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Abstract. In this work we consider the problem of sematic part-labeling
of 3-D meshes of ear implants. This is a challenging problem and auto-
matic solutions are of high practical relevance, since they help to au-
tomate the design of hearing aids. The contribution of this work is a
new framework which outperforms existing approaches for this task. To
achieve the boost in performance we introduce the new concept of a
global parametric transition prior. To our knowledge, this is the first
time that such a generic prior is used for 3-D mesh processing, and it
may be found useful for a large class of 3-D meshes. To foster more re-
search on the important topic of ear implant labeling, we collected a
large data set of 3-D meshes, with associated ground truth labels, which
we will make publicly available.

1 Introduction

Semantic part-labeling of organic surfaces is an important task in computer-
aided shape modeling and visualization. The problem is to partition a polyg-
onal surface mesh into non overlapping subsurfaces each of which represents a
semantic part of the underlying object. Such decomposition into parts is ex-
tremely challenging due to the anatomical variability. Moreover, it is typically
not possible to consistently infer the transition boundaries between adjacent seg-
ments solely from geometric cues, and the need of strong boundary transition
priors becomes immanent. Fig. 1 illustrates why this is the case in the person-
alized computer-aided shape modeling of ear implants. Input to the process is
a polygonal surface mesh capturing a patient’s outer ear geometry. The essence
of the hearing aid design process is captured by a part-labeling of 6 anatomical
surface regions and piecewise planar transition boundaries between the labeled
segments. The ultimate goal is to minimize the user interactions and to maximize
the label quality which involves the shape of the transition boundaries.

In standard 2-D labeling problems it is very common to employ shape pri-
ors to drive the segmentation towards a meaningful result. Existing region and
boundary models over arbitrary shapes mainly use region and length priors. For
example, in [6] the authors distinguish between regions being interior/exterior
to each other along with preferred distances between their boundaries. In [7] the
authors compute a globally optimal labeling for tiered scenes where the correct
order between the objects and the parts is enforced.
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Fig. 1: Semantic 3-D labeling of ear implants in hearing aid (HA) design. (Top
row): A domain expert manually places 5 cutting planes along anatomical lines
based on hearing aid design rules. This manual procedure is very cumbersome.
Part labels (color) corresponding to 6 anatomical regions are derived from the
cutting planes. Both, the cutting planes and the labeled regions play a key
role in personalized hearing aid design. (Bottom row): Part-labeling using our
algorithm. Labels and transition boundaries between segments are optimized
jointly (Bottom middle). Planes are derived from the labels (Bottom right).

The most recent state of the art approaches segment and label 3-D surface
meshes jointly. The authors in [8], for example, collect statistics of neighboring
surface features to learn a conditional random field (CRF) with local pairwise
interactions. The prior model in [8], however, is not well suited to adequately
constrain the transition boundaries between adjacent segments to an a-priori
known parametric form. Consider, for example, the case of subtle shape varia-
tions in form of bends which are typical for organic surfaces. In this case the
geometry dependent likelihood of a difference in labels, as proposed in [8], tends
to be constant (or zero) across the surface.

Not much work exists on the labeling of ear shapes. Similar to [8] the authors
in [12] use data dependent pairwise terms to penalize inconsistent labels based on
local feature statistics. An alternative approach is presented in [13] where the au-
thors employ multiple shape class specific CRFs with pairwise Potts interactions
to overcome the large variability of the ear. While both methods achieve rea-
sonable recognition rates the transition boundaries between adjacent segments
tend to deviate significantly from the ground-truth. By comparison, the work in
[1] firstly detects a set of generic features of the ear (concavities, elbows, ridges,
bumps) which are then used to derive anatomical features of the ear including
points, curves, areas and cutting planes. A part labeling may readily be derived
from the cutting planes as illustrated in the top row in Fig. 1. Another com-
pletely different approach would be to build a human digital ear atlas and to
propagate the labels from the atlas to the new data via surface registration (see
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Fig. 2: Part adjacency graph of the human outer ear (courtesy [12]). Adjacent
parts (black circles) in the graph are linked (solid line). The colors indicate the
anatomical interpretation (dashed line) of the parts. The ear canal is composed
of 3 subparts. Numbers represent anatomical part labels in the label set L.

e.g. [2]). However, due to the variability of the ear it is extremely challenging to
consistently establish anatomical correspondence across individuals.

Inspired by the practical challenge of hearing aid design, we address the sur-
face labeling problem by jointly optimizing the part-labels and the piecewise
planar transition boundaries between labeled segments as illustrated in the bot-
tom row in Fig. 1. For this we consider 3-D surface meshes of ear implants
without additional appearance information, such as color or texture. The main
idea in this paper is to model the label distribution as a CRF with local pairwise
interactions between labels along with a consistency term that penalizes in-
compatible arrangements between labels and parametric representations of the
segment transition boundaries thereby emphasizing on the global consistency of
a labeling. This is why we refer to the latter term as global parametric transition
prior. Incorporating such a prior into a CRF has several advantages. Firstly, the
prior encourages long range compatibility between labels giving rise to a globally
consistent part layout. Secondly, the desired shape of the transition boundaries
is explicitly enforced. Thirdly, the underlying energy function may be optimized
jointly with respect to the labels and to the transition boundaries. Providing
that the global parametric transition prior is convex the underlying energy is
guaranteed to decrease monotonically during iterative optimization.

2 Model

We consider the following model. A surface mesh X = (V, E) consists of vertices
V, edges E . A labeling h : V → L of X assigns a discrete label hi ∈ L =
{0, 1, 2, 3, 4, 5} to each vertex i ∈ V. The hearing aid design process gives rise to
|L| = 6 anatomical parts as illustrated in figure 2.

The transition boundaries are induced by 5 cutting planes passing through
the mesh. Let b = (b1, ..., bB) denote a vector of transition boundaries between
the adjacent segments with b` ∈ R4, 1 ≤ ` ≤ B denoting a parametric repre-
sentation of the `th boundary. Since the transition boundaries connecting red
and green, and yellow and green are induced by the same cutting plane, we may
think of these two transitions as one. This is why we have B = 5. Moreover, let
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Wi(hi, b,X ) ≥ 0 denote a function that penalizes inconsistent locations of a label
hi relative to all boundaries b`. We define the behavior of Wi(hi, b,X ) as follows.
If a label hi resides on the correct side of all boundaries b` then Wi(hi, b,X ) = 0
and Wi(hi, b,X ) > 0 otherwise. We define the following energy function:

U(h, b,X , θ) =
∑
i∈V

Ui(hi,X ) +
∑
{i,j}∈E

Uij(hi, hj , θ1) +
∑
i∈V

Wi(hi, b,X , θ2), (1)

where

Ui(hi,X ) = − log(p(hi|X )), (2)

Uij(hi, hj , θ1) = θ1δ(hi, hj), (3)

Wi(hi, b,X , θ2) = θ2

B∑
`=1

max {0; 1− y`(hi) <b`, zi>} . (4)

Note that the weighting parameters θ1, θ2 ≥ 0 regularize the influence of the
individual terms. The variable zi in Eqn. (4) denotes the homogeneous 3-D
coordinates of a vertex i ∈ V and y`(hi) ∈ {−1, 1} indicates whether a label
hi is expected to be located above b`, (y`(hi) = 1) or below b`, (y`(hi) = −1).
The expression < ·, · > denotes the dot product between two vectors. Eqn. (4)
resembles the well known hinge loss function (see, e.g., [10]) which in our model
gives rise to a convex global parametric transition prior. The function δ(hi, hj) ∈
N in Eqn. (3) returns the smallest number of links connecting two nodes in the
underlying part adjacency graph

GA = (L, {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 5}}) (5)

shown in figure 2, i.e., δ(hi, hj) = |hi − hj | if both labels hi and hj are in
the set {4, 5} or if both labels are in the set {0, 1, 2, 3, 4}, otherwise we have
δ(hi, hj) = |hi − hj | − 1. While the classical Potts model enforces smoothness it
does not prevent incompatible labels from being adjacent. This is achieved by the
layout consistency function in Eqn. (3) which also forms a metric over L. Since
the part adjacency graph GA contains a loop the energy (1) is not submodular.
For the unary terms in Eqn. (2) we use a randomized decision forest (see, e.g.,
[5]) and 3-D shape contexts as local descriptors of the vertices V. 3-D shape
contexts [9] are rich, highly discriminative local representations of global shape
which we found to work well for our data.

3 Optimization

We use the energy minimization framework to jointly derive an estimate of the
labeling h and of the transition boundaries b. Minimizing Eqn. (1) with respect
to h and b leads to an optimization problem of the form

min
h,b

U(h, b,X , θ). (6)
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Given h, the problem (6) reduces to

min
b=(b1,...,bB)

B∑
`=1

∑
i∈V

max {0; 1− y`(hi) <b`, zi>} , (7)

where we can drop the weighting parameter θ2 in Eqn. (1) since it does not
depend on b. Note, that we have 20 parameters, i.e., b ∈ R20. As Eqn. (7) is
convex and is subdifferentiable a subgradient method [3] is well suited to solve
the task. Given an estimate of b optimizing the energy (1) with respect to h may
be carried out using the expansion move algorithm [4] since the pairwise terms
in Eqn. (3) form a metric over the label set L.

We get a very simple, iterative optimization schema. Given an estimate of
h the problem (7) gives rise to a global solution since the transition prior in
Eqn. (4) is convex. In turn, given an estimate of the transition boundaries b the
expansion move algorithm is guaranteed to find a lower or equal energy labeling
h. From this it follows that the energy in Eqn. (1) decreases monotonically.
Moreover, the iterative optimization of Eqn. (6) converges more quickly if we
initialize b with the least squares estimate of the cutting planes using the initial
estimate of h. About 10 iterations are sufficient on our data which for a mesh
with |V| ≈ 20000 vertices takes about 12s on a standard PC.

4 Learning

Given a labeled training set T = {(X , h, b)} we use a supervised algorithm to
learn the model parameters in Eqn. (1). The unary terms Ui(hi,X ) comprise the
decision forest structure as a parameter where we assume that the forest consists
of binary trees. The parameters θ = (θ1, θ2) regularize the influence of the energy
terms Uij(hi, hj , θ1) and Wi(hi, b,X , θ2), respectively. Ideally, we would like to
learn all model parameters jointly using a single objective function. However,
whereas the weights θ1, θ2 are continuous variables, the random forest is a large
combinatorial set. We therefore adopt a simple two-step heuristic: (1) learning
of the decision forest using the labeled training data and the information gain
splitting criterion and (2) estimation of the weights θ via cross-validation similar
to [11]. To this end we allow θ to vary over a discrete possibly very large set. To
keep the training process simple we follow the suggestion in [5] and proceed by
growing full trees where each leaf contains only one training example.

5 Experiments

For a fair comparison of our method with prior work [1],[12],[13] we derive labels
from the detected plane features in [1] as shown in the first row in Fig. 1 whereas
for the methods in [12], [13] planes were fit to the inferred labels. We define a
measure of label accuracy to compare the inferred labels with the ground-truth.
To get a measure of label accuracy per surface we compute the Dice coefficient
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(a) LA(X ) : 4.68, (b) LA(X ) : 4.71, (c) LA(X ) : 4.96, (d) Ground truth

Fig. 3: Label example using (1): (a) without regularization, i.e., θ1, θ2 = 0, (b)
without global parametric transition prior, i.e., θ2 = 0. Note, in (a–b) how the
segment boundaries differ from the ground truth. In (c) we show the result after
least squares fitting of planes to the labels in (b) and reassigning of misclassified
labels after which the label accuracy LA(X ) ∈ [0, 6] slightly increases (6 is best).

between the area of the estimated labels of the mth part (m ∈ L) Âm = {i ∈
V|ĥi = m} and the area of the ground-truth labels Am = {i ∈ V|hi = m}:

LA(X ,m) =
2|Âm ∩ Am|
|Âm ∪ Am|

, (8)

where ĥi and hi denote the estimated label and the ground-truth label of the ith
vertex of X , respectively. For a surface X the label accuracy LA(X ) amounts to

LA(X ) =
1

|V|

|L|−1∑
m=0

LA(X ,m). (9)

The value LA(X ) ∈ [0, 6] ranges between 0 and 6, where 6 is best. Note that in
contrast to the classical Hamming loss the Dice coefficient avoids overemphasiz-
ing large area parts over small area parts. This is important, since the human
ear involves regions with both large and small area segments.

We have a novel data set of 427 human outer ear impressions at our disposal
which in turn were laser scanned to reconstruct 3-D triangular surface meshes.
A typical 3-D mesh of the ear is composed of roughly 20000 vertices with an
average resolution of 0.22 mm. Topologically, a reconstructed outer ear surface
constitutes a compact, orientable 2-manifold with boundary.

We randomly pick 90% of the surfaces for training while setting the other
10% aside for testing. For model learning the training set was divided in two
halves, and the weighting parameters θ1, θ2 were optimized against one half via
cross-validation. The randomized decision forrest was then retrained using the
entire training set. For the parameters we obtain θ1 = 10, θ2 = 20. Inference was
carried out using the algorithm in section 3.

Fig. 3(a) shows a test surface labeled by our model (1) without regularization
(θ1, θ2 = 0) and in Fig. 3(b) without global parametric transition prior (θ1 =
10, θ2 = 0). A visual comparison of the two results with the ground truth in
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(a) LA(X ) : 4.91, (b) LA(X ) : 4.31, (c) LA(X ) : 4.32

(d) LA(X ) : 4.95, (e) LA(X ) : 4.45, (f) LA(X ) : 4.28

(g) Ground truth, (h) Ground truth, (i) Ground truth

Fig. 4: Most accurate label examples on our test data using (a): [1], (b): [12], (c):
[13]. The 2nd row depicts the result using our model (1) with global parametric
transition prior (d)-(f). In terms of label accuracy LA(X ) ∈ [0, 6] (6 is best) our
model performs slightly better except for (f) when compared with (g)-(i).

Fig. 3(d) reveals several inaccuracies despite the overall consistent layout. Note,
how the transition boundaries deviate from the ground-truth in Fig. 3(d). The
label accuracy according to Eqn. (9) is depicted below the surfaces. In Fig. 3(c)
we show the result after estimating planes from the label output in Fig. 3(a) via
least squares fitting which slightly improves the label accuracy.

Next, in Fig. 4 (first row) we show the best test examples obtained by our
competitors in [1], [12], [13] together with the result using our model (1) with
global parametric transition prior, i.e., θ2 > 0 (Fig. 4 (second row)). In terms
of label accuracy LA(X ) our algorithm performs slightly better when compared
with the ground-truth in Fig. 4 (third row).

For a quantitative comparison of the methods several statistics were com-
puted over the test data which we summarize in table 1. From the table one
can see that on average our model (1) with global parametric transition prior
performs best. While the methods [12], [13] perform equally well they were out-
performed by [1]. Also note, that our model (1) without global parametric tran-
sition prior (θ2 = 0) achieves a higher label accuracy than [1] after least squares
fitting of the planes as illustrated in Fig. 3.
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Table 1: Various statistics computed over 43 test examples: LA(X ) (average label

accuracy), L̃A(X ) (median label accuracy), σLA(X ) (standard deviation of label
accuracy). The methods used for comparison were: our model (1) w/o global
parametric transition prior (θ2 = 0), our model (1), the canonical ear signature
(CES) [1], the layout CRF with spatial ordering constraints in [12], the joint
shape classification and labeling (JSCL) model in [13].

Our (Eqn. 1,θ2 = 0) Our (Eqn. 1) CES [1] CRF [12] JSCL [13]

LA(X ) 3.98 4.10 3.80 3.28 3.35

L̃A(X ) 4.00 4.10 3.79 3.27 3.31
σLA(X ) 0.47 0.48 0.49 0.60 0.60

6 Conclusions and future work

We have proposed a new framework for the semantic labeling of 3-D meshes of
ear implants. Specifically, we incorporated a parametric representation of the
transition boundaries into the labeling model which in the case of ear implants
was used to enforce planar transitions between the parts. This combined model
lead to a performance boost in label accuracy and outperformed previous meth-
ods for ear implant labeling. We will make our data set publicly available.
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