Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images

Alexander Krull*, Eric Brachmann, Frank Michel, Michael Ying Yang, Stefan Gumhold, Carsten Rother

TU Dresden
Dresden, Germany

*alexander. krull@tu-dresden.de

1. Overview

The supplementary material is not necessary to under-
stand the paper. This supplementary note discusses the
following points:

o Further details on our training procedure.
e Detailed experimental results.
e Details on the calculation of the occlusion level.

e Additional images with qualitative results.

2. Further Details on our Training Procedure

We will now discuss the training procedure of our
CNN. We use the Torch 7 framework to implement our
network. Our training procedure starts with a randomly
initialized set of network parameters. We use the ran-
dom initialization provided by Torch 7. To cover a greater
range of possible energy values from the beginning, we
multiply the weights in the last layer by 1000 before train-
ing starts.

During training we repeat the following steps:

1. Randomly pick five training samples from the train-
ing set.

2. Perform a gradient step for each of the training sam-
ples:
(a) calculate partial derivatives -2 E (H;, x;;6")
of the energy at the ground truth pose H; using
back propagation.

(b) Run the inference scheme as described in
Sec. 3.5 on the training image X;.

(c) Use the result as initialization for Metropolis
sampling described in Sec. 3.4.

(d) calculate the partial derivatives
a%jE (Hk,xi;Ot) of the energy at each

pose sample H, and average the results.

(e) Calculate the gradient of the log likelihood ac-
cording to Eq. (4).

(f) Calculate the new parameter set ™" using the
gradient and current learning rate.

3. Use the current set of parameters 6" to perform infer-
ence on the validation set and determine the number
of correctly estimated poses.

4. Update the learning rate similar to [1] as:
v = 10757 /(1 + At/5)

In the end we pick the set of parameters which per-
formed best on the validation set according to the number
of correctly estimated poses. In the case where two pa-
rameter sets perform equally well, we pick the later one.

In our experiments we iterated the scheme described
above 48 times and used the parameters 79 = 10 and
A = 0.5. For the proposal distribution in the Metropo-
lis sampling scheme we used the covariance matrix X =
25115 to sample of the translational component and the
covariance matrix ¥ = 0.017'I5 to sample the rota-
tional components.

In order to increase the number of training samples we
randomly decide in each training step whether to rotate all
images by 180deg.

3. Detailed Experimental Results

3.1. Occlusion Dataset by Hinterstoisser [3] and
Brachmann [2]

Here we provide a table with detailed results on the oc-
clusion dataset by Hinterstoisser [3] and Brachmann[2].
In Supplementary Table 1, we show the percentage of cor-
rectly estimated poses for the individual and training ob-
jects, as well as average values. The results correspond to
Fig. 4 in the paper. The best results for each object are
printed in bold numbers.

3.2. Dataset by Krull [4]

Here we provide a table with detailed results on the
dataset by Krull et al. [4]. In Supplementary Table 2, we
show the percentage of correctly estimated poses for the
individual test and training objects, as well as average val-
ues. The results correspond to Fig. 6 in the paper. The
best results for each object are printed in bold numbers.

4. Details on the Calculation of Occlusion

The performance of the evaluated methods depends
strongly on how much of the object is visible in the im-



Brachmann | Re-impl. of B. | Ours (Tool_Box_1) Ours (Cat_1) Ours (Samurai_1) | Ours (Average)
Ape 62.6% 64.1% 77.61% 77.09% 79.06 % 77.92%
Can 80.2% 79.95% 84.26% 86.58% 88.9% 86.58%
Cat 50% 50.05% 54.78% 55.14% 56.84 % 55.59%
Driller 84.3% 83.43% 94.48 % 92.99% 93.32% 93.6%
Duck 67.6% 70.12% 71.1% 71.1% 73.4% 71.87%
Egg Box 8.5% 11.17% 34.21% 36.47 % 36.21% 35.63%
Glue 62.8% 66.08 % 72.59 64.96% 66.08% 67.88%
Hole_P. 89.9% 90.33% 93.64% 95.37% 95.29 % 94.77%
Average 63.24% 64.4% 72.83% 72.46% 73.64% 72.98%

Table 1. Detailed results on the occlusion dataset by Hinterstoisser [3] and Brachmann [2]. We provide the results of our method trained
using three different objects/sequences (Tool_Box_1, Cat_1, Samurai_I) from [4].

Brachmann et al. | Ours (Tool_Box_1) Ours (Cat_1) Ours (Samurai_1) | Ours (Average)
Cat2 44.2% 58.28% 57.62% 62.78 % 59.56%
Samurai 2 33.7% 51.99% 51.5% 60.47 % 54.65%
Tool Box_2 59.4% 57.69% 57.4% 52.96% 56.02%
Average 45.77% 55.99% 55.5% 58.74 % 56.74%

Table 2. Detailed results on the dataset by Krull ef al. [4]. We provide the results of our method trained using three different ob-

jects/sequences (Tool_Box_1, Cat_1, Samurai_I) from [4].

age and how much is occluded. To analyse this depen-
dency, we calculated the percentage of occlusion for each
object and image by rendering a depth image of the ob-
ject in ground truth pose and doing a pixel wise compar-
ison to the recorded depth image. We count a pixel as
occluded whenever the rendered depth at the pixel is more
than 50mm behind the recorded depth, or when there is
no recorded depth value available for the pixel. To cre-
ate Fig. 5 we divided the test images into bins according
to their level of occlusion and calculated the percentage
of correctly estimated poses for each bin. We used a bin
width of 10%. In Supplementary Fig. 1 we use the same
approach to show the average rotational error as a function
of occlusion.

5. Additional Qualitative Results

Here we provide qualitative results for four test cases.
Two cases are taken from each dataset. In Fig. 2 and Fig. 3
we show results for the Can and Cat object, respectively.
They belong to the occlusion dataset of [3] and [2]. In
Fig. 4 and Fig. 5 we show results for the Samurai and
Tool Box object, respectively. They belong to the dataset
from [4]. The upper four images in each figure show the
RGB and depth channels as well as the forest predictions.
The lower six are rendered and cropped images which are
processed and fed into the CNN (see Fig. 2(e-g) in the
paper) to calculate an energy vale. Object coordinates in
all figures were mapped to the RGB cube for visualization.
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Figure 1. The average rotational error of pose estimates for the
Driller object from the occlusion dataset of [3] and [2]. The
CNN we used to achieve this results was trained with the Samu-
rai_I sequence: We show the average error as a function of oc-
clusion. The test cases are divided into bins with a width of 5%.
(a) We consider all test cases for the Driller object. (b) We con-
sider only test cases with correctly estimated pose according to
the criterion from [3].
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Figure 2. Qualitative results. (a) RGB image with results: blue indicates our pose estimate, green indicates the ground truth pose; (b)
recorded depth image; (c) object probabilities predicted by the forest; (d) object coordinates predicted by one tree from the forest; (e)
rendered depth image; (f) rendered mask; (g) rendered object coordinates; (h) cropped observed depth image (values which are more
than the object diameter behind or in front of the object are shown as white or black respectively); (i) cropped object probabilities; (j)
cropped predicted object coordinates.



Figure 3. Qualitative results. (a) RGB image with results: blue indicates our pose estimate, green indicates the ground truth pose; (b)
recorded depth image; (c) object probabilities predicted by the forest; (d) object coordinates predicted by one tree from the forest; (e)
rendered depth image; (f) rendered mask; (g) rendered object coordinates; (h) cropped observed depth image (values which are more
than the object diameter behind or in front of the object are shown as white or black respectively); (i) cropped object probabilities; (j)
cropped predicted object coordinates.



Figure 4. Qualitative results. (a) RGB image with results: blue indicates our pose estimate, green indicates the ground truth pose; (b)
recorded depth image; (c) object probabilities predicted by the forest; (d) object coordinates predicted by one tree from the forest; (e)
rendered depth image; (f) rendered mask; (g) rendered object coordinates; (h) cropped observed depth image (values which are more
than the object diameter behind or in front of the object are shown as white or black respectively); (i) cropped object probabilities; (j)
cropped predicted object coordinates.



Figure 5. Qualitative results. (a) RGB image with results: blue indicates our pose estimate, green indicates the ground truth pose; (b)
recorded depth image; (c) object probabilities predicted by the forest; (d) object coordinates predicted by one tree from the forest; (e)
rendered depth image; (f) rendered mask; (g) rendered object coordinates; (h) cropped observed depth image (values which are more
than the object diameter behind or in front of the object are shown as white or black respectively); (i) cropped object probabilities; (j)
cropped predicted object coordinates.



