ L and i = 1, . . . ,M according to Defi-
nition 2. Summing it up over i gives that

M∑
i=1

(
θuv(y

i
u, s

i) + θuv(s
i, yiv)

)
≥

M∑
i=1

θuv(y
i
u, y

i
v)︸ ︷︷ ︸

θ̂uv(zu,zv)

(15)

The left-hand side of (15) can be rewritten as

M∑
i=1

θuv(y
i
u, s

i) +

M∑
i=1

θuv(s
i, yiv)

= θ̂uv(zu, s) + θ̂uv(s, zv) , (16)

where s denotes (s1, . . . , sM ).
Plugging (16) back to (15) finalizes the proof.
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