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Abstract— This work addresses the task of camera localiza-
tion in a known 3D scene given a single input RGB image.
State-of-the-art approaches accomplish this in two steps: firstly,
regressing for every pixel in the image its 3D scene coordinate
and subsequently, using these coordinates to estimate the final
6D camera pose via RANSAC. To solve the first step, Random
Forests (RFs) are typically used. On the other hand, Neural
Networks (NNs) reign in many dense regression tasks, but are
not test-time efficient. We ask the question: which of the two
is best for camera localization? To address this, we make two
method contributions: (1) a test-time efficient NN architecture
which we term a ForestNet that is derived and initialized
from a RF, and (2) a new fully-differentiable robust averaging
technique for regression ensembles which can be trained end-
to-end with a NN. Our experimental findings show that for
scene coordinate regression, traditional NN architectures are
superior to test-time efficient RFs and ForestNets, however,
this does not translate to final 6D camera pose accuracy where
RFs and ForestNets perform slightly better. To summarize, our
best method, a ForestNet with a robust average, which has an
equivalent fast and lightweight RF, improves over the state-
of-the-art for camera localization on the 7-Scenes dataset [1].
While this work focuses on scene coordinate regression for
camera localization, our innovations may also be applied to
other continuous regression tasks.

I. INTRODUCTION

Given an RGB image of a known 3D scene, our goal is
to infer the 6 degree of freedom pose of the camera - a task
known as camera localization. To do this, current state-of-
the-art methods [2], employ a two-stage pipeline. In the first
stage, for each pixel in the image, a continuous 3D coordinate
of the scene is regressed. These are called scene coordinates
and uniquely identify each part of the scene (Fig. 1). In
the second stage, sparse sets of four scene coordinates are
sampled and fed into a RANSAC-based optimizer which
estimates the final camera pose. In this work, we analyze
the first stage of this pipeline, the dense regression of
scene coordinates. State-of-the-art methods have typically
employed regression Random Forests (RFs) to accomplish
this task [1, 2, 3]. The RFs have the advantage of being
both memory and test-time efficient, two important features
when considering camera localization in real-time navigation
and mobile robotics. In this work, we analyze equivalently-
efficient and non-efficient neural network (NN)-based archi-
tectures to accomplish the task of scene coordinate regression
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Fig. 1. The concept of scene coordinate regression. (Top) Given a known
scene where each surface point has a unique 3D coordinate (here shown as
a distinctive color), the goal is to locate the camera with respect to this
scene. (Bottom) To achieve this, we need to predict at test time the scene
coordinate for each pixel in an input RGB image (black pixels in the ground
truth correspond to unknown scene coordinates).

for camera localization. Our choices of architectures are
inspired by the work of [4] who propose a method for
transforming a binary decision tree into a two-hidden-layer
NN. We utilise this tree-to-NN mapping by taking a RF
trained for 2D-to-3D scene coordinate prediction in a known
scene [2] and mapping each of its trees to an equivalent two-
layer NN. We collectively refer to this ensemble of NNs as
a ForestNet. We fine-tune the ForestNet on a subset of the
data that was used to train the original RF. At test-time, we
obtain scene coordinate predictions from the ForestNet and
feed them into a RANSAC-based optimizer to extract the 6D
camera pose. This pipeline is illustrated in Fig. 2.

The motivation for exploring NN architectures based on
this RF-to-NN mapping is two-fold. Firstly, the mapping
constructs a NN that is derived from a learned RF: the
tree topologies define the active connections in the network
and the trees’ learned parameters specify the initialization of
all network weights. This makes it possible to preserve the
tree topologies when training the ForestNet. The optimized
ForestNet can thus be made efficient again by mapping back
to the fast and memory-compact RF version of itself as
done in [5]. With this ability, we explore variants of the
ForestNets where we allow different parts of the network to
be optimized, in some cases retaining the ability to map-
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Fig. 2. Training (yellow) and test (blue) pipeline using a ForestNet for camera localization. (1) A RF is trained for a known 3D scene. (2) A
RF-to-NN mapping is used to transform the trained RF into an ensemble of parallel tree-like networks, collectively referred to as a ForestNet. A subset
of the original training data is used to fine-tune the ForestNet, with an additional robust averaging module which can be appended to and integrated into
the training of the network. At test time, a sparse set of pixels is sampled from a RGB test image and passed through the ForestNet to obtain a set of
3D scene coordinates (either robustly averaged or not). (3) The scene coordinates are passed to the RANSAC optimizer of [2] which generates and then
refines a set of camera pose hypotheses until a final 6D camera pose remains. GT = Ground Truth Scene Coordinates. Best viewed in color.

back and in other cases not. The second motivation for
exploring this mapping is that it allows for the construction
of an ensemble of NNs. This ensemble is fully differentiable
making it amenable to traditional NN training paradigms,
unlike traditional RFs. Further, we can apply a robust aver-
aging to the ensemble’s outputs. In particular, we introduce
a variant of the 3D geometric median and implement it
as a fully differentiable NN module. We observe that by
appending this module onto the ForestNet, either post-hoc
or integrated into the end-to-end training of the network, we
improve on the accuracy of the scene coordinate predictions
by 6.8% and 7.8%, respectively, over a ForestNet without
averaging. In addition to this, we compare a ForestNet to
a deep Convolutional NN (CNN) trained specifically for
dense scene coordinate regression. The CNN achieves better
scene coordinate predictions but under-performs the RFs
and ForestNets in terms of final 6D camera pose accuracy.
Importantly, this deep CNN cannot be mapped to a RF, and
hence cannot enjoy their fast test-time speeds and lightweight
memory requirements. All these results shed light on the best
approaches to use for other continuous regression tasks.

Based on the above, our key contributions are as follows:

1) A new NN architecture which we term a ForestNet
for dense scene coordinate regression. The ForestNet
architecture is derived and initialized from a RF. We
observe that for the camera localization task, the best
performing ForestNet is test-time efficient with a low
memory cost since it can be mapped back to a RF.

2) A fully-differentiable 3D geometric median filter im-
plemented as a NN module for robust averaging. We
append this module to a ForestNet and show that
when applied post-hoc or in end-to-end training of the
ForestNet, the scene coordinate accuracy improves.

3) An engineered solution to reduce the memory require-
ments of the ForestNets by a factor of at least four,
allowing full training and testing on a single GPU.

4) An improvement over the state-of-the-art for camera
localization on the 7-Scenes dataset [1] using our best
method, an efficient ForestNet with robust averaging.

II. RELATED WORK

A. Camera (re)localization

Camera localization has traditionally been formalized as a
descriptor matching problem, addressed either using whole
image-based approaches with keyframe/keypose pairs, or
using sparse feature-based approaches with keypoints. In
keyframe-based methods [6, 7, 8], a descriptor is computed
for a (whole) query image and is compared to the descriptors
of a set of saved images (keyframes), each keyframe with an
associated ground-truth camera pose (keypose). Keypoint-
based methods instead extract interest points (keypoints)
and attach a feature descriptor and 3D location to each.
The camera pose of a query image is then estimated us-
ing a sparse set of keypoint 2D-to-3D correspondences
[9, 10, 11, 12]. Despite their successes (e.g. in visual SLAM
[13, 14, 15, 16]), a central challenge in both approaches is
the (often online) selection of keyframes and keypoints such
that they provide good spatial coverage of the scene.

Departing from a model-based approach, [1] propose
Scene Coordinate Regression (SCoRe) forests. They learn
dense 2D pixel to 3D scene coordinate correspondences
(relative to a scene-specific reference frame) using a dataset
of RGB-D images and ground truth camera poses. With a
sparse set of these correspondences, camera pose hypothe-
ses are generated and a RANSAC-based optimization and
refinement produces the final camera pose. A limitation of
their formulation, however, is the inevitable many-to-one
mapping of correspondences, making it poor at resolving
scene ambiguities. Valentin et al. [3] tackle this problem
by replacing the single mode in the forest leafs with multi-
modal mixtures of Gaussians, and then, at test time, using



the support and spread of each mode to aid the follow-
up RANSAC optimizer. Along the same vein of exploiting
uncertainty for performance gains, Brachmann et al. [2]
introduce a stacked (auto-context) classification-regression
version of the forest of [3], which they use to achieve state-
of-the-art results in object pose estimation and results on-par
with [3] in camera localization. Unlike [3], their results also
include a case for RGB-only.

Inspired by successes in deep learning for a multitude
of tasks, [17, 18] were first to propose the use of a deep
CNN as an end-to-end 6D camera pose regressor using RGB
and RGB-D images as input. While they achieve moderate
results in large-scale outdoor scenes, their performance in
small, indoor scenes is one order of magnitude worse in pose
translation error than [2] and [3]. This suggests that the inter-
mediate step of predicting 2D-to-3D point correspondences
is important for good camera pose estimation.

B. Random Forests as Neural Networks

Sethi [4], Welbl [19] propose a class of two-hidden-layer
NNs whose architecture and initialization can be derived
from a trained decision tree. The motivation behind this
mapping is that it transforms a RF into a differentiable, end-
to-end learnable structure which can then be further refined
(i.e. fine-tuned) from a data-driven starting point when only
a small amount of training data is available. Richmond et al.
[5] extend this mapping to a stacked auto-context RF, and
use the equivalent deep and sparsely connected CNN to
achieve improved results over the original RF stacks on two
small-scale segmentation tasks. They additionally propose an
approximate reverse mapping, from CNN to RF, such that
the optimized network parameters can be used to update the
original RF (its topology fixed) for faster test-time evaluation.
Their optimized RF outperforms the original RF on the
segmentation tasks, but not the mapped CNN. Our work
builds on this and employs the forward mapping on a non-
stacked RF trained on 2D-to-3D scene coordinates.

C. Globally differentiable Random Forests

RFs are capable of handling high-dimensional data and
multi-class problems, are fast to train and test, and do not
require large amounts of training data. RFs, however, are
trained in a greedy fashion, with each split node optimizing
some local splitting criterion conditioned on the samples that
it receives. Additionally, each tree is trained independently
and hence there is no principled minimization of a global
loss objective across the whole forest. To address the lim-
itations of greedy forest construction, inspired by boosted
methods, [20] grow a forest breadth-wise, layer by layer,
with the current layer’s split node parameters optimized
based on an across-forest loss function. Ren et al. [21]
instead propose a global post-hoc refinement and pruning
of a greedily-trained RF using all training samples. They re-
learn all leaf parameters and generate more compact RFs
with greater generalisation capacity. Norouzi et al. [22] look
at the optimization of a single tree and present a convex-
concave upper bound which they use as a proxy for a

global loss function. They optimize a tree’s (oblique) split
functions jointly with its leaf parameters using stochastic
gradient descent, imposing regularization constraints such
that the hard binary decisions of the split nodes and the 1-
of-l encoding of leaf membership, where l is the number of
leafs, is preserved. Fuzzy or soft decision trees [23] relax
this constraint and model split nodes as sigmoidal functions:
a training sample is routed with some probability p to its
left child, and 1−p to its right child. This allows samples to
be assigned partial membership to all leaf nodes rather than
full membership to a single one. Much like the tree-to-NN
mapping of [4], this fuzzification allows for the otherwise
local and greedy tree construction to be reframed as a (tree-
wide) differentiable optimization problem. More recently,
[24] unify the feature learning capability of deep CNNs with
the ensemble nature of RFs. Similar to [23] in their use
of sigmoidal split node functions, they propose a globally
differentiable RF by appending a RF to a deep CNN such
that the activation of each CNN output node drives the soft
decision function of a RF split node. In our work, using the
mapping of [4], we explore all variants of this: learning leaf
parameters only, learning leaf and split node parameters, and
finally relaxing the tree constraint and allowing for leaf, split
and the tree topologies to be learned.

III. RANDOM FORESTS TO FORESTNETS

In this section, we present the scene coordinate regression
forests of [1] and show how they can be applied to the tree-
to-NN mapping of [4, 19] for multi-dimensional regression.

A. Scene coordinate regression

For each 2D pixel in an image p ∈ R2, there exists a
3D scene coordinate label m ∈ R3 (see Fig. 1). We can
compute m as m = Hx, where H is the 6D camera pose
of the image and x is the 3D camera coordinate obtained
by back-projecting pixel p using its depth value. A RF is
greedily trained with a set of (f(p),m) pairs, where f(·) :
R2 → RD is the D-dimensional feature vector of a pixel
(here D = 1000). In training, each split node is assigned
(θn, τn) from a pool of N candidates, where θn are the
feature parameters (see below), τn is a scalar threshold and
n ∈ {1, .., N}. Each leaf node l then stores some empirical
3D distribution Pl(m) of the samples that have arrived at
that leaf. In [1], each leaf distribution is represented as a set
of modes found using mean-shift. Brachmann et al. [2] and
Valentin et al. [3] instead fit 3D mixtures of Gaussians to
each leaf.

More formally, the decision function at split node s takes
the form:

df(p;θn, τn) =
[
fθn

(p) ≥ τn
]

(1)

where [·] evaluates the boolean condition and fθn
(·) is the

feature response function. If df(p;θn, τn) = 0, the sample
is routed to the left child, and if df(p;θn, τn) = 1 then
it is routed to the right child. In general, fθn

(·) can be a
function of multiple features, however, here we opt for simple
axis-aligned splits: each split node selects a single feature



d ∈ {1, · · · , D} and compares it to its threshold τn. In our
case, features are simple differences of RGB pixel values:

fθn
(p) = I(p+ δ1, c1)− I(p+ δ2, c2) (2)

where I is the image intensity value of pixel p offset by
δi = (xi, yi) and indexed by channel ci ∈ {R,G,B}. Thus
the feature parameters are θn = {δ1, δ2, c1, c2}.

B. RF to NN mapping

As highlighted in [4], the mapping from RF to NN is
useful in two ways:

• It defines a specific NN architecture in terms of the
number, structure and connections of the nodes

• It uses the learned trees’ structures and leaf distributions
to initialize all network parameters.

We wish to take a trained RF for scene coordinate regression
and construct an ensemble of NNs. The following describes
the mapping of a single tree to a single two-hidden-layer NN
(Fig. 3)

Let a tree consist of split nodes s̃j ∈ S̃ and leaf nodes l̃k ∈
L̃. The corresponding NN will have its first layer evaluating
the decision functions df(·) of all of the split nodes in the
tree simultaneously, and its second layer encoding the leaf
membership of each sample (that is, to which leaf each
sample is routed).

Split layer. The split nodes s̃j of the tree form the first
network layer, L1, consisting of equivalent split neurons sj
whereby a tree with J split nodes will have J neurons in L1.
As input to the network, each pixel p provides its feature
vector f(p) ∈ RD. Based on each split node’s associated
(θn, τn), its corresponding split neuron sj selects the feature
with index d ∈ {1, ..., D} such that its activation a(sj)
behaves as follows:

a(sj) =

{
−1, if fθn(p) < τn

1, if fθn(p) ≥ τn
(3)

corresponding to routing pixel p to the left or right child,
respectively. To implement this, a sparse connection matrix
is defined between the network input and L1 such that the
dth channel of the input vector is connected to neuron sj
with weight wd,sj = c01, where c01 is some constant value.
All other incoming weights to sj are zero (purple to green
connections in Fig. 3). The bias of neuron sj is bsj = −c01∗
τn. Implemented as a simple linear layer, each neuron sj in
L1 thus computes:

c01 ∗ fθn
(p)− c01 ∗ τn (4)

and this result is assigned to a(sj) where a(·) = tanh(·).
Layer L1’s activation pattern thus encodes the to-left-child
or to-right-child evaluation of each split node in the tree with
one forward pass through L1.

The hardness of the tree’s decision functions are controlled
by the hyperparameter c01: a high value of c01 ensures that
a(sj) approaches −1 very closely if s̃j routes a sample left,
and a(sj) approaches +1 very closely if s̃j routes a sample
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Fig. 3. Forward mapping of a RF to a NN. (Top) A single tree is
mapped to a two-hidden-layer NN. At test time, each split node performs a
single feature selection and a binary threshold test before routing a sample
onwards. This is mimicked in the NN through the activation of specific
connections. (Bottom) The single tree-to-NN mapping is replicated for each
of the T trees in a forest. Note: bias nodes are not shown here for readability.
Purple indicates feature vector. Green indicates split layer. Red indicates leaf
layer. Blue indicates output scene coordinate layer. Orange indicates robust
geometric median applied to multiple NN outputs. Dotted lines indicate
activation functions (L1 : tanh(·) and L2 : sigm(·) or softmax(·)).
Best viewed in color.

right. A lower value of c01 allows for samples to be routed
partially left and right.

Leaf layer. L2, the second layer of the network, is
constructed from all the leaf nodes l̃k in the tree, such that
a tree with K leaves will have K leaf neurons in L2. This
layer must interpret the activation pattern of L1 such that L2

encodes the leaf to which each sample is directed.
To implement this, a sparse set of connections is con-

structed between L1 and L2 (green to red connections in
Fig. 3). A connection exists between a split neuron sj and
a leaf neuron lk if sj is on the path to lk in the tree. This
means that a leaf node at depth r in the tree, corresponds to
a leaf neuron with r incoming connections in the NN.

The weights of these connections are such that if l̃k is
in the left sub-tree of s̃j then wsj ,lk = +c12, otherwise
wsj ,lk = −c12, where c12 is again some constant. If s̃j is not
on the path to l̃k, then no connection exists (or equivalently,
wsj ,lk = 0). With this formulation, the active leaf has
incoming weights that are sign-matched to the activations on
L1 of the split nodes on its path. This makes the leaf neuron
maximally activated. To distinguish leafs at different depths,
the bias of a leaf neuron is such that blk = −c12∗(|P (l̃k)|−1)
where P (l̃k) is the path length to l̃k. This sets the value of
the active leaf neuron to +c12, and the values of all other
leafs to ≤ −c12. The activation function a(·) = sigm(·)
is then applied to L2 resulting in the L2 activation pattern
behaving like a binary switch, where the active leaf neuron
a(lk) is +1, and all others are set to zero. This behaviour



mimics a hard tree and can be enforced by assigning a high
value to c12. By relaxing c12 (and c01) and replacing a(·)
with a softmax activation, we can relax tree hardness.

Scene coordinate layer. Each leaf l̃k in the RFs of [2]
contains a mixture of Gaussians over 3D scene coordinates
m. Let the mode with the highest support in leaf l̃k, denoted
mk ∈ R3, become the 3D scene coordinate representing that
leaf. At test time, a sample reaching leaf l̃k will take on label
mk. To implement this, the network output consists of three
nodes, q ∈ R3, which are fully connected to all leaf neurons
in L2 (red to blue connections in Fig. 3). The weights of
the three connections between leaf neuron lk and the three
output nodes q correspond to the x, y and z entries of mk.
This can be denoted as wlk,q = mk. The output bias is
bq = 0. With this formulation, for a given sample, a series
of zeros and a single +1 on the active leaf in L2 result in
the mk of that active leaf appearing on the output nodes q.

Trees to ForestNets. This mapping naturally extends itself
to a RF with multiple trees where for a forest of T trees, an
ensemble of T NNs can be constructed, collectively referred
to as a ForestNet (Fig. 3). At test time, the T predictions from
a RF or its equivalent ForestNet can be used independently
or combined to produce a single 3D prediction.

Feature learning. In recent years, it has become evident
that the power of neural networks lies in their representation
learning capability. Our framework is amenable to this by
prepending feature learning layers to a ForestNet and by
allowing linear combinations of features (purple weights) to
be learned for each split node. We, however, leave this to
future work, with the focus here being on the usefulness of
the tree-to-NN mapping.

IV. ROBUST GEOMETRIC MEDIAN AVERAGING

A ForestNet of T NNs produces T scene coordinate
predictions q1,q2, . . . ,qT which can be robustly averaged
to produce a single scene coordinate, denoted q̃ ∈ R3. The
robust average we use is a variant of the geometric median1.
For simplicity, we refer to it as simply the geometric median.

We start by calculating the mean of the original predic-
tions. With this as initialization, we continue with a fixed
number of steps of an iteratively re-weighted least squares
algorithm. Each iteration calculates a weighted average:

q̃t+1 =

∑T
i=1 w

t
iqi∑T

i=1 w
t
i

(5)

of the original predictions. For the first 10 iterations we use
the weights:

wt
i =

1

‖q̃t − qi‖2
(6)

This is equivalent to the Weiszfeld algorithm [25] which
approximates the geometric median. While this result can be

1An extension of the median to higher dimensions. It is defined as the
point minimizing the sum of Euclidean distances to all points in a set of
discrete sample points.

used directly as a robust average, we find that it is beneficial
to apply a further 10 iterations using weights with the form:

wt
i = exp(−‖q̃

t − qi‖22
2σ2

) (7)

corresponding to a mean-shift algorithm with a Gaussian
kernel of standard deviation σ (here σ = 2.5cm). The
iterations converge to a locally dominant mode. The result
of the last iteration is our final robust average q̃.

Note, that since each of the iterations above is simply a
weighted average, the entire process is fully differentiable
which allows us to implement the robust average as a multi-
layer module (which we call GM) which has no learnable
parameters. We investigate the use of our robust averaging
in two different settings:

1) The GM module is appended to the ForestNet and the
full network trained end-to-end. We call this eGM (for
end-to-end).

2) Each ForestNet tree is trained independently and the
GM module is appended post-hoc at test-time. We call
this pGM (for post-hoc).

We apply these two types of robust averaging to all ForestNet
variants, as well as to a modified RF from [2]. Note, however,
with an RF averaging can only be done post-hoc (see RF2-
pGM in Section VI-D).

V. NETWORK SPLITTING

Although the RF-to-NN mapping enforces sparse con-
nectivity between layers L1 and L2, sparse operation on
GPU is not always efficient. For this reason, L1 and L2

are implemented as fully connected layers with the inactive
connections set and held at zero. The state-of-the-art results
of [2] use RFs of 3−5 trees with depths between 15 and 16.
This corresponds to ∼37000 split and ∼37000 leaf nodes
per tree. This constructs a network on the order of 1.4
billion parameters per tree. Practically, with floating-point
operations, this requires 5.6GB of memory per tree, rapidly
making the full ForestNet difficult to fit on a single GPU.
To tackle this, a network splitting strategy is implemented
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whereby each trained tree is decomposed into a set of sub-
trees, each mapped to a sub-NN with the weights of the sub-
trees’ root nodes shared across the sub-NNs (see Fig. 4). If
we let the original tree depth be r, and the depth of the sub-
trees be r̃, such that 0 < r̃ ≤ r, then the total number of
parameters in the ForestNet can be reduced by a factor of:

2r − 1

2r̃ − 1 + r − r̃
(8)

Using this splitting strategy, we are able to reduce each full
ForestNet from ∼28GB to ∼7GB, allowing for effective
training and testing on a single GPU.

VI. EXPERIMENTS
A. Datasets

We use the 7-Scenes dataset [1] which contains RGB-D
images captured with a handheld Kinect camera (640× 480
resolution) and associated ground-truth camera pose calcu-
lated using the Kinect Fusion implementation of [26]. RGB
and depth images are manually registered. Depth images are
used to pre-compute the ground truth scene coordinates per
frame, however, only RGB images are used at test-time.

B. Hardware

We train and test all NNs on NVIDIA GeForce GTX TitanX
and all RFs on Intel R©CoreTM i7-3770K CPU @3.5GHz.

C. Performance metrics

We measure performance on (1) the accuracy of the
scene coordinate predictions, and (2) the final camera pose
accuracy. We quantify (1) in terms of the number of scene
coordinate predictions considered to be inliers and the mean
Euclidean distance of these inliers from their ground truth
scene coordinate labels. A prediction is counted as an inlier
if its Euclidean distance to its ground truth label is < 10cm.
We quantify (2) in the same way as [1, 2, 3] with a 5cm & 5◦

criterion: the camera pose is taken to be correct if it is within
5cm translation and 5◦ rotation from the ground truth camera
pose. We report the percentage of correct camera poses as
well as the average median camera error (we calculate the
median per scene and average across scenes).

D. Methods

We define the following baselines:
• The current state-of-the-art in camera localization [2]

which we refer to as RF1.
• A modified version of RF1 which we call RF2. RF2 has

5 rather than 3 trees, no auto-context and its leafs hold
only the single highest-supported mode. RF2 is used to
map to the ForestNets.

• A deep CNN trained to predict 2D-to-3D scene coordi-
nates in a patch-like manner. This CNN’s architecture
is based on AlexNet [27] but is trained from scratch.
Instead of using the standard two channel architecture,
we use a single channel with double capacity (96 filters
in the first conv layer and 4096 neurons in the fully-
connected layers). We also replace the 1000 neuron

output layer with 3 neurons to predict a single 3D scene
coordinate. We refer to this as D-NET (for deep).

We also explore the following three variants of ForestNets:
• ForestNet Leafs (fNET-L) in which only the leaf

weights (blue) are learned. fNET-L preserves the tree
topologies and can be mapped back to a fast and
memory-efficient RF with optimized leaf modes.

• ForestNet Leafs & Splits (fNET-LS) in which the leaf
parameters and the split node thresholds (i.e. the biases
between the network input and L1) are learned. fNET-
LS also preserves tree topology, however, since the split
thresholds can be adjusted, it is likely that multiple leaf
nodes are activated. Because of this, mapping back to
an RF is possible but only an approximation [5].

• ForestNet Leafs, Splits & Topology (fNET-LST) in
which the leaf parameters, split node thresholds and
the tree topologies (red weights) are learned. fNET-LST
cannot be mapped back to a RF since the tree structures
are not preserved.

For all of our methods, during the second stage of
RANSAC-based pose optimization, we increase the number
of pose hypotheses drawn from 256 (as used in [2]) to 1280
to increase the chance of finding a good solution.

E. Training

We train ForestNets with a loss on the Euclidean distance
between the prediction q (or robust prediction q̃) and ground
truth scene coordinate m:

L =

N∑
i=1

‖q−m‖2 (9)

where N is the number of training samples. Training is
done using standard backpropagation via stochastic gradient
descent, with batches of size 20 and a learning rate of 0.001.

VII. RESULTS

Table I shows our quantitative results. We summarize our
key observations as follows:

• Of the fast methods, RF2-pGM (RF with post-hoc
geometric median) is the best performing. It supersedes
the current state-of-the-art of [2] by 7.8% in inlier count
and 9.3% in proportion of correct final camera poses.

• Of the ForestNet variants, fNET-L achieves the best
inlier count of 24.6% (with eGM) and the best cam-
era pose error of 3.9cm 1.9◦ (with pGM). While its
inlier count is not as good as RF2-pGM, fNET-L-
pGM achieves on-par performance with RF2-pGM in
the final camera pose accuracy. fNET-L-pGM can thus
be used as an equivalent and importantly differentiable
replacement of a traditional RF. This would allow, for
example, a ForestNet to be prepended to a differentiable
RANSAC module (see recent work by [28]) thus mak-
ing a complete end-to-end differentiable camera pose
estimation pipeline.

• Our robust geometric median filter offers notable per-
formance gains. Across all RF and ForestNet methods,



TABLE I
COORDINATES: MEAN INLIER COUNT (BRACKETS SHOW MEAN EUCLIDEAN DISTANCE ERROR OF INLIERS). CAMERA POSE: MEDIAN TRANSLATION AND ROTATION ERROR,

AVERAGED OVER SCENES (BRACKETS SHOW PERCENTAGE OF POSES MEETING 5cm & 5◦ CRITERION)

RF1 [2] RF2 fNET-L fNET-LS fNET-LST D-NET PoseNet [17]

Overview Description state-of-the-art
RF [2]

RF of [2] with
adapted

parameters

fNET which
learns leafs. Can
be mapped-back

to RF

fNET which
learns leafs &
splits. Can be
approximately

mapped back to
RF

fNET which
learns leafs,
splits & tree

topology. Cannot
be mapped back

to RF

NN for dense
scene coordinate

regression

NN for direct
6D camera pose

regression

Speed fast fast fast slow* slow slow slow
Memory low low low high* high high high

Accuracy
w.r.t noGM 21.6% (5.2cm) 18.3% (4.9cm) 16.8% (4.9cm) 13.4% (5.6cm) 17.3% (5.6cm) 45.3% (4.7cm) n/a

Scene pGM n/a 26.1% (4.7cm) 23.6% (4.7cm) 17.9% (5.4cm) 21.1% (5.5cm) n/a n/a
Coordinates eGM n/a n/a 24.6% (4.8cm) 21.0% (4.9cm) 12.9% (5.5cm) n/a n/a
Accuracy

w.r.t. noGM 6.1cm 2.7◦

(55.2%)
4.2cm 2.1◦

(62.6%)
4.6cm 2.2◦

(61.3%)
7.6cm 2.9◦

(36.7%)
6.2cm 2.9◦

(50.5%)
4.6cm 2.1◦

(57.7%) 44.0cm 10.4◦

Camera pGM n/a 3.8cm 1.9◦

(64.5%)
3.9cm 1.9◦

(63.9%)
6.7cm 2.5◦

(39.1%)
5.3cm 2.6◦

(52.8%) n/a n/a

Pose eGM n/a n/a 4.4cm 2.1◦

(62.0%)
4.5cm 2.2◦

(60.4%)
12.2cm 7.0◦

(39.6%) n/a n/a

*Approximate map back to fast, memory-efficient RF is possible, but with potential performance loss

relative to noGM, inlier counts improve by 5.7% with
pGM and 3.7% with eGM. The proportion of cor-
rect final camera poses improves by 2.4% with pGM
and 4.6% with eGM. The non-deterministic nature of
RANSAC obscures the true reason for the improvement
of eGM over pGM in final camera pose (since it is
inferior in inlier count performance), however it is clear
that geometric median robust averaging offers gains
over using no robust averaging at all.

• D-NET supersedes all of the noGM methods in terms
of scene coordinate performance, with a significantly
higher number of inliers than both the RFs and Forest-
Nets. This, however, does not translate to D-NET having
the best camera pose accuracy. Overall, we observe
that scene coordinate accuracy and final camera pose
accuracy are only mildly correlated, for the reason
mentioned above.

• The two-part pipeline with intermediate scene coordi-
nate prediction has significant gains over direct camera
pose regression. All our methods exceed the final cam-
era pose accuracy of [17] by an order of magnitude.

Speed and memory. A 5-tree RF has a model size of
∼250MB and can obtain dense coordinate predictions for a
frame on CPU in 100-150ms (equivalently 5-10ms on GPU).
This is low memory and fast. An equivalent ForestNet has
a model size of ∼7GB (although many parameters are fixed
at zero) and it can densely process a frame in a patch-like
manner in 5-7 minutes on GPU. This is high memory and
slow. If the ForestNet can be mapped back to an RF (like
fNET-L and fNET-LS) then it can be transformed to a fast
and lightweight version of itself. A D-NET can be stored in
∼500MB and can densely process an image in 1-2s. Unlike
a ForestNet, however, a D-NET cannot be mapped to a RF.

Learning tree parameters. The RFs of [2] and fNET-L
differ in the way that their leaf modes are optimized: with
fNET-L, only the leaf weights are optimized during training.

By choice of our training loss, we optimize the sum of
Euclidean distances of all samples reaching a leaf. This is
equivalent to calculating the geometric median of all samples
in that leaf. This is different (and seemingly inferior) to
running mean-shift on the set of samples and choosing the
mode with largest support, as the RFs do. Although the
geometric median is robust to outliers, they still influence the
prediction to some extent, which is not the case with mean-
shift. This interpretation no longer holds when we train with
the appended geometric median layer (eGM). In this case,
the leaf predictions can adapt in a way that the resulting
geometric median is accurate. In general, this improves the
predictions’ accuracy. We also observe that initialising the
ForestNets as soft trees and allowing them to learn more
parameters (fNET-LS and fNET-LST) generally negatively
affects the scene coordinate and camera pose accuracy.
This suggests that with too many degrees of freedom, the
ForestNets cannot be properly optimized from their RF-
initialized starting points.

Scene coordinates to camera pose. The nature of the rela-
tionship between scene coordinate accuracy and final camera
pose accuracy is unclear in that better scene coordinates do
not always result in better camera poses. D-NET produces
a much higher number of inliers (45.3% versus 18.3% of
RF2 and 16.8% of fNET-L) with a better inlier error (4.7cm
versus 4.9cm) yet does not achieve the best final camera
pose. We attribute this to the non-deterministic and highly
robust RANSAC-based optimizer.

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have explored efficient versus non-efficient
and RF- versus non-RF-derived NN architectures for the task
of camera localization. While a traditional NN architecture is
superior with respect to dense scene coordinate regression,
its inefficiency in terms of speed and memory may make
it unattractive for mobile and robotics applications. On the
other hand, our best-performing ForestNet, with a robust



3D geometric median-based average, is test-time efficient
since it can be mapped back to a RF, and has improved the
current state-of-the-art in camera localization on the 7-Scenes
dataset [1]. Overall, however, the nature of the relationship
between good scene coordinate predictions and a good final
6D camera pose is not yet clear. This motivates further
research into (1) better suited loss functions for the follow-
up RANSAC optimizer, and (2) the end-to-end training of a
full camera pose estimation pipeline.
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