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Abstract

We present a probabilistic graphical model formulation for the
graph clustering problem. This enables us to locally represent
uncertainty of image partitions by approximate marginal distri-
butions in a mathematically substantiated way, and to rectify
local data term cues so as to close contours and to obtain valid
partitions.
We exploit recent progress on globally optimal MAP infer-

ence by integer programming and on perturbation-based ap-
proximations of the log-partition function, in order to sample
clusterings and to estimate marginal distributions of node-pairs
both more accurately and more e�ciently than state-of-the-art
methods. Our approach works for any graphically represented
problem instance. This is demonstrated for image segmenta-
tion and social network cluster analysis. Our mathematical
ansatz should be relevant also for other combinatorial prob-
lems.

1 Introduction

Clustering, image partitioning and related NP-hard decision
problems abound in the fields of image analysis, computer vi-
sion, machine learning and data mining, and much research has
been done on alleviating the combinatorial di�culty of such in-
ference problems using various forms of relaxations. A recent
assessment of the state-of-the-art using discrete graphical mod-
els has been provided by [20]. A subset of the specific problem
instances considered there (Potts-like functional minimisation)
are closely related to continuous formulations investigated, e.g.,
by [11, 27].
From the viewpoint of statistics and Bayesian inference, such

Maximum-A-Posteriori (MAP) point estimates have been al-
ways criticised as falling short of the scope of probabilistic in-
ference, that is to provide – along with the MAP estimate –
“error bars” that enable to assess sensitivities and uncertainties
for further data analysis. Approaches to this more general ob-
jective are less uniquely classified than for the MAP problem.
For example, a variety of approaches has been suggested from
the viewpoint of clustering (see more comments and references
below) which, on the other hand, di↵er from the variational
marginalisation problem in connection with discrete graphical
models [42]. From the computational viewpoint, these more
general problems are even more involved than the correspond-
ing MAP(-like) combinatorial inference problems.
In this paper, we consider graph partitioning in terms of the

minimal cost multicut problem [12], also known as correlation
clustering in other fields [6], which includes modularity clus-
tering [10], the image partitioning problem [4] and other graph
partition problems [32] as special cases. Our work is based on

(i) recent progress [34, 16] on the probabilistic analysis of
perturbed MAP problems applied to our setting in or-
der to establish mathematically the connection to basic
variational approximations of inference problems [42],

Figure 1: Two examples demonstrating our approach. Left
column: images subject to unsupervised partitioning. Cen-
ter column: globally optimal partitions. Right column:
probabilistic inference provided along with the partition. The
color order: white ! yellow ! red ! black, together with de-
creasing brightness, indicate uncertainty, cf. Fig. 3. We point
out that all local information provided by our approach is in-
trinsically non-locally inferred and relates to partitions, that is
to closed contours.

(ii) recent progress on exact [22, 23] and approximate [8]
solvers of the minimum cost multicut problem, which is
required in connection with (i).

Figure 1 provides a first illustration of our approach when ap-
plied for image partitioning. Instead of only calculating the
most likely partition, our approach additionally provides alter-
native probable partitions and returns quantitative measures
of certainty of the boundary parts.

Although probabilistic image partitioning has been motivat-
ing our work, the resulting approach is more widely applicable.
This is demonstrated in the experimental section by analyzing
a problem instance from the field of machine learning in terms
of network data defined on a general graph.

1.1 Related Work

The susceptibility of clustering to noise is well known. This
concerns, in particular, clustering approaches to image parti-
tioning that typically employ spectral relaxation [39, 19, 28].
Measures proposed in the literature [29, 32] to quantitatively
assess confidence in terms of stability, employ data perturba-
tions and various forms of cluster averaging. While this is intu-
itively plausible, a theoretically more convincing substantiation
seems to be lacking, however.

In [18], a deterministic annealing approach to the unsuper-
vised graph partitioning problem (called pairwise clustering)
was proposed by adding an entropy term weighted by an arti-
ficial temperature parameter. Unlike the simpler continuation
method of Blake and Zisserman [9], this way of smoothing the
combinatorial partitioning problem resembles the variational
transition from marginalisation to MAP estimation, by apply-
ing the log-exponential function to the latter objective [42].
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As in [9], however, the primary objective of [18] is to com-
pute a single “good” local optimum by solving a sequence of
increasingly non-convex problems parametrised by an artificial
temperature parameter, rather than sampling various “ground
states” (close to zero-temperature solutions) in order to assess
stability, and to explicitly compute alternatives to the single
MAP solution. The latter has been achieved in [33] using a
non-parametric Bayesian framework. Due to the complexity of
model evaluation, however, authors have to resort to MCMC
sampling.
Concerning continuous problem formulations, a remarkable

approach to assess “error bars” of variational segmentations
has been suggested by [36]. Here, the starting point is the
“smoothed” version of the Mumford-Shah functional in terms
of the relaxation of Ambrosio and Tortorelli [2] that is known
to �-converge to the Mumford-Shah functional in the limit of
corresponding parameter values. Authors of [36] apply a partic-
ular perturbation (“polynomial chaos”) that enables to locally
infer confidence of the segmentation result. Although being
similar in scope to our approach, this approach is quite di↵er-
ent. An obvious drawback results from the fact that minima
of the Ambrosio-Tortorelli functional do not enforce partitions,
i.e. may involve contours that are not closed.
Finally, we mention recent work [37] that addresses the same

problem using – again – a quite di↵erent approach: “stochastic”
in [37] just refers to the relaxation of binary indicator vectors
to the probability simplex, and this relaxation is solved by a
local minimisation method.
All the previous approaches require to select or optimize over

an unknown number of clusters. This introduces a bias into the
model, as we will show later. Our approach, on the other hand,
works on an exponential family over edge-variables. It mod-
els clusterings in terms of multicuts, which inherently includes
selection of the number of clusters. Samples from an approx-
imation of this distribution are obtained as MAP-solutions of
randomly perturbed partition problems.

1.2 Basic Notation

For the set of natural numbers from 1 to k we use the shorthand
[k] and denote the cardinality of a set A by |A|. For a set A
we denote by [A]k the set of k-element subsets of A and for the
sets A1 and A2 by [A1, A2] the set {{a1, a2}|a1 2 A1, a2 2 A2}.
By 2A we denote the power set of A, which is defined as the
set of all subsets of A. The inner product of vectors is denoted
by h·, ·i, and the indicator function I(expression) is 1 if the
expression is true and 0 otherwise. We use the classical notation
for a undirected graph G = (V,E) where V is a set of nodes
and E ⇢ [V ]2 is a set of edges. The degree of a node v is
given by deg(v) := |{u 2 V : {u, v} 2 E}|. We will use uv as a
shorthand for {u, v}.

1.3 Organization

The remaining paper is organized as follows. We will give
the formal definition of partitioning, the minimal cost mul-
ticut problem and its polyhedral representation in Sec. 2. This
is followed by the definition of probabilistic distributions over
partitions and methods that estimate marginals and generate
samples in Sec. 3. A detailed numerical evaluation on synthetic
and real world data is given in Sec. 4.

2 Graph Partitioning and Multicuts

The minimal cost multicut problem, also known as correlation
clustering, is defined in terms of partitions of an undirected

weighted graph

G = (V,E,w), V = [n], E ✓ [V ]2, (1a)

w : E ! R, e 7! w
e

:= w(e) (1b)

with a signed edge-weight function w. A positive weight w
e

>
0, e 2 E indicates that it is beneficial to put the two nodes into
the same cluster, whereas a negative weight indicates that it
is beneficial to separate them. We formally define below valid
partitions and interchangeably call them clusterings.

Definition 1 (partition, clustering). A set of subsets {S1,
. . . , S

k

}, called shores, components or clusters, is a (valid) par-

tition of a graph G = (V,E,w) i↵ (a) S
i

✓ V, i 2 [k], (b) S
i

6=
;, i 2 [k], (c) the induced subgraphs G

i

:=
�

S
i

, [S
i

]2 \ E
�

are
connected, (d)

S

i2[k] Si

= V , (e) S
i

\ S
j

= ;, i, j 2 [k], i 6= j.
The set of all valid partitions of G is denoted by S(G).

The number |S(G)| of all possible partitions is upper-
bounded by the Bell number [1] that grows with |V | expo-
nentially fast, but much slower than 2|E| and |V ||V |, which are
some trivial upper bounds.

Definition 2 (minimal cost multicut problem). The correla-

tion clustering or minimal cost multicut problem is to find a
partition S⇤ that minimizes the cost of inter cluster edges as
defined by the weight function w.

S⇤ 2 argmin
S2S(G)

X

ij2E

w
ij

|S|
X

k=1

I(i 2 S
k

^ j 62 S
k

) (2)

The minimal cost multicut problem can be formulated as a
node labeling problem given by the problem of minimizing a
Potts model

x⇤ 2 argmin
x2V

|V |

X

ij2E

w
ij

I(x
i

6= x
j

). (3)

Since any node can form its own cluster, |V | labels are needed
to represent all possible assignments in terms of variables
x
i

, i 2 V . From an optimizer x⇤ of (3) we can get an opti-
mizer S⇤ of (2) by calculating the connected components on
G0 = (V, {ij 2 E : x

i

= x
j

}).
A major drawback of this formulation is the huge space

needed to represent the assignments. Furthermore, due to the
lack of an external field (unary terms), any permutation of an
optimal assignment results in another optimal labeling. As a
consequence of this symmetry, the standard relaxation in terms
of the so-called local polytope [42] becomes too weak and can
not handle the necessary non-local constraints, cf. Sec.3.1.

In order to overcome these problems, we adopt an alternative
representation of partitions based on the set of inter cluster
edges as suggested in [12]. We call the edge set

�(S1, . . . , Sk

) :=
[

i 6=j, i,j2[k]

[S
i

, S
j

] \ E (4)

a multicut associated with the partition S = {S1, . . . , Sk

}. To
obtain a polyhedral representation of multicuts, we define for
each subset E0 ✓ E an indicator vector �(E0) 2 {0, 1}|E| by

�
e

(E0) :=

(

1, if e 2 E0,

0, if e 2 E \ E0.

The multicut polytope MC(G) then is given by the convex hull

MC(G) := conv
�

�
�

�(S)
�

: S 2 S(G)
 

. (5)
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The vertices of this polytope are the indicator functions of valid
partitions and denoted by

Y(G) :=
�

�
�

�(S)
�

: S 2 S(G)
 

. (6)

Based on this representation, the minimal cost multicut
problem amounts to find a partition S 2 S(G) that minimizes
the sum of the weights of edges cut by the partition

argmin
S2S(G)

X

e2E

w
e

· �
e

(�(S))

⌘ argmin
y2MC(G)

X

e2E

w
e

· y
e

= argmin
y2MC(G)

hw, yi (7)

This problem is known to be NP-hard [6] and moreover APX-
hard [13]. Although problem (7) is a linear program, and there-
fore obtains its optimum on the boundary of MC(G), the rep-
resentation of the multicut polytope MC(G) by half-spaces is
of exponential size and moreover, unless P = NP , no e�cient
separation procedure for the complete multicut polytope ex-
ists [14].
However, one can develop e�cient separation procedures for

an outer relaxation of the multicut polytope which involves all
facet-defining cycle inequalities. Together with integrality con-
straints, this guarantees globally optimal solutions of problem
(7) and is still applicable for real world problems [21, 20]. For
the tractability of huge models and to provide better anytime
performance, several greedy move-making methods [24, 5, 8, 7]
have been suggested. These methods are able to find nearly
optimal solutions for larger models much faster.

3 Probabilistic Graph Partitioning

Additionally to the most likely partitioning, one might also be
interested in the probability of partitions and the probability
that a certain edge is part of a cut. For this we define for a
given graph G a probability distribution over all partitions in
terms of an exponential family

p(y|✓) := exp (h✓, yi �A(✓)) ✓ :=
�w

T
(8)

A(✓) := ln

0

@

X

y2Y(G)

exp (h✓, yi)

1

A , (9)

where w 2 R|E| is the vector due to the edge weights (1b) and
Y(G) is given by (6). T � 0 is called temperature parameter.
This exponential family di↵ers from usual discrete exponential
families in the log partition function A(✓). Instead of calculat-
ing the sum over {0, 1}|E|, as it is usual for discrete graphical
models, we implicitly take into account the topological con-
straints encoded by the multicut polytope by restricting the
feasible set to Y(G).
While the MAP-inference problem considers to find y⇤ that

maximizes p(y|✓), it is also useful to do probabilistic inference
and calculate the probability that an edge e 2 E is cut and thus
contributes to separating di↵erent clusters. This probability is
given by the marginal distributions

p(y
e

|✓) := E
✓

(y
e

) =
X

y

02Y(G),y0
e=ye

p(y0|✓). (10)

Since p(y|✓) is an exponential family we know [42] that A(✓) is
a convex function of ✓ and

E
✓

(y
e

) =
@A(✓)

@✓
e

. (11)

The (Legendre-Fenchel) conjugate function of A(✓) is given by

A⇤(µ) = sup
✓2R|E|

h✓, µi �A(✓) (12)

and takes values in R[{+1}. We call µ 2 R|E|
dual variables.

Theorem 3.4 in [42] gives an alternative interpretation of A⇤(µ)
as the negative entropy

�H(p
✓

) :=
X

y2Y(G)

p
✓

(y) log(p
✓

(y)) (13)

of the distribution p
✓(µ) with µ = E

✓(µ)(y), where ✓ = ✓(µ) is
defined by the right-hand side of (12),

A⇤(µ) =

8

<

:

�H(p
✓(µ)) if µ 2 MC�(G)

lim
n!1

�H(p
✓(µn)) if µ 2 MC(G) \MC�(G)

1 if µ 62 MC(G)

Here MC�(G) is the relative interior of MC(G), and µn a se-
quence in MC�(G) that converges to µ. The log partition func-
tion has the variational representation

A(✓) = sup
µ2MC(G)

{h✓, µi �A⇤(µ)} (14)

and the supremum in Eq. (14) is attained uniquely at the vector
µ 2 MC(G)1 specified by the moment-matching condition µ =
E
✓

(y).
Thus, calculating the marginals amounts to solving the con-

vex problem (14). This is at least as hard as solving the MAP-
inference problem, which requires to solve a linear program,
since both the convex set MC(G) and the entropy �A⇤(µ) are
not tractable in general.

We will discuss next how to approximate this problem by
variational approaches and perturb & MAP.

3.1 Variational Approach

Since solving problem (14) is NP-hard, we need tractable ap-
proximations of MC(G) and of the negative entropy A⇤(µ).
Common variational approximations for unconstrained graph-
ical models consider outer relaxations on the feasible set and
tractable approximations on the entropy in terms of pseudo-
marginals, which are then solved by message passing algo-
rithms.

Although formulation (3) has been used before in the litera-
ture (e.g., [38]), we have to cope with several particular issues.
Firstly, contrary to [38] our model includes also negative cou-
plings, which renders the problem more challenging. Secondly,
the label-space can become very large when using a formulation
in the node-domain, as done in (3)2. Finally, the most crucial
problem is that there is not a one-to-one correspondence be-
tween a clustering and a node-labeling of the nodes. For exam-
ple, if we have k labels, then k node-labelings exist to represent
the clustering into one class. On the other hand, any cluster-
ing into 2 clusters can be modeled by k · (k�1) node-labelings.
As a consequence we would take some partitions more often
into account than others during marginalisation. This ambigu-
ity can be partially reduced by assigning the label 1 to the first
node w.l.o.g. as suggested in [38], however ambiguities between
remaining labels are still present if k > 2. Even exact proba-
bilistic inference by the junction tree algorithm (JTA-n) then

1
For ✓ 2 RN

we have µ 2 MC�
(G). Boundary points of MC(G) are

only reached when at least one entry of ✓ is diverging to infinity.

2
To overcome this problem we will restrict the number of possible labels

and exclude thereby some partitions. If the number of used labels is

greater or equal than the chromatic number of the graph all partitions are

representable.
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does not provide correct marginals, cf. Figs. 4 and 5. When us-
ing approximate inference, in this case loopy belief propagation
(LBP), the error increases.
To avoid these ambiguities, we switch to graphical models in

the edge domain, as defined by Eq. (8). As an outer relaxation
of the multicut polytope we consider the cycle-multicut poly-
tope MC

C

(G). It is defined as the intersection of half-spaces
given by the chordless cycles of G denoted by C(G) ⇢ 2E :

MC
C

(G) = {y 2 [0, 1]|E|, 8e 2 C 2 C(G) :
X

e

02C\{e}

y
e

0 � y
e

}.

As shown by Chopra [12] we have Y(G) = MC
C

(G)\{0, 1}|E|.
So MC

C

(G) is an e�ciently separable outer relaxation of Y(G)
and consequently an outer relaxation for MC(G), too. Accord-
ingly, we define an alternative exponential family

p(y|✓̄) := exp
�

h✓̄,�(y)i �A(✓̄)
�

(15)

A(✓̄) := ln

0

@

X

y2{0,1}|E|

exp
�

h✓̄,�(y)i
�

1

A (16)

with the exponential parameter ✓̄ and the su�cient statistic

�(y) both in R|E|+
P

C2C(G) 2
|C|

and defined by

✓̄
e

=
�w

e

T
(17)

✓̄
C,yC =

⇢

0 , if 8e 2 C :
P

e

02C\{e} ye0 � y
e

�1 , otherwise
(18)

�(y)
e

= y
e

(19)

�(y)
C,y

0
C
= I(y0

C

⌘ y
C

) (20)

with �1 · 0 !
= 0. Contrary to the formulation in Eq. (8), the

constraints are encoded in the exponential parameter, which is
that why marked by an additional bar.
It is worth to mention that the dimension of the exponen-

tial parameter vector grows exponentially with the length of
the longest non-chordal cycle. If G is chordal3, then C(G)
includes only a polynomial number of cycles of length three,
which can be easily enumerated. If G is not chordal, we have
to deal with factors of high order, i.e. the objective includes
terms that depend on more than two variables, which is prac-
tically not tractable. To overcome this problem, we add zero-
weighted edges in order to make the graph chordal. While the
corresponding factor graph has then order three, an additional
bias is introduced into the model, cf. Fig. 2.
The advantage of this ansatz is that eq. (15)-(20) define a

discrete graphical model, for which several methods exist to es-
timate the marginals. This includes the junction tree algorithm
(JTA) [26] for exact inference on graphs with small tree-width,
as well as loopy belief propagation (LBP) [25], tree re-weighted
belief propagation (TRBP) [41], and generalized belief propa-
gation (GBP) [43] for approximate inference by message pass-
ing. In addition to the above-mentioned bias for non-chordal
graphs, the approximate methods su↵er from the combinato-
rial nature of the higher-order terms (18) that can not be dealt
with by local messages, cf. Sec. 4.1.3.

3.2 Perturbation & MAP

We follow the recent work of Hazan and Jaakkola [16], which
showed the connection between extreme value statistics and
the partition function, based on the pioneering work of Gum-
bel [15].

3
A graph is called chordal, if each cycle of length strictly larger than 3

have a chord, which is an edge that is not part of the cycle but connects

two vertices of the cycle.
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Figure 2: Adding zero weighted edges to a graph can change the
likelihood of partitions and marginal distribution for cut edges.
In example (a), the additional edge destroys the independence
of random variables for edge-cuts by enforcing topological con-
sistency and forbids to cut only one of the 3 edges. This causes
a bias towards a cut. Similarly, in example (b), the triangula-
tion of the graph causes a bias towards cutting edges. The cut
(1, 1, 1, 1) in the left graph has two valid corresponding cuts
((1, 1, 1, 1, 0), (1, 1, 1, 1, 1)) in the right graph.

Definition 3 (Gumbel Distribution). A Gumbel distribution,
which is parameterized by its location µ 2 R and scale � 2 R+,
is denoted by Gumbel(µ,�).
Its probability density function is given by

f(t|µ,�) := 1

�
exp

✓

� t� µ

�
+ exp

✓

� t� µ

�

◆◆

and its cumulative distribution is given by

F (t|µ,�) := exp

✓

� exp

✓

�(t� µ)

�

◆◆

for all t 2 R. Its mean value is µ + � · c where c is the Euler-
Mascheroni constant.

As shown in [16] the Gumbel distribution can be used for
approximating and bounding the partition function as well as
creating samples by using MAP-inference with randomly per-
turbed models.

Analytic expressions for the statistics of a random MAP per-
turbation can be derived for general discrete sets, whenever
independent and identically distributed random perturbations
are applied to every assignment.

Theorem 1 ([15]). Given a discrete distribution p(z) =
exp(✓(z) � A(✓)) with z 2 Z ⇢ N and ✓ : Z ! R [ {�1}, let
� be a vector of i.i.d. random variables �

z

indexed by z 2 Z,
each following the Gumbel distribution Gumbel(�c, 1). Then

Pr
⇥

ẑ = argmax
z2Z

{✓(z) + �
z

}
⇤

= exp
�

✓(ẑ)�A(✓)
�

,

E
⇥

max
z2Z

{✓(z) + �
z

}
⇤

= A(✓).

Theorem 1 o↵ers a principled way based on solving the MAP
problem for randomly perturbed model parameters, to compute
the log partition function (14) in view of computing the mar-
ginals (11) as our objective. For larger problems, however, the
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number of states is too large and thus Thm. 1 not directly ap-
plicable. Hazan and Jaakkola [16] developed computationally
feasible approximations and bounds of the partition function
based on low -dimensional random MAP perturbations.

Theorem 2 ([16]). Given a discrete distribution p(z) =
exp(✓(z) � A(✓)) with z 2 Z =

N

n

i=1 Zi

⇢ Nn, n = |V | and
✓ : Z ! R [ {�1}. Let �0 be a collection of i.i.d. random
variables {�0

i;zi} indexed by i 2 [n] and z
i

2 Z
i

, i 2 V , each
following the Gumbel distribution Gumbel(�c, 1). Then

A(✓) = E�0
1;z1

h

max
z12Z1

· · ·E�0
N;zn

⇥

max
zn2Zn

✓(z) +
X

i2[n]

�0
i;zi

⇤

i

.

Note that the random vector �0 includes only
P

i2[n] |Zi

|
random variables. Applying Jensen’s inequality, we arrive at
a computationally feasible upper bound of the log partition
function [16],

A(✓)  E�0

h

max
z2Z

✓(z) +
X

i2[n]

�0
i;zi

i

=: Ã(✓). (21)

The samples that are generated by the modes of the per-
turbed models follow the distribution

p̃(ẑ|✓) = Pr[ẑ 2 argmax
z2Z

✓(z) +
X

i2[n]

�0
i;zi ]. (22)

It has been reported [35, 16, 17] that this distribution p̃ is a
good approximation for p, but contrary to the fully perturbed
model it is not known so far how to explicitly represent p̃ as
member of the exponential family of distributions. This pre-
cludes an analytic evaluation of this approximation.

3.3 Perturb & MAP for Graph Partitioning

In the following we will review the possible sampling schemes
with Perturb & MAP, based on Sec. 3.2, for the graph partition
problem described in Sec. 2. Accordingly, we denote again the
random variables by y instead of z. Note that we will apply
Perturb & MAP in the edge-domain and label each edge as
cut or uncut. Contrary to node-labelings, this guarantees a
one-to-one correspondence to valid partitions and enables us
to generate unbiased samples, cf. Fig. 7.

3.3.1 Unbiased Sampling

Based on Theorem 1 we can define an exact sampler for the
distributions of partitions for small graphs. For each possible
partition we have to add a random variable. The number of
all possible partitions of N elements is given by the Bell num-
ber. In our setting it can be smaller, since the partition has
also to respect the graph topology and single clusters have to
be connected. In prior work [23] we showed how to include
such higher-order terms into the MAP-inference. Sampling a
partition from p(y|✓) reduces to solving

argmax
y2Y(G)

h✓, yi+
X

y2Y(G)

�
y

�
y

⇠ Gumbel(�c, 1), (23)

where �
y

is a sample from a Gumbel distribution with location
�c and scale 1 denoted by Gumbel(�c, 1). Note that contrary
to any MCMC-algorithm, which generates true samples only in
the limit (after convergence of a Markov chain), samples that
follow the original distribution can be generated by solving the
combinatorial problem (23) in finite time.

0 1
4

1
2

3
4

1

Figure 3: The colormap used in this paper for visualizing the
probability that an edge (E) is cut Pr[y

e

= 1]

3.3.2 Fast Biased Sampling

When the low-dimensional perturbation as in Thm. 2 is used,
we set Z = {0, 1}|E and

✓(y) =

⇢

h✓, yi if z 2 Y(G)
�1 otherwise

.

W.l.o.g. the constraint can be moved from the objective func-
tion to the specification of the feasible set such that Z = Y(G)
and ✓(y) = h✓, yi. Samples are then generated by

argmax
y2Y(G)

h✓, yi+
X

e2E

(�
e;1 · ye + �

e;0 · (1� y
e

)) (24)

=argmax
y2Y(G)

h✓, yi+
X

e2E

(�
e;1 � �

e;0) · ye (25)

�
e;ye ⇠ Gumbel(�c, 1).

Note that the di↵erence of two independent random variables
that follow a Gumbel distribution follows a logistic distribu-
tion [40].

In order to generate a sample, a minimal cost multicut prob-
lem with perturbed weights has to be solved. This can be done
either exactly by integer linear programming [23] or approx-
imatively [24, 8]. The latter option introduces an additional
bias and does no longer guarantee that eq. (21) holds. Empir-
ically we observe however that the additional error is small for
our problems, as the approximate solutions are near optimal
and negligible compared to the gap introduced by the Jensen’s
inequality in eq. (21).

The samples follow the distribution p̃(ŷ|✓) for which the log-
partition function is given by Ã(✓), cf. Eqn. (21), (22). Conse-
quently, in view of (11) the marginals µ̃ of p̃(y|✓) approximate
the marginals µ of the original distribution (8) by

µ ⇡ µ̃ = r
✓

Ã(✓) (26a)

= E�0

h

argmax
y2Y(G)

n

h✓, yi+
X

e2E

�0
e;ye

oi

(26b)

⇡ 1

M

M

X

k=1

argmax
y2Y(G)

n

h✓, yi+
X

e2E

�0(k)
e;ye

o

, (26c)

with �0(k)
e;ye

⇠ Gumbel(�c, 1).

4 Experiments

We compare the following methods indicated by acronyms in
bold font.

Bruteforce (BF) enumerates all valid partitions. This is only
practicable for small graphs up to ten nodes, but provides glob-
ally optimal unbiased marginals.

The local estimates (LOCAL) ignore topological constraints
and compute marginals by

Pr[y
e

= 1] =
exp(�w

e

)

exp(�w
e

) + exp(0)
.

This method can be used as a baseline to measure the improve-
ments by the use of topology.
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The junction tree algorithm (JTA) can be applied in the
node domain (JTA-n), cf. Sec. 3.1. We use 4 labels which is
su�cient to represent each partition of a planar graph and a
reasonable trade-o↵ between expressiveness and computational
cost for general graphs. Alternatively, in the edge-domain JTA
can be applied on the triangulated graph with additional triple-
constraints (JTA-e), cf. Sec. 3.1. The latter method computes
the optimal marginals if the original graph is chordal. Since
the complexity of JTA is exponential in the tree-width it does
not scale well. We used the implementation within libDAI [31].
Alternatively to JTA we tested loopy belief propagation

(LBP) in the node- (LBP-n) and edge-domain (LBP-e),
again with the publicly available implementation of libDAI [31].
While LBP has no convergence guarantees it shows good con-
vergence behavior if damping is used. In the node domain the
probability of a cut is calculated as the sum of terms with
di↵erent labels in the pairwise marginals. We also try gener-
alized belief propagation [43] and tree reweighted belief propa-
gation [41], which are more theoretically substantiated. They
often failed however due to numerical problems caused by the
constraint-terms.
For the proposed Perturb & MAP approach we consider

global Perturb &MAP (G-P&M) for tiny models, as described
in Eq. (23), as well as low-dimensional Perturb & MAP, as de-
scribed in Eq. (24), together with exact inference by [23] (L-
P&M) or approximate inference by CGC [8] (L-P&M-CGC)
and Kernighan Lin [24] (L-P&M-KL), for solving the per-
turbed problems. For all P&M methods we used OpenGM [3]
to solve the subproblems. For estimating the marginals, we
used 1000 samples for synthetic models and 100 samples for
real-world models.

All experiments were done on machines equipped with an
Intel Core i7-2600K (3.40GHz) CPU, 8 MB cache and 16 GB
RAM, with a single thread.

4.1 Synthetic Models

For evaluations in a controlled setting we generated fully con-
nected graphs and grid graphs with edge-weights that are in-
dependently normal distributed with mean zero and variance
1. As long as the graphs are small, exact marginals can be
calculated by enumerating all edge-labelings in {0, 1}|E| or all
multicuts Y(G) which can be precomputed for a given graph
G. The corresponding results for the fully connected and grid
graphs are shown in Fig 4 and 5, respectively.
For the fully connected graphs JTA-e is exact and JTA-n

has small error in the marginals. Since both methods would
not scale to larger graphs we resorted to LBP in the node and
edge domain. In both cases the estimated marginals became
worse as the graph size grows. L-P&M gave slightly worse re-
sults on the average, but produced no outliers. Using the KL-
heuristic (L-P&M-KL) instead of exact inference did not a↵ect
the quality much. For grid models even exact inference JTA-
e and JTA-n returned results worse than L-P&M for graphs
larger than 3⇥3, caused by the inherent bias of the underlying
approximations. Again, the use of approximate sub-solvers in
L-P&M-CGC did not deteriorate results compared to exact in-
ference for these problem sizes. By and large the error increases
less for L-P&M than for JTA and LBP.

4.1.1 E↵ect of Graph-topology

As illustrated in Fig. 2 the topology of a graph has an impact
on the probability that an edge is cut and a graph with zero
weights have not necessarily a probability 0.5 that an edge is
cut. Adding edges to a graph introduce a bias, which we can

observe in Fig. 5. The junction tree algorithm (JTA-e) calcu-
lates the optimal marginals on the triangulated graph. How-
ever, these marginals can be far from the exact marginals of
the non-triangulated graph. For larger graphs this error can
be larger than the error caused by low-dimensional perturba-
tion, as it is the case for 3⇥ 3 and 4⇥ 4 grids.

The experiments furthermore show that the choice of the
topology already has an influence on the likelihood that an
edge is cut. In real world applications that should be considered
when e.g. selecting super-pixels for image segmentation.

4.1.2 E↵ect of Temperature

The temperature parameter T controls the standard deviation
of the distribution and the impact of the perturbation. When
the temperature drops to 0 all the mass of the distribution
concentrates on the optimal solutions and samples are drawn
uniformly from these ”ground” states. When the temperature
grows to 1 the mass covers the entire feasible set and samples
are drawn uniformly from all valid segmentations. Fig. 6 il-
lustrates this for a discrete distribution. For low temperatures
it becomes extremely unlikely that the perturbation is strong
enough to ”lift” a non-optimal state above the optimal one.
For large temperatures however the di↵erence in the original
model are negligible compared to the perturbation variance.

0.1 1 10 100

0

0.5

1

temperature

p
ro
b
ab

il
it
y

Figure 6: Discrete distributions p(i) / exp(�✓
i

/T ) for ✓ =
(2, 7, 4, 1, 10, 0) and di↵erent temperatures. For T ! 1 the
distributions becomes uniform, for T ! 0 all its mass concen-
trates on a single mode.

From a theoretical point of view the temperature parame-
terizes a non-linear transformation of the marginals. From a
practical viewpoint, it controls the variance of the samples. In
other words, if we could sample infinitely many clusterings we
could recalculate the marginals for any density. With a finite
number of samples we can adjust the resolution for more or less
likely edge-cuts. For example less likely cuts become visible for
high temperatures (at the cost of more noise) in Fig. 9 while
those are not visible for low temperatures when using the same
number of samples.

As a rule of thumb we found that the temperature should be
selected such that on the average to 10% of the variables the
optimal label is not assigned. This generates samples with a
good amount of diversity.

4.1.3 Evaluation with Ground-truth

An exact evaluation of the marginal distributions is only pos-
sible for very small graphs for which we can compute the log-
partition function by enumerating all partitions. As fully con-
nected graphs are chordal, the junction tree algorithm can then
be used. However, its complexity is not less than enumerating
all states. Message passing methods are exact for graphs with
3 nodes. For larger graphs the underlying outer relaxation
and entropy approximations are no longer tight and get worse
with larger graphs. While marginals produced with the Per-
turb & MAP technique have a slightly bigger mean error for
full connected graphs, Perturb & MAP does not create outliers
as the message passing methods. For grid graphs larger than
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Figure 4: Evaluation of the absolute error of computed marginals for fully connected graphs with 3,5,7, and 9 nodes. For larger
models we are no longer able to calculate the exact marginals. The edge weights were sampled from the normal distribution
with mean 0 and variance 1. Boxplots show the mean (diamond) and median (redline). The edges of the boxes are the 25th
and 75th percentiles. Outliers, with respect to an 1.5 IQR, are marked by red crosses. The black lines mark the largest and
lowest non-outliers.
While for 3 nodes LBP-e is exact, L-P&M already have a systematic bias caused by low-order perturbation. For graphs with
more than 3 nodes, LBP-e starts su↵ering from its underlying relaxation. LBP-n produces many bad estimates. L-P&M and
L-P&M-KL provide marginals with better or equal accuracy as LBP and no marginals with large errors like its competitors,
except JTA-n and JTA-e, which do not scale, however.
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Figure 5: Evaluation of the absolute error of computed marginals for grid graphs with 4, 6, 9 and 16 nodes. For larger models we
are no longer able to calculate the exact marginals. The edge weights are sampled from a normal distribution with mean 0 and
variance 1. Boxplots show the mean (diamond) and median (redline). The edges of the boxes are the 25th and 75th percentiles.
Outliers, with respect to an 1.5 IQR, are marked by red crosses. The black lines mark the largest and lowest non-outliers.
JTA-e and LBP-e are not exact and include some bias caused by the additional edges included for triangulation. While for
small models this error is moderate, it increases for larger grids. L-P&M and L-P&M-CGC have a systematic bias caused by
low-order perturbation, which does not grow too much when the grid size increases.
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3⇥3 Perturb & MAP produces better results in terms of mean
and maximal error. The use of approximate multicut solvers,
namely KL and CGC, for Perturb & MAP leads to similar re-
sults as when using exact solvers, however for the synthetic
datasets the di↵erence is negligible.

4.1.4 Number of Samples

Perturb & MAP generates samples from a distribution. A nat-
ural question is how many samples are required for a robust
estimation of the marginals. The answer to this question obvi-
ously depends on the distribution we are sampling from.
Fig. 7 shows the behavior for a fully connected graph with

five nodes (K5). While the error for exact Perturb & MAP (G-
P&M) vanishes, the low-dimensional Perturb &MAP (L-P&M)
has a systematic error since it does not sample from the original
distribution. For this instance after a few thousand samples
the mean error in the marginals improves slowly. LBP gives
for this small model a better mean error than L-P&M, which
is consistent with Fig. 4. Contrary to JTA and LBP L-P&M
and G-P&M can be used to calculate higher order marginals,
i.e. the likelihood that a set of edges is cut simultaneously.
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Figure 7: Mean absolute error of marginals for the complete
graph K5 with normally distributed weights and increasing
number of samples. While the error of G-P&M goes to zero,
L-P&M and LBP-e have a systematic error that does not van-
ish. But the estimated marginals are better than the locally
computed pseudo marginals.

4.2 Real World Examples

4.2.1 Image Segmentation

For image segmentation we use the models of Andres et al. [4],
which is based on the Berkeley segmentation dataset [30] and
includes 100 instances. Based on a super-pixel segmentation by
watershed segmentation, edge-weights of the adjacency graph
are calculated as the negative logarithm of the local cut likeli-
hoods given random forest trained on local image features.

w
e

= � log

✓

Pr[y
e

= 1|feat
e

(I)]

Pr[y
e

= 0|feat
e

(I)]

◆

(27)

A coarser clustering than the super-pixels is obtained by cal-
culating the minimal weighted multicut on the weighted adja-
cency graph. The size of adjacency graph for these instances is
too large for applying LBP. So we can only evaluate the results
obtained by low-dimensional Perturb & MAP. Due to the lack
of probabilistic ground truth and reliable measurements for cut

probabilities, which do not form a segmentation and exclude
the BSD-measurements [30], we resort to a visual evaluation.

Fig. 8 shows seven exemplary images. The choice of using
of exact inference or CGC for the generation of P&M-samples
does not e↵ect the marginals much, but CGC is faster and
scales much better than the exact method. While the optimal
multicut visualizes the most probable partition, the marginals
also show uncertainty of the boundary and alternative solu-
tions. The marginals give a better response for windows of
the buildings, face of the statue and leafs of the plants com-
pared to the optimal multicut. With increasing temperatures
it is more likely to sample boundaries with higher edge weights
and reproduce fine structures without strong support of the lo-
cal data-terms. Visually the models tend to oversegment the
image, which does lead to best results in terms of standard
measurements for the optimal multicut.

Exemplary samples for di↵erent temperatures are shown in
Fig. 9. The first images shows the marginal estimated by L-
P&M. The remaining 10 images per row are samples generated
by L-P&M. For low temperatures the samples are similar to
each other and to the optimal multicut. For higher tempera-
tures the variability of the samples and their cost of the cuts
increase. Furthermore we observe that in regions with small
positive edge weights local clusters pop up randomly. However,
the main boundary always has a high marginal probability.

4.2.2 Social Nets

Another field of application is the clustering of social networks,
where individuals are represented by nodes and edges encoding
if there is a connection between two individuals. Given such a
social network G = (V,E), one would like to find a clustering
S of G with maximal modularity q

G

(S), that is

q
G

(S) :=
X

S2S

"

|E \ [S]2|
|E| �

✓

P

v2S

deg(v)

2 · |E|

◆2
#

(28)

As shown by Brandes et al. [10] one can compute the clustering
with maximal modularity in terms of the minimal multicut on
a graph G0 = (V, V ⇥ V ) with weights

w
uv

=
1

2|E| ·
✓

I(uv 2 E)� deg(u)deg(v)

2 · |E|

◆

(29)

As networks we consider a standard dataset which encodes if
members of a karate club know each other, and a new dataset
which encodes the program committee members of the SSVM
2015 conference as nodes. Unweighted edges in the graph G =
(V,E) indicate that the two program committee members had
a joint publication listed in the DBLP4.

Fig. 10 and 11 show the result for the karate instance. The
MAP-solution is a partitioning of the graph into 4 clusters as
shown in Fig. 11. The local likelihoods (LOCAL) visualized
in Fig. 10 represent only local information which does not di-
rectly render the most likely clustering or the marginal distri-
bution of edges to be cut. LBP does not work well in the node-
and edge-domain as it cannot cope with the non-local con-
straints. L-P&M provides reasonable marginal estimates with
exact and approximate sub-solvers. Fig. 11 shows the proba-
bilities of edges to be a cut edge. L-P&M is able to detect the
two karate club members (marked by red circles) that could be
moved into another cluster without much decreasing the mod-
ularity. With higher temperature, less likely partitions become
relatively more likely. LBP got stuck in local fix-points, which
are not sensitive to the temperature.

4http://dblp.uni-trier.de/db/
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Figure 8: (best viewed on screen) Merely computing the optimal partition ignores important information about alternative high-
quality partitions that is provided by the marginal distributions. For example some eyes of the statues are not well partitioned
and the marginals show that in this region the partition is uncertain. The same holds for the leafs of the tree and the painting
on the vase. For the building marginals are able to partition smaller windows. Overall, with larger temperatures the less likely
boundaries become more visible. The use of approximate inference (CGC) does not lead to significant changes of the marginals,
but speed up computation. Compared to pure local marginals, noisy detections are removed and boundary gaps are closed.
Contrary to the local pseudo marginals, the P&M-marginals form a convex combination of valid partitions.
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(a) T = 0.25
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⌘

(b) T = 0.5
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⌘

(c) T = 1.0
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= 0.8494
⌘

(d) T = 2.0
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⌘

(e) T = 100.0
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= 0.6045
⌘

Figure 9: (best viewed on screen) Illustration of the marginals and 10 samples for the coala image with temperatures 0.25, 0.5,
1, 2, and 100. For low temperatures the samples are similar to the MAP-solution. For higher temperatures partitions with
higher energy get sampled more likely. If the temperature goes to zero only the mode will be sampled. If temperature goes to
infinity samples are drawn uniformly from the set of all valid partitions if we would use global perturbation, for low-dimensional
perturbation this does not hold exactly. The values in the brackets show how much mass of the marginals p(y

e

) coincide with
the mode y⇤.
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T
=

15
00

�
1

T
=

75
0�

1

MAP LOCAL L-P&M L-P&M-KL LBP-e LBP-n

Figure 10: The probability that two members belong to the same cluster is visualized by colors range from white to black for
increasing probabilities, cf. Fig. 3. The MAP-solution results in a hard clustering independent of the temperature. LOCAL
provides the local information given by the edge-weights which is the input for the other algorithms. With L-P&M we can
identify the two members who can not be assigned to a cluster with high certainty, i.e. they can be assigned to another cluster
without decreasing the modularity much. With the lower temperature, partitions with decreasing modularity are sampled more
likely. While L-P&M-KL produces similar results compared to L-P&M, LBP-e and LBP-n did not return meaningful results.

T
=

15
00

�
1

T
=

75
0�

1

graph MAP L-P&M LBP-e LBP-n

Figure 11: Visualization of the clustering of the original adjacency graph. The node colors show the optimal clustering. Nodes
with red border are the two most uncertain nodes, that could be moved to another cluster without decreasing the modularity
much. Edges colors indicate if an edge is likely to be cut (white) or not (black). Contrary to LBP-e and LBP-n, P&M provides
reasonable marginals.
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(a) input graph
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(b) optimal clustering
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(c) marginal, T = 10000
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(d) marginal, T = 50000

�1

Figure 12: The nodes of the graph correspond to the program committee members of the SSVM 2015 conference. Edges indicates
that two members have a joint publication in DBLP (22.09.2015). We clustered this graph with respect to its modularity. Graph
(a) shows the input graph and (b) shows the clustering with the highest modularity score. Graphs (c) and (d) visualize for
members that have a joint publication, how likely they become merged into a same cluster when drawing samples from the
corresponding distribution with di↵erent temperatures. Note that the positions and color of the nodes are for visualization only
and do not represent features. Only the graph structure was taken into account for this particular problem.
Our approach identified 5 natural clusters among the program committee members. Each cluster is coherent in that its members
either are located in a certain region of Europe and/or are members of a scientific subcommunity (scale space, mathematical
imaging, computer vision). Furthermore, 6 members of the board were identified as being not connected to the community. For
the reasons of anonymity, however, we do not go into further details. In the probabilistic setting, the approach suggests new
edges. And each of these edges looks natural in that everyone who knows the community at large, would agree that the two
persons that become connected are close to each other, for one or another reason. For example some relations between members
of cluster 0 and 3 are more likely than others. This is caused by a reasonable cluster by some members of cluster 0 and 3, which
does not show up in the optimal clustering. Relations between member of cluster 0 and 1 on the other hand, remain unlikely
in the probabilistic setting. Such conclusions quite to the point are surprising in view of the fact that the approach only used
the DBLP publication data as input.

Fig. 12 shows the result for the SSVM-2015 program com-
mittee graph. Contrary to the karate club instance we know
the people corresponding to the nodes5. This enables us to
evaluate the results not only in terms of modularity. Fig. 12(a)
shows the joint publication graph extracted from DBLP. For
six members of the program committee no joint publications
with another program committee member exists. The remain-
ing graph is connected. The optimal clustering of this graph
in terms of modularity is shown in Fig. 12(b). The five main
clusters are coherent in that its members either are located in
a certain region of Europe and/or are members of a scientific
subcommunity (scale space, mathematical imaging, computer
vision). When sampling clusterings from the corresponding dis-
tribution, with temperature 10000�1 and 50000�1 additional
clusters between the main clusters show up and the marginal
distribution for some edges to be cut that are between the main
clusters becomes smaller than 1. Each of these edges looks nat-
ural in that everyone who knows the community at large (as
do the authors), would agree that the two persons that become
connected are close to each other, for one or another reason.
Such conclusions quite to the point are surprising in view of the
fact that the approach only used the DBLP publication data
as input.

5 Conclusions

We presented a novel framework for calculating uncertainty
measurements for graph partition problems and a method to
generate samples from probability distributions over partitions
by solving perturbed minimal multicut problems. Contrary to
standard variational approaches, our method can incorporate
non-local constraints, does not get stuck in local optima and
return reasonable marginal distributions for intra cluster edges.

5
For reasons of anonymity, however, we show anonymized results.

Furthermore our ansatz inherits from the underlying multicut
framework, that the number of clusters needs not be specified,
i.e. the number of clusters is determined as part of the sampling
process and di↵erent samples may result in di↵erent number of
clusters.

While adding zero-weighted edges for the MAP-problem has
no direct influence, we have shown that this is not the case
for the probabilistic setting and the chosen graph-topology in-
fluences the space of partitions and in turn the probability of
single edges to be between clusters. Consequently, the topology
of a graph a↵ects the stability of the MAP-solution.

For our problem settings we showed that the use of approxi-
mate solvers within the Perturb and MAP formulation leads to
very similar results and the additional error is smaller than the
one caused by using low-dimensional perturbation instead of
global one. Since approximate methods often scale much bet-
ter, this allows us to compute pseudo marginals very e�ciently.
As all samples can be calculated in parallel, the overall runtime
of computing the marginals is only slightly larger than for the
MAP-solution.

The availability of marginals can be used to guide the user
in a interactive manner to regions with uncertain information.
Furthermore, because the marginals are the derivation of the
log partition function, the present work opens the door for
probabilistic learning for clustering problems which takes prob-
abilistic uncertainties into account.
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