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1. Introduction

Optimally assigning elements of finite sets to each other is a fundamental combinatorial problem occur-
ring in a plethora of applications ranging from economics to computer vision. The notion of optimality is
defined with respect to a cost tensor, whose dimensionality predominantly determines the problem’s com-
putational complexity. Relating one element per set results in the polynomially solvable linear assignment
problem (LAP), couples of elements, conversely, in the NP-hard quadratic assignment problem (QAP). In
order to match multiple sets, several assignment problems are coupled via cycle-consistency constraints -
giving rise to Multi-LAPs or -QAPs. In computer vision, applications usually demand distance preserving
matchings of various visual objects, which on the contrary necessitate solving Multi-QAPs. Video-based
tracking, shape modelling or multi-view reconstruction are just some of a wide range of examples in this
context. In [1], Bernard et al. set out to tackle problems of this nature by jointly addressing both - cost con-
struction and solution of the related assignment problem. Dissecting their approach and its culmination,
higher-order projected power iterations (HiPPI), is the subject of this report.

Although this report mainly acts as a review of Bernard et al.’s work, it contributes in a threefold way: i)
Bernard et al.’s problem formulation is placed in a broader context - highlighting its shortcomings, ii) a
new convergence proof is introduced - revealing a novel perspective on HiPPI’s operating principle, iii)
HiPPI is generalized to arbitrary Multi-QAP cost structures.

2. Background

Pairwise Matching concerns itself with the matching of two sets V [1],V [2], such that np := |V [p]| <∞,
p = 1,2. Allowing for unassigned elements, feasible matchings are encoded by partial permutation matri-
ces Pm,n := {

X ∈ {0,1}m×n | X 1⃗n ≤ 1⃗m , X T 1⃗m ≤ 1⃗n ,
}
, where we introduce the notation P[p,q] :=Pnp ,nq . For

X ∈P[1,2], Xi1i2 = 1 is consequently interpreted as assigning i1 ∈ V [1] to i2 ∈ V [2]. Minimizing a cost func-
tion C : V [1] ×V [2] →R over the set of feasible matchings gives rise to the linear assignment problem [2,
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Sec. 1.2]

min
X∈P[1,2]

{
〈C⃗ , X⃗ 〉 = 〈C , X 〉F = ∑

(i1,i2)∈V [1]×V [2]

Ci1i2 Xi1i2

}
. (1)

Here, 〈·, ·〉 denotes the inner product of the respective Euclidean space, 〈·, ·〉F the Frobenius inner product
with the canonical identification C ∼= [C (i1, i2)]i1,i2

∈ Rn1×n2 , and X⃗ := vec(X ) the column-wise vectoriza-
tion of a matrix. LAPs are solvable in polynomial time e. g. via the Hungarian Algorithm [3] with a complex-
ity of O(n3) [4] or the Auction Algorithm [5] with an (empirical) average time complexity of O(n2 log(n)) [6],
where n := max{n1,n2}. In [1], Bernard et al. rely on an implementation of the Auction Algorithm specified
in [7].
Including pairwise costs via a higher-order cost function C :

(
V [1] ×V [2]

)2 →R results, using the identifica-
tion C ∼= [

C (i1, i2, j1, j2)
]

i1i2, j1 j2
∈Rn1n2×n1n2 , in the quadratic assignment problem [8]

min
X∈P[1,2]

〈X⃗ ,C X⃗ 〉 = ∑
(i1,i2)∈V [1]×V [2]

( j1, j2)∈V [1]×V [2]

Ci1i2, j1 j2 Xi1i2 X j1 j2

 . (2)

Higher-order generalizations for cost functions C :
(
V [1] ×V [2]

)N → R are treated in [9], [10], but are un-
interesting for this report. A LAP with costs CLAP can be formulated as an equivalent QAP using costs
CQAP := diag

(
C⃗LAP

)
, showing that the latter is a strict generalization of the former. The QAP in Eq.

(2) is given in Lawler’s form [8], which will hereafter just be referred to as QAP. Parametrizing costs as
C = D ⊗F +diag

(
B⃗

)
via F ∈ Rn1×n1 , D ∈ Rn2×n2 , and B ∈ Rn1×n2 yields the QAP in Koopmanns-Beckman’s

form [11, Sec. 6]

min
X∈P[1,2]

〈X ,F X DT +B〉F = ∑
(i1,i2)∈V [1]×V [2]

( j1, j2)∈V [1]×V [2]

Fi1 j1 Di2 j2 Xi1i2 X j1 j2 +
∑

(i1,i2)∈V [1]×V [2]

Bi1i2 Xi1i2

 . (3)

QAPs are in general strongly NP-hard [12, Vol. 5, Sec. 3.4, Thm. 2]. If each element is assigned exactly
once, one speaks of a complete QAP, in contrast to the up to here considered incomplete QAPs. In this case
one optimizes over the set of complete permutation matrices. In [13], Haller et al. polynomially reduce the
incomplete to the complete QAP.

Multi-Matching treats the matching of k ∈ N sets V [p] with np := |V [p]| < ∞, where p ∈ JkK := [0,k]∩N.
Multiple matchings X [p,q] ∈ P[p,q] between pairs of sets V [p],V [q], p, q ∈ JkK allow for inconsistencies - a
disagreement between the first and last element of a chain obtained by traversing matchings along a cycle
of sets. To avoid this scenario one enforces cycle-consistency for all 3-cycles, which is sufficient for global
consistency [14, Prop. 1], see Def. 1.

Definition 1. (Cycle-Consistency, [1, Def. 1])
A multi-matching X = [

X [p,q]
]
(p,q)∈JkK2 ∈

[
P[p,q]

]
(p,q)∈JkK2 is said to be cycle-consistent if

∀p, q,r ∈ JkK :


i) X [p,p] = Inp (identity)

ii)
(
X [p,q]

)T = X [q,p] (symmetry)
iii) X [p,r ]X [r,q] ≤ X [p,q] (transitivity) .

(4)
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The set of cycle-consistent multi-matchings is denoted with X.

Cycle-consistency can alternatively be characterized by means of the universe concept. Matching each set
V [p] solely to a set of d ∈N universe points JdK, while considering elements matched to the same universe
point as matched, results in a cycle-consistent matching. Lemma 1 concretizes this idea.

Lemma 1. (Universe Characterization of Cycle-Consistency)

Assume X ∈ [
P[p,q]

]
(p,q)∈JkK2 . Then (X ∈X) ⇔

(
∃d ∈N : ∃U ∈Ud : ∀p, q ∈ JkK : X [p,q] =U [p]

(
U [q]

)T
)
,

where Ud :=
{[

U [p]
]

p∈JkK ∈
[
Pnp ,d

]
p∈JkK

∣∣∣∣∀p ∈ JkK : U [p ]⃗1d = 1⃗np

}
denotes the set of universe matchings

for a universe of size d. Rephrased, it holds that X =UU T .

Proof. For "⇐", see [1, Lemma 2] and for "⇒", see A.1. □

Optimizing over Ud instead of X by means of the substitution from Lemma 1 comes, on one hand, at the
expense of more variables and an additional parameter in form of the universe size d , but has, on the other
hand, the benefit of much simpler constraints.
Now, Multi-Assignment-Problems (MAP) of order N relate N cycle-consistent matchings between up to
2N sets V [pi ], i ∈ J2NK. More specifically, a MAP of order 2, or Multi-QAP, tries to optimize cost-functions
C [p,q,r,s] : V [p] ×V [q] ×V [r ] ×V [s] 7→R over the set of cycle-consistent multi-matchings,

min
X∈X

{ ∑
(p,q,r,s)∈JkK4

〈X⃗ [p,q],C [p,q,r,s]X⃗ [r,s]〉
}

, (5)

where again the identification C [p,q,r,s] ∼= [
C [p,q,r,s](ip , iq , ir , is)

]
ip iq ,ir is

∈Rnp nq×nr ns is made.
A frequently encountered special case is the Multi-QAP with pairwise decomposable costs. In line

with [15, Sec. III, A.], only costs C [p,q] :
(
V [p] ×V [q]

)2 → R between pairs of sets are established. Using

C [p,q,r,s] :=
{

C [p,q]; r = p ∧q = s
0; el se

}
one obtains the optimization problem,

min
X∈X

{ ∑
(p,q)∈JkK2

〈X⃗ [p,q],C [p,q]X⃗ [p,q]〉
}

. (6)

MAPs of different orders, such as the Multi-LAP, are defined in analogy to Eq. (5). Note, however, as shown
in [16, Thm. 1], that, in contrast to the LAP, the Multi-LAP is NP-hard.

3. Related Work & Contribution

Two major categories exist to classify methods solving MAPs: i) permutation synchronization e. g. [17, 18,
19] and ii) joint optimization e. g. [10, 20, 21]. Permutation synchronization focuses, as the name might
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indicate, on retrieving a cycle-consistent from a non-cycle-consistent multi-matching. Usually only pairs
of objects are considered to obtain the non-cycle-consistent multi-matching, making the approach fairly
scalable. The most prominent drawback of the synchronization step, often just designed as a projection
onto the set of feasible multi-matchings, is its ignorance w.r.t. costs, e. g. the ones used to obtain pairwise
matchings. Joint optimization methods, on the contrary, try to optimize over the set of feasible multi-
matchings, likely generating higher quality solutions, but, at the same time, being far more expensive than
synchronization approaches. Both categories, essentially relying on permutation matrices, allow for var-
ious relaxations, e. g. semidefinite programming relaxations [22, 23], spectral relaxations [17, 19], or low-
rank relaxations [24] - with some of these, cycle-consistency is not always guaranteed.
Almost as diverse as the approaches to optimize MAPs are the approaches to model them. The primary
question is still how to obtain costs and if these should be merely linear or quadratic, but with computer
vision applications emphasizing geometric consistency, more creative formulations have emerged, [25],
for example, enforce the low rank of 2D coordinate matrices of orthographic projections of 3D scenes as
an additional constraint.
In HiPPI Bernard et al. place a novel method into this landscape, that jointly optimizes for multi-
matchings, incorporates geometric relations, guarantees cycle-consistency, and scales well (in light of their
experiments, see Sec. 5).

4. Higher-Order Projected Power Iterations

4.1. Problem Formulation

The Multi-QAP formulation used in [1] by Bernard et al. is based on universe match-
ings to a universe of priorly fixed size d and weights W = [

W [p,q]
]
(p,q)∈JkK2 ∈ S+

n , where

S+
n := {

M ∈Rn×n
∣∣M symmetric, positive semidefinite

}
, n := ∑

p∈JkK
np , and reads

max
U∈Ud

{〈U T W U ,U T W U 〉F =: f (U )
}

. (7)

4.1.1. Motivation

Motivated by computer vision applications Bernard et al. firstly assume their elements ip ∈ V [p] to be
embedded in a metric space (X ,d), e. g. 2D image coordinates, and secondly to be equipped with Eu-
clidean, f -dimensional feature vectors Fip ∈ R f . With these assumptions adjacency matrices for all

sets A[p] := [
exp

(−d(ip , jp )2
)]

(ip , jp )∈(V [p])2 ∈ S+
np

, summarized in A := diag
(

A[p], p ∈ JkK
) ∈ S+

n , and sim-

ilarity matrices for pairs of sets S[p,q] := [
exp

(−∥Fip −Fiq∥2
)]

(ip ,iq )∈V [p]×V [q] ∈ R
np×nq

+ , summarized in

S := [
S[p,q]

]
(p,q)∈JkK2 , are used to define weighted adjacency matrices W := ST AS ∈ S+

n . Scale and band-
width of the Gaussian kernels were subject to application dependent adaption. Interpreting terms of the
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form 〈(U [p]
)T

A[p]U [p],
(
U [q]

)T
A[q]U [q]〉 as agreement of the matrices A[p] and A[q] after reordering both

according to the universe and SU as reweighted universe matchings, that emphasize matchings with high
similarity, mediates at least some intuition regarding the problem formulation. At this point it should be
pointed out, that, although all in [1] presented applications made use of such a structure, only the re-
quirement W ∈S+

n is necessary for the main results of the paper. Particularly, any kernel could be used to
construct A - as long as A ∈S+

n , W ∈S+
n holds.

4.1.2. Substitution of Universe Matchings and Reduction to Pairwise Matching

Details are for brevity’s sake omitted and can be found in Sec. A.2.
Substituting X = UU T in light of Lemma 1 shows that the formulation in Eq. (7) is not as general as the
Multi-QAP (5), but more general than the Multi-QAP with pairwise decomposable costs (6),

f (U ) = 〈W X W, X 〉F = ∑
(p,q,r,s)∈JkK4

〈X⃗ [r,s],
(
W [q,s])T ⊗W [r,p]X⃗ [p,q]〉 = f (X ) . (8)

The previous equation engages in the hereafter often committed abuse of notation of reusing objects de-
fined w.r.t. either universe or multi-matchings in terms of the other, e. g. f (U ) = f (X ).

Reducing Eq. (7) to k = 2 reveals a problem, that again floats midst two formulations, now Lawler’s form
(2) and Koopmanns-Beckman’s form (3),

f (X ) = 〈W [1,2],W [1,2]〉F

+ 4
{∑

(i1i2)∈V [1]×V [2]

(∑
p∈J2K

∑
ip∈V [p] W [1,p]

i1ip
W [p,2]

ip i2

)
X [1,2]

i1i2

}
+ 4

{∑
(i1,i2, j1, j2)∈(V [1]×V [2])2

(
W [1,1]

i1 j1
W [2,2]

i2 j2
+W [1,2]

j1i2
W [1,2]

i1 j2

)
X [1,2]

i1i2
X [1,2]

j1 j2

}
.

(9)

Considering the motivation, it is the reweighing of universe matchings, SU , that differentiates Eq. (7) from
the simpler decomposable costs or Koopmanns-Beckman’s forms. Bypassing this by setting S = In , and
taking W = ST AS into account one obtains a Multi-QAP with decomposable costs, which are in turn all in
Koopmanns-Beckman’s form,

f (X ) = ∑
(p,q)∈JkK2

〈X⃗ [p,q], A[q] ⊗ A[p]X⃗ [p,q]〉 . (10)

4.2. Iteration

The Algorithm deployed in [1] to tackle problem (7) requires an initial universe matching U{t=0} ∈Ud to a
universe of priorly fixed size d and proceeds to perform the update

U{t+1} ←[ projUd

(
W U{t }U T

{t }W U{t }

)
(HiPPI)

t ←[ t +1 ,
(11)
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until | f (U{t })− f (U{t−1})| = 0. Projections are, if not otherwise stated, meant as a mapping to the minimizer
of an appropriate norm to the set in consideration.
Convergence is shown in [1, Corollary 5] or via an arguably simpler proof in Sec. 4.3. The initial universe
matching U{0} has to be obtained via a different solver. Bernard et al. use Quickmatch [20], a clustering-
based algorithm with no demand for any initialisation. Note, that this technically renders HiPPI a local
search method. Almost as its name, HiPPI, suggests, the update can be dissected into four parts - lin-
earization, relaxation, power iteration, and projection, all of which will be elaborated upon in the following
sections. Beware that these sections possibly reuse some already defined symbols in a different context.
This is done to preserve the common thread relating all these methods throughout the report.

4.2.1. Power Iteration

HiPPI in its most stripped down form is, as the acronym indicates, a power, or strictly speaking, an orthogo-
nal iteration. Given a matrix W ∈Rn×n and d ∈ JnK orthonormal columns arranged in a matrix U{0} ∈Rn×d ,
the orthogonal iteration performs the update

U{t+1}R
QR-decomposition← [ W U{t } . (12)

The columns of U{t } converge to a basis of the eigenspace spanned by the eigenvectors of W with the
largest d eigenvalues λi under the sensible assumption of its separation, |λd | > |λd+1| (and additional, but
mild conditions on U{0}), as shown in [26, Thm. 8.2.2]. [27, Lemma 2] shows that such a basis is a solution
to the generalized Rayleigh problem,

max
U∈STnd

{〈U ,W U 〉F } , (13)

whose feasible set constitutes the Stiefel manifold STnd := {
U ∈Rn×d

∣∣U T U = Id
}
. The connection to op-

timization on manifolds reveals a more generalizable perspective on the update of the orthogonal itera-
tion than Eq. (12). Although the projection onto the Stiefel manifold is given by the polar decomposition
[28, Thm. 8.4], which is well-defined, if rank

(
W U{t }

) = d
(⇐ W ∈S+

n ∧ λd >λd+1
)
, it is linked to the QR-

decomposition by the fact that both are retractions onto the Stiefel manifold in the sense of [29, Def. 4.1.1].
Conceptually speaking, retractions are gradient preserving maps from the tangent bundle to the manifold,
figuratively (and loosely) speaking, they map iterates of a line search method back to the manifold once de-
viated. Briefly ignoring that update (12) does not necessarily perform a line-search on the Stiefel manifold,
therefore retractions are possibly undefined, one could think of Eq. (12), in a very broad sense, as,

U{t+1} ← [ "proj"STnd

(
W U{t }

)
, (14)

which is already more reminiscent of Eq. (11).
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4.2.2. Relaxation & Projection

Following the line of thought suggested by Eq. (14), one should replace the Stiefel manifold in problem
(13) with the universe matchings Ud as the feasible set,

max
U∈Ud

{〈U ,W U 〉F } . (15)

The orthogonal iteration (12) addresses a relaxation of this problem. This is the conclusion of Lemmas 2 -
4, which require the ’generalized’ Stiefel manifold (a protologism unused in this sense beyond this report)
GSTnd := {

U ∈Rn×d
∣∣U T U ≤ Id

}
. Proofs can be found in Sec. A.3.

Lemma 2. max
U∈pkGSTnd

{〈U ,W U 〉F } is a relaxation of max
U∈Ud

{〈U ,W U 〉F }.

Lemma 3. argmax
U∈pkGSTnd

{〈U ,W U 〉F } =
p

k argmax
U∈GSTnd

{〈U ,W U 〉F } =
p

k argmax
U∈STnd

{〈U ,W U 〉F } , where the second

equality requires W ∈S+
n with eigenvalues λ1, . . . ,λd >λd+1, . . . ,λn .

Lemma 4. projUd

(p
kV

)
= projUd

(V )

The relaxation of problem (15) from Lemma 2 is by means of Lemma 3 related to the generalized Rayleigh
problem (13). This means, scaling a solution obtained via the orthogonal iteration (12) by

p
k would ad-

dress the relaxed problem. With projections back to the original feasible setUd being common practice in
similar scenarios, think of projected gradient descent or [30], this scaling can be skipped due to the scale
invariance of the projection, seen in Lemma 4. Therefore, the relaxed problem is actually addressed by
an orthogonal iteration, while a successive projection ontoUd addresses problem (15) - or in other words,
problem (15) is addressed by the update,

U{t+1} ← [ projUd

(
W U{t }

)
, (16)

which is not too dissimilar from the actual HiPPI update (11), just as problem (15) is not too dissimilar from
problem (7) addressed by HiPPI. Before this relationship can be explored further, one should elucidate the
projection onto the universe matchings Ud . As Ud is a discrete non-singleton, therefore not convex, the
projection is not necessarily well-defined. Nonetheless, the accompanying optimization problem turns
out to be efficiently solvable as it is equivalent to k independent LAPs [27, Sec. 4.2.], which can be seen if

one realizes Ud =
[
Pnp d

]
p∈JkK

, Pkl := {
P ∈Pkl

∣∣P 1⃗l = 1⃗k
}

and observes,

projUd
(V ) = argmin

U∈Ud

{∥U −V ∥2
F

}= argmin
U∈Ud

{∥V ∥2
F +∥U∥2

F −2〈U ,V 〉F
} ∥U∥2

F=n= argmax
U∈Ud

{〈U ,V 〉F } . (17)
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4.2.3. Linearization

For subsequent discussion it is useful to first fix further notation. The linearization of a differentiable,
scalar function g : C →R at x0 ∈C is denoted by gx0 (x) := g (x0)+∂g (x0)(x −x0) ∼ ∂g (x0)(x), where ∼ sym-
bolizes the dropping of, for optimization purposes usually uninteresting, constant or positive scaling fac-
tors. Detailed calculations can be found in Sec. A.4. In line with the abuse of notation from Eq. (8), we use
X{t } =U{t }U T

{t }. Taking a look at the reformulated objective f (X ) and its linearization we find,

fX{t } (X ) ∼ 〈W X{t }W︸ ︷︷ ︸
:=W{t }

, X 〉F = 〈U ,W{t }U 〉F ∼ fX{t } (U ) , (18)

which brings us finally back to the HiPPI update (11), now using W{t },

U{t+1} ← [ projUd

(
W U{t }U T

{t }W U{t }

)
= projUd

(
W{t }U{t }

)
. (19)

Remembering the discussion from Sec. 4.2.2, the HiPPI update (19) solves the linearization of problem
(7).

4.2.4. Reinterpretation & Criticism

Having this connection uncovered, one can summarize the HiPPI update (11), as first linearizing the ob-
jective (8) around the current iterate U{t }, relaxing the linearized problem by substituting

p
kGSTnd , or

rather
p

kSTnd , for Ud , performing a single orthogonal iteration (12) addressing the relaxed linearization,
and then projecting the result back to the set of universe matchings Ud .
Realizing that the projection basically equates to optimizing the linearization of the linearized objective
(18) is the foundation of the convergence proof in Sec. 4.3 and offers one last point of view on the HiPPI
update (11), see Prop. 1.
Upon reversion, this implies that the originally quartic objective (in U ∈Ud ) is reduced to a linear one and
that problem (7) has been reduced to matrix multiplications and LAPs. This opens up the possibility of
criticism. Going from a quartic to a linear objective is an extreme simplification. The benefit of a very sim-
ple iteration only based on (efficient) projections and matrix multiplications faces the diverse symmetries
of the problem formulation, which become apparent in the, through summation emerging, prefactors in
Eq. (9) - the consequence are many redundant operations. Basing the algorithm on the orthogonal itera-
tion but not necessarily initializing it with orthonormal columns removes, strictly speaking, its theoretical
foundation, which is (luckily) often not needed, e. g. for convergence, if one adapts the point of view un-
covered in Eq. (23) in the proof of Prop. 1.

4.3. Convergence

Momentarily accepting the monotonicity of the sequence
(

f
(
U{t }

))
t∈N, shown in Prop. 1, convergence

after finite iterations follows from Ud being finite and f (U ),U ∈Ud being bounded above, [1, Corollary 5].
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The monotonicity proof in Prop. 1 builds upon the fact that linearizations gx0 of a convex function g are
minorizations, gx0 ≤ g , twice. The ideas are the same as in [1, Prop. 3], but stripped down to the essentials,
such that generalization becomes easier and the operating principle of the algorithm clearer. Detailed
calculations can again be found in Sec. A.4.

Proposition 1. ∀t ∈N : f
(
U{t }

)≤ f
(
U{t+1}

)
Proof. First of all, we remember the requirement for the weights to be symm. and pos. semidefinite,
W ∈S+

n , which in light of Eq. (18) implies W{t } ∈S+
n , because, using the decomposition W = LLT , implied

by W ∈S+
n , one obtains,

W{t } =W U{t }U
T
{t }W = (

LLT U{t }
)(

U T
{t }LLT )=: L̃L̃T . (20)

Now, consider the objective, f : Symn → R, X 7→ 〈W X W, X 〉F , with convex domain
Symn := {

M ∈Rn×n
∣∣M = M T

}
, and its linearization in X, fX{t } :Rn×d →R, U 7→ 〈U ,W{t }U 〉F .

By checking the pos. semidefiniteness of both their second derivatives, we realize their convexity,

∂2 f (X )(V ,V ) = 2〈W V W,V 〉F = 2∥LT V L∥2
F ≥ 0

∂2 fX{t } (U )(V ,V ) = 4〈V ,W{t }V 〉F = 4∥L̃T V ∥2
F ≥ 0.

(21)

At last, we linearize fX{t } in U{t }, (
fX{t }

)
U{t }

(U ) ∼ 〈U ,W{t }U{t }〉F , (22)

which recovers the term maximized in the projection of the HiPPI update (11),

U{t+1} ←[ projUd

(
W{t }U{t }

) Eq. (17)= argmax
U∈Ud

{〈U ,W{t }U{t }〉F
}= argmax

U∈Ud

{(
fX{t }

)
U{t }

(U )
}

. (23)

Realizing that linearizations of convex functions are minorizations and agree with the original function at
the base point, i.e. gx0 (x0) = g (x0), concludes the proof,

f
(
U{t }

) lin.= fX{t }

(
X{t }

) lin.= (
fX{t }

)
U{t }

(
U{t }

) Eq. (23)≤ (
fX{t }

)
U{t }

(
U{t+1}

) fX{t } cvx
≤ fX{t }

(
X{t+1}

) f cvx≤ f
(
U{t+1}

)
. (24)

□

Notably in Eq. (23), it becomes clear, that the HiPPI update (11) essentialy boils problem (7) down to
a LAP in the universe matchings, which given the, by the cost structure implied, convexity leads to an
increase of the objective. Hopes for generalizing this convergence result are therefore slim, but one could
still investigate how tightly the cost structure and the fact, that linearizing twice reduces the problem to a
LAP, are coupled.
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4.4. Generalization

In this spirit, one could try to substitute W ⊗W ∈ Symn2 by more general costs C ∈ Symn2 , transforming the
objective from Eq. (8),

f (X ) = 〈W X W, X 〉F = 〈X⃗ ,W ⊗W X⃗ 〉 , (25)

into the more general objective,
F (X ) = 〈X⃗ ,C X⃗ 〉 . (26)

Substituting universe matchings according to Lemma 1 brings forth,

F (U ) = 〈
−−−→
UU T ,C

−−−→
UU T 〉 = 〈 U⃗ , (U ⊗ In)T C (U ⊗ In)U⃗ 〉 , (27)

while linearization in the manner of Eq. (18) and Eq. (22) in Prop. 1 are,

FX{t } (X ) ∼ 〈X⃗{t },C X⃗ 〉 = 〈 U⃗{t },
(
U{t } ⊗ In

)T C (U ⊗ In)U⃗ 〉(
FX{t }

)
U{t }

(U ) ∼ 〈U⃗ ,
[(

U{t } ⊗ In
)+ (

In ⊗U{t }
)

K
]T C

(
U{t } ⊗ In

)
U⃗{t }〉 ,

(28)

where K := Knd is the (nd ×nd)-dimensional commutation matrix, compactly described in [31], whose

central property is Knd A⃗ =
−→
AT for any matrix A ∈ Rn×d . With a final bit of notation, namely mat(U⃗ ) =U ,

this last linearization suggests the update

U{t+1} ← [ projUd

(
mat

([(
U{t } ⊗ In

)+ (
In ⊗U{t }

)
K

]T C
(
U{t } ⊗ In

)
U⃗{t }

) )
, (29)

which reduces to the HiPPI Update (11) for the choice C = W ⊗W as is expected and sanity checked in
Sec. A.5. This is an even more expensive update than the original HiPPI update (11), a yet mathemati-
cally unfounded, simplification would be to drop the therm involving

(
In ⊗U{t }

)
K and instead solve the

problem

max
U∈Ud

{
〈 U⃗ ,

(
U{t } ⊗ In

)T C
(
U{t } ⊗ In

)
U⃗ 〉

}
, (30)

Experimental evaluation and further investigation is needed to determine its practicality. Another direc-
tion of future work could be simplifying the update in the case of pairwise decomposable costs.

5. Notes on Experiments

HiPPI was compared on three datasets (HiPPI-Dataset [1], WILLOW [32], TOSCA [33]) to a plethora of other
methods. These other methods were mostly designed with in part heavily differing contexts in mind, just
as HiPPI is tailored towards a certain structure of problems. All datasets are motivated from a computer
vision perspective and are either shapes or images. The construction touched upon in Sec. 4.1.1 was con-
ducted for all datasets, where either 2D Euclidean space, with canonical metric, or the shape manifold,
with geodesic distances, provided the structure of a metric space. Naturally, modelling and optimization
of the problem are intertwined, making an actual evaluation of the optimization method difficult. In ac-
cordance, energy or costs of the final solution were never used as a metric of comparison, but instead

10



e. g. precision and recall, which rest upon veiled ground truth. Detailed setups and results should be read
in [1]. The following just sheds light on possible flaws of the comparisons.
Experiments on the HiPPI-Dataset are conducted between HiPPI and methods not incorporating any geo-
metric relations, let alone being able to handle costs relating pairs of matchings - quite contrary to HiPPI.
Although this flaw is mentioned by Bernard et al. and excused by inefficiencies of the methods that do
incorporate geometric relations, the comparison and conclusions drawn from this experiment are not less
than questionable.
Besides the overall criticism regarding the experiments, data obtained via WILLOW [32] allows a somewhat
fair comparison. Solely the simplicity of the dataset and corresponding problems could be remarked.
The comparison on TOSCA [33] seems to be misguided, as the only method included in the comparison,
[34] by Cosmo et al., approaches a vastly more difficult problem - outlier shapes. Their two-stage filtering
approach, aimed at these problems, immediately provides a seemingly straightforward explanation for the
in [1] observed (and condemned) low number of matches. Whilst this is also mentioned by Bernard et al.,
the comparison should be taken with a grain of salt - HiPPI would fail in the scenarios [34] was designed
to handle.
Arguing for the benefit of Bernard et al.’s experimental evaluation is the fact, that, especially in the liter-
ary landscape at the time, methods targeting this problem (from the computer vision perspective) mix, as
mentioned, modelling and optimization. Each modelling stage uses slightly different assumptions out-
side of which applicability is often lost - this makes a ’fair’ comparison almost impossible. Both stages
need to be split. Then again, a lot of details, that could help to reduce this gap to a ’fair’ comparison, were
swept under the rug. Just to mention a few: Examples of the HiPPI dataset as well as ground truth are not
provided. Initialisation, e. g. of permutations synchronization methods, if at all mentioned, was done with
unspecified linear weights, while HiPPI performs local search using quadratic weights. Just as grave, it was
left unclear, whether weights used by HiPPI were reused for methods, that, for a change, are able to handle
quadratic weights.

6. Conclusion

After a well-founded mathematical analysis, HiPPI was unveiled as simply optimizing a Multi-LAP ob-
tained by twofold linearization of the Multi-QAP objective . This perspective paved the way to a general-
ization of the HiPPI update, which, more than anything, stressed the essentiality of the cost structure used
by Bernard et al. in [1], as it entails convexity - with it the basis for the method’s convergence guarantee,
as well as efficiency by relying on lower dimensional matrices. Nonetheless, the generalization opened up
exciting new avenues for future work, of which experimental evaluation poses as the most crucial one.
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Jd2 = 4K V [1] V [2] V [3]

1

2

3

4

(a) Existing universe matching for k = 2.

Jd3 = 5K V [1] V [2] V [3]

1

2

3

4

5

(b) Construction for k = 2 ⇒ k = 3.

Figure 1: Visualization of Lemma A.1. The elements of the k = 3 sets V [p] are represented by circles un-
derneath the corresponding set. The assumed matching X ∈X is indicated via lines, where a line

between elements means X [p,q]
ip iq

= 1. One should take note of the cycle-consistency. The universe

is denoted in the most left column of each picture, whereas matchings to the universe are visual-
ized by the color. Fig. 1a shows the induction hypothesis and Fig. 1b the final construction.

A. Appendix

A.1. Universe Characterization

The idea behind the construction used in the proof of Lemma A.1 is visualized in Fig. 1. Intuitively one as-
signs to each element participating in a maximal cycle the same universe point. In this context, a maximal
cycle is the set of elements obtained by starting with the singleton of an arbitrary element and adding each
element matched to an already added element.

Lemma A.1. (Universe Characterization of Cycle-Consistency)

Assume X ∈ [
P[p,q]

]
p,q∈JkK2 , then X ∈X ⇔ ∃d ∈N : ∃U ∈Ud : ∀p, q ∈ JkK : X [p,q] =U [p]

(
U [q]

)T
,

where Ud :=
{[

U [p]
]

p∈JkK ∈
[
Pnp ,d

]
p∈JkK

∣∣∣∣∀p ∈ JkK : U [p ]⃗1d = 1⃗np

}
denotes the set of universe matchings

for a universe of size d. Rephrased, it holds that X =UU T .

Proof. For "⇐", see [1, Lemma 2] and for "⇒", inductive proof per construction in k ∈N.

k = 2:

Denote the unassigned elements of V [2] with W [2] :=
{

i2 ∈ V [2]

∣∣∣∣[(X [1,2]
)T

1⃗n1

]
i2

= 0

}
.

Set the universe size to d := |V [1]|︸ ︷︷ ︸
=:d [1]

+|W [2]|︸ ︷︷ ︸
=:d [2]

and the universe matching of V [1] to U [1] := [
In1 0n1×d [2]

]
.
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We note the matching relations following from X [1,2] ∈ {0,1}n1×n2 and the definition of W [2]

• ∀i1 ∈ V [1]∃! (id )i1
∈ Jd [1]K : U [1]

i1(id )i1
= 1

• ∀i2 ∈ V [2] \W [2]∃! (i1)i2
∈ V [1] : X [1,2]

(i1)i2 i2
= 1,

and construct the second, thereby well defined, universe matching

•
[
U [2]

i2id

]
i2,id∈W [2]×JdK

:= [
0d [2]×d [1] Id [2]

]
•

[
U [2]

i2id

]
i2,id∈V [2]\W [2]×JdK

:=
[{

1; id = (id )(i1)i2
0; else

}]
i2,id∈V [2]\W [2]×JdK

.

With this construction it holds that U :=
[

U [1]

U [2]

]
∈Ud and[

U [1]
(
U [2]

)T
]

i1i2

= ∑
id∈JdK

U [1]
i1id

U [2]
i2id

=
{

1; id = (id )i1
∧ id = (id )(i1)i2

⇔ i1 = (i1)i2
⇔ X [1,2]

i1i2
= 1

0; else

}
= X [1,2]

i1i2
.

Hence, with the assumed cycle-consistency of X , X =UU T .
k −1 ⇒ k: Assume the existence of universe matchings Ũ [p] for p ∈ Jk −1K to a universe of size dk−1.

Denote the unassigned elements of V [k] with W [k] :=
{

ik ∈ V [k]

∣∣∣∣∀p ∈ Jk −1K :
[(

X [p,k]
)T

1⃗np

]
ik

= 0

}
.

Now noting the matching relations

• ∀p ∈ Jk −1K∀ip ∈ V [p]∃! (id )ip
∈ Jdk−1K : Ũ [p]

ip (id )ip
= 1

• ∀ik ∈ V [k] \W [k] : ; ̸=Iik
:=

{
p ∈ Jk −1K

∣∣∣∣[(X [p,k]
)T

1⃗np

]
ik

= 1

}
⇝∀p ∈Iik : ∃!

(
ip

)
ik

: X [p,k]

(ip )ik
ik
= 1,

transitivity of cycle-consistency demands that ∀ik ∈ V [k] \W [k]∀p, q ∈Iik : (id )(ip )ik
= (id )(iq )ik

=: (id )ik
.

This can be shown by contradiction.

Assuming ∃p ̸= q ∈Iik : (id )(ip )ik
̸= (id )(iq )ik

(∗) and realizing X [p,q]
(ip )ik

,(iq )ik
= ∑

id∈Jdk−1K
Ũ [p]

(ip )ik
id

Ũ [q]
(iq )ik

id

(∗)= 0,

as well as
[

X [p,k]X [k,q]
]

(ip )ik
,(iq )ik

= ∑
jk∈V [k]

X [p,k]
(ip )ik

, jk
X [q,k]

(iq )ik
, jk

= X [p,k]
(ip )ik

,ik︸ ︷︷ ︸
=1

X [q,k]
(iq )ik

,ik︸ ︷︷ ︸
=1

= 1

reveals the contradiction to X [p,k]X [k,q] ≤ X [p,q].
Finally, the universe matchings can be constructed. Set the universe size to d := dk−1 +|W [k]|︸ ︷︷ ︸

=:d [k]

and define

• ∀p ∈ Jk −1K : U [p] :=
[
Ũ [p] 0np×d [k]

]
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•
[
U [k]

ik id

]
ik ,id∈W [k]×JdK

:= [
0d [k]×dk−1

Id [k]
]

•
[
U [k]

ik id

]
ik ,id∈V [k]\W [k]×JdK

:=
[{

1; id = (id )ik

0; else

}]
ik ,id∈V [k]\W [k]×JdK

Then,

• U := [
U [p]

]
p∈JkK ∈Ud

• ∀p, q ∈ Jk −1K : U [p]
(
U [q]

)T = Ũ [p]
(
Ũ [q]

)T = X [p,q]

• ∀p ∈ Jk −1K :
[
U [p]

(
U [k]

)T
]

ip ik

= ∑
id∈JdK

U [p]
ip id

U [k]
ik id

=
{

1; ip = (ip )ik ⇔ X [p,k]
ip ik

= 1
0; else

}
= X [p,k]

ip ik
,

which means X =UU T and concludes the proof. □

A.2. Details: Problem Formulation

In the following the substitution of universe matchings from Eq. (8) is done with more rigor.

f (U ) = 〈U T W U ,U T W U 〉F

= 〈(UU T
)

W,W
(
UU T

)〉F

X=UU T

= 〈X W,W X 〉F

W =W T

= 〈W X W, X 〉F

X=X T

= tr(W X W X )

= ∑
p∈JkK

tr
(
[W X W X ][p,p])

= ∑
p∈JkK

tr

( ∑
(q,r,s)∈JkK3

W [p,q]X [q,r ]W [r,s]X [s,p]

)
= ∑

(p,q,r,s)∈JkK4

tr
(
W [p,q]X [q,r ]W [r,s]X [s,p])

= ∑
(p,q,r,s)∈JkK4

〈X [s,p],W [s,r ]X [r,q]W [q,p]〉F

= ∑
(p,q,r,s)∈JkK4

〈
−−−→
X [s,p],

−−−−−−−−−−−−−−→
W [s,r ]X [r,q]W [q,p]〉

= ∑
(p,q,r,s)∈JkK4

〈
−−−→
X [s,p],

(
W [q,p])T ⊗W [s,r ]

−−−→
X [r,q]〉.

(31)

The special case of a Multi-QAP with decomposable costs in Koopmanns-Beckmann’s form proclaimed in
Eq. (10) in the unweighted scenario, is recovered as follows. Assume S = In , which implies W = A, and
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recall, that A is of block-diagonal form A = diag
(

A[p], p ∈ JkK
) ∈S+

n .

f (X ) = 〈W X W, X 〉F
W =A= 〈AX A, X 〉F

see Eq. (31)= ∑
(p,q,r,s)∈JkK4

tr
(

A[p,q]X [q,r ] A[r,s]X [s,p])
p ̸=q⇒A[p,q]=0np×nq= ∑

(p,s)∈JkK2

tr
(

A[p]X [p,s] A[s]X [s,p])
see Eq. (31)= ∑

(p,s)∈JkK2

〈
−−−→
X [p,s],

(
A[s])T ⊗ A[p]

−−−→
X [p,s]〉

A[p]=(A[p])T

= ∑
(p,s)∈JkK2

〈
−−−→
X [p,s], A[s] ⊗ A[p]

−−−→
X [p,s]〉.

(32)

A.3. Details: Relaxations

Proofs for Lemmas 2 - 4.

Lemma A.2. max
U∈pkGSTnd

{〈U ,W U 〉F } is a relaxation of max
U∈Ud

{〈U ,W U 〉F }.

Proof. Choose U ∈Ud , then U [p] ∈Pnp d ⇒ (
U [p]

)T
U [p] ≤ Id .

Now, U T U = ∑
p∈JkK

(
U [p])T

U [p] ≤ ∑
p∈JkK

Id = kId ⇒ Ud ⊆
p

kGSTnd .

□

Lemma A.3. argmax
U∈pkGSTnd

{〈U ,W U 〉F }
1=

p
k argmax

U∈GSTnd

{〈U ,W U 〉F }
2=

p
k argmax

U∈STnd

{〈U ,W U 〉F } , where the sec-

ond equality requires W ∈S+
n with eigenvalues λ1, . . . ,λd >λd+1, . . . ,λn .

Proof.

To 1,
LHS =

p
k argmax

U∈GSTnd

{
〈(
p

kU ),W (
p

kU )〉F

}
=
p

k argmax
U∈GSTnd

{k〈U ,W U 〉F } = RHS .

To 2, notice,
〈U ,W U 〉F = ∑

id∈JdK
〈U·id ,W U·id 〉F .
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It suffices to show ∀Ũ ∈GSTnd \STnd∃U ∈STnd : f (U ) > f (Ũ ).
Choose Ũ ∈GSTnd \STnd , and define the index sets I := {

i ∈ JdK : ∥Ũ·i∥2 < 1
}

and N := {
i ∈I : Ũ·i = 0

}
.

N =;: Define U·i :=
{

Ũ·i
∥Ũ·i ∥ ; i ∈I

Ũ·i ; i ∉I

}
. Then, U ∈STnd and f (U ) =

( ∏
i∈I

∥Ũ·i∥−2

)
︸ ︷︷ ︸

>1

f (Ũ ) > f (Ũ ).

N ̸= ;: We will show that we can find |N | objective increasing, non-zero vectors, that remain orthogo-
nal to the non-zero columns and each other. Denote the eigenpairs of W with (λi , wi )i∈JnK. Define the set
of non-zero columns U := {

Ũ·i |i ∈ JdK\N
}⊆Rn , and leading eigenvectors W := {

wi |i ∈ JdK
}⊆Rn . Mutual

orthogonality of vectors in U , implied by Ũ ∈GSTnd , implies linear independence, which in turn implies
dim

(
span(U )

)= d− |N |. Now,

dim
(
span(U )⊥∩ span(W )

) = dim
(
span(U )⊥

)︸ ︷︷ ︸
=n−d+|N |

+ dim
(
span(W )

)︸ ︷︷ ︸
=d

− dim
(
span(U )⊥+ span(W )

)︸ ︷︷ ︸
≤n

≥ |N | .

Choose any orthonormal basis {vi }i∈J|N |K ∈ span(U )⊥∩span(W ) and define U·i :=
{

vi ; i ∈N

Ũ·i ; i ∉N

}
. Then,

f (U ) = ∑
i∈JdK\N

〈Ũ·i ,W Ũ·i 〉F + ∑
i∈J|N |K

〈vi ,W vi 〉F︸ ︷︷ ︸
≥λd>0

> f (Ũ ).

To ensure U ∈STnd one possibly has to proceed analogously to the case N =;. □

Lemma A.4. projUd

(p
kV

)
= projUd

(V )

Proof.

LHS = argminU∈Ud

{
∥pkV −U∥2

F = 〈pkV −U ,
p

kV −U 〉F = k∥V ∥2
F +∥U∥2

F −2
p

k〈V ,U 〉F

}
∥U∥2

F=n= argmaxU∈Ud

{p
k〈V ,U 〉F

}
= argmaxU∈Ud

{〈V ,U 〉F }

Analogously, RHS = argmaxU∈Ud
{〈V ,U 〉F }. □

A.4. Details: Derivatives & Linearizations

In the following, calculations, omitted for brevity throughout the report, are carried out in detail.
Recalling the reformulated objective function (8),

f : Symn →R, X 7→ 〈W X W, X 〉F (33)
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with weights W ∈S+
n , allows for the calculation of the first,

∂ f (X0)(V ) = lim
α→0

{
1

α

(
f (X0 +αV )− f (X0)

)}= 2〈W X0W,V 〉F , (34)

and second derivative in X0 ∈ Symn , along V ∈ Symn ,

∂2 f (X0)(V ) = limα→0
{ 1
α

(
∂ f (X0 +αV )−∂ f (X0)

)}
= limα→0

{ 2
α (〈W (X0 +αV )W, ·〉F −〈W X0W, ·〉F )

}
= 2〈W V W, ·〉F

∂2 f (X0)(V ,V ) = 2〈W V W,V 〉F ,

(35)

where · indicates that the objective is a function awaiting an argument.
This gives rise to the linearization fX{t } of f in X{t } ∈ Symn ,

fX{t } (X ) = f (X{t })+∂ f (X{t })(X −X{t }) = f (X{t })+2〈W X{t }W, X −X{t }〉F := h(X{t })+2〈W X{t }W, X 〉F , (36)

with the function h summarizing all terms constant w.r.t. X . Using Lemma 1 to reformulate this in terms
of universe matchings, while recalling W{t } :=W X{t }W =W U{t }U T

{t }W ∈ Symnfrom Eq. (18),

fX{t } :Rn×d →R,U 7→ h(X{t })+2〈U ,W{t }U 〉F , (37)

allows to calculate the corresponding derivatives in U0 ∈Rn×d , along V ∈Rn×d ,

∂ fX{t } (U0)(V ) = 4〈U0,W{t }V 〉F

∂2 fX{t } (U0)(V ,V ) = 4〈V ,W{t }V 〉F ,
(38)

giving rise to the last linearization,(
fX{t }

)
U{t }

(U ) = fX{t }

(
U{t }

)+∂ fX{t } (U{t })(U −U{t }) = fX{t }

(
U{t }

)+4〈U{t },W{t }U 〉F . (39)

Now turning to the generalized objective from Eq. (26),

F : Symn →R, X 7→ 〈X⃗ ,C X⃗ 〉 , (40)

with generalized weights C ∈ Symn2 . Tracing the exact same calculations, its derivative in X0 ∈ Symn along
V ∈ Symn reads,

∂F (X0)(V ) = lim
α→0

{
1

α

(
〈−−−−−−→X0 +αV ,C

−−−−−−→
X0 +αV 〉−〈X⃗0,C X⃗0〉

)} −−−→
A+B=A⃗+B⃗= 2〈X⃗0,CV⃗ 〉 , (41)

resulting in the linearization,

FX{t } (X ) = F (X{t })+2〈X⃗{t },C
(
X⃗ − X⃗{t }

)〉 := H(X{t })+2〈X⃗{t },C X⃗ 〉 , (42)

this time, with the function H summarizing all terms constant w.r.t. X . Reformulation via Lemma 1 as in
Eq. (27) reads,

FX{t } :Rn×d →R,U 7→ H(X{t })+2 〈U⃗{t },
(
U{t } ⊗ In

)T C (U ⊗ In)U⃗ 〉 , (43)
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while its derivative in U0 ∈Rn×d along V ∈Rn×d reads, using the bilinearity of the kronecker product,

∂FX{t } (U0)(V ) = 2〈U⃗{t },
(
U{t } ⊗ In

)T C
[
(V ⊗ In)U⃗0 + (U0 ⊗ In)V⃗

]〉 . (44)

The conclusion is its linearization,

(
FX{t }

)
U{t }

(U ) = FX{t } (U{t })+2

〈U⃗{t },
(
U{t } ⊗ In

)T C (U ⊗ In)U⃗{t }〉︸ ︷︷ ︸
1⃝

+〈U⃗{t },
(
U{t } ⊗ In

)T C
(
U{t } ⊗ In

)
U⃗ 〉︸ ︷︷ ︸

2⃝

 . (45)

While term 2⃝ can be adressed by a LAP analogously to the term in Eq. (22) emerging in the original HiPPI
objective, term 1⃝ needs to be rearranged. This lastly requires the (nd ×nd)-dimensional commutation
matrix Knd , see [31]. To avoid confusion, the indices are dropped wherever possible, K := Kn,d .

1⃝ = 〈U⃗{t },
(
U{t } ⊗ In

)T C (U ⊗ In)U⃗{t }〉 ; with
(
(U ⊗ In)U⃗{t } =

−−−−−→
U{t }U T = (

In ⊗U{t }
)−−→
U T

)
= 〈U⃗{t },

(
U{t } ⊗ In

)T C
(
In ⊗U{t }

)−−→
U T 〉 ; with

(
KU⃗ =

−−→
U T

)
= 〈U⃗{t },

(
U{t } ⊗ In

)T C
(
In ⊗U{t }

)
KU⃗ 〉

(46)

The second linearization of the generalized objective then takes the form,(
FX{t }

)
U{t }

(U ) = FX{t } (U{t })+2 〈U⃗ ,
[(

U{t } ⊗ In
)+ (

In ⊗U{t }
)

K
]T C

(
U{t } ⊗ In

)
U⃗{t }〉 . (47)

A.5. Reduction of the Generalized to the HiPPI Update

The goal is to show that the generalized update (29) reduces to the HiPPI update (11) (in form (19)) under
the choice of C = W ⊗W for W ∈ Symn . The calculation uses the fact that the commutation matrix K is a
permutation matrix and as such orthogonal, K T K = Ind [31, Thm. 3.1 (iii)].

projUd

(
mat

([(
U{t } ⊗ In

)+ (
In ⊗U{t }

)
K

]T W ⊗W
(
U{t } ⊗ In

)
U⃗{t }

) )
= projUd

(
mat

( (
U T

{t } ⊗ In

)
W ⊗W

(
U{t } ⊗ In

)
U⃗{t } + K T

(
In ⊗U T

{t }

)
W ⊗W

(
U{t } ⊗ In

)
U⃗{t }

) )
= projUd

(
mat

( (
U T

{t }W U{t } ⊗W
)

U⃗{t } + K T
(
W U{t } ⊗U T

{t }W
)

U⃗{t }

) )
= projUd

(
mat

( −−−−−−−−−−−−−→
W U{t }U T

{t }W U{t } + K T
−−−−−−−−−−−−−→
U T

{t }W U{t }U T
{t }W

) )
K T A⃗T =A⃗= projUd

(
mat

( −−−−−−−−−−−−−→
W U{t }U T

{t }W U{t } +
−−−−−−−−−−−−−→
W U{t }U T

{t }W U{t }

) )
Def. W{t }= projUd

(
2mat

( −−−−−−→
W{t }U{t }

) )
Lemma 4= projUd

(
mat

( −−−−−−→
W{t }U{t }

) )
= projUd

(
W{t }U{t }

)
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