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Abstract. We propose a new CNN-CRF end-to-end learning frame-
work, which is based on joint stochastic optimization with respect to
both Convolutional Neural Network (CNN) and Conditional Random
Field (CRF) parameters. While stochastic gradient descent is a stan-
dard technique for CNN training, it was not used for joint models so far.
We show that our learning method is (i) general, i.e. it applies to arbi-
trary CNN and CRF architectures and potential functions; (ii) scalable,
i.e. it has a low memory footprint and straightforwardly parallelizes on
GPUs; (iii) easy in implementation. Additionally, the unified CNN-CRF
optimization approach simplifies a potential hardware implementation.
We empirically evaluate our method on the task of semantic labeling
of body parts in depth images and show that it compares favorably to
competing techniques.

1 Introduction

Deep learning have tremendous success since a few years in many areas of com-
putational science. In computer vision, Convolutional Neural Networks (CNNs)
are successfully used in a wide range of applications – from low-level vision,
like segmentation and optical flow, to high-level vision, like scene understanding
and semantic segmentation. For instance in the VOC2012 object segmentation
challenge1 the use of CNNs has pushed the quality score by around 28% (from
around 50% to currently around 78% [1]). The main contribution of CNNs is
their ability to adaptively fine-tune millions of features to achieve best perfor-
mance for the task at hand. However, CNNs have also their shortcomings. One
limitation is that often a large corpus of labeled training images is necessary. Sec-
ondly, it is difficult to incorporate prior knowledge into the CNN architecture.
In contrast, graphical models like Conditional Random Fields (CRFs) [2] over-
come these two limitations. CRFs have been used to model geometric properties,
such as object shape, spatial relationship between objects, global properties like
object connectivity, and many others. Furthermore, CRFs designed based on
e.g. physical properties are able to achieve good results even with few training
images. For these reasons, a recent trend has been to explore the combination
of these two modeling paradigms by using a CRF, whose factors are dependent

1 http://host.robots.ox.ac.uk:8080/leaderboard
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on a CNN. By doing so, CRFs are able to use the incredible power of CNNs,
to fine-tune model features. On the other hand, CNNs can more easily capture
global properties such as object shape and contextual information. The study of
this fruitful combination (sometimes called “deep structured models” [3]) is the
main focus of our work. We propose a generic joint learning framework for the
combined CNN-CRF models, based on a sampling technique and a stochastic
gradient optimization.

Related work. The idea of making CRF models more powerful by allowing
factors to depend on many parameters has been explored extensively over the
last decade. One example is the Decision Tree Field approach [4] where factors
are dependent on Decision Trees. In this work, we are interested in making the
factors dependent on CNNs. Note that one advantage of CNNs over Decision
Trees is that CNNs learn the appropriate features for the task at hand, while
Decision Trees, as many other classifiers, only combine and select from a pool of
simple features, see e.g. [5, 6] for a discussion on the relationship between CNNs
and Decision Trees. We now describe the most relevant works that combine
CNNs and CRFs in the context of semantic segmentation, as one of the largest
application areas of this type of models. The framework we propose in this
work is also evaluated in a similar scenario, although its theoretical basis is
application-independent.

Since CNNs have been used for semantic segmentation, this field has made a
big leap forward, see e.g. [7, 8]. Recently, the advantages of additionally integrat-
ing a CRF model have given a further boost in performance, as demonstrated by
many works. To the extent that the work [1] is currently leading the VOC2012
object segmentation challenge, as discussed below. In [9] a fully connected Gaus-
sian CRF model [10] was used, where the respective unaries were supplied by
a CNN. The CRF inference was done with a Mean Field approximation. This
separate training procedure was recently improved in [11] with an end-to-end
learning algorithm. To achieve this, they represent the Mean Field iterations as
a Recurrent Neural Network. The same idea was published in [12]. In [10], the
Mean Field iterations were made efficient by using a so-called permutohedral
lattice approximation [13] for Gaussian filters. However, this approach allows for
a special class of pairwise potentials only. Besides the approaches [11] and [12],
there are many other works that consider the idea of backpropagation with a
so-called unrolled CRF-inference scheme, such as [14–20]. These inference steps
mostly correspond to message passing operations of e.g. Mean Field updates or
Belief Propagation. However the number of inference iterations in such learning
schemes remains their critical parameter: too few iterations lead to a quality
deterioration, whereas more iterations slow down the whole learning procedure.

Likelihood maximization is NP-hard for CRFs, which implies that it is also
NP-hard for joint CNN-CRF models. To avoid this problem, piece-wise learn-
ing [21] was used in [1]. Instead of likelihood maximization a surrogate loss is
considered which can be minimized efficiently. However, there are no guarantees
that minimization of the surrogate loss will lead to maximization of the true
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likelihood. On the positive side, the method shows good practical results and
leads the VOC2012 object segmentation competition at the moment.

Another likelihood approximation, which is based on fractional entropy and a
message passing based inference, was proposed in [3]. However, there is no clear
evidence that the fractional entropy always leads to tight likelihood approxima-
tions. Another point relates to the memory footprint of the method. To avoid the
time consuming, full inference, authors of [3] interleave gradient steps w.r.t. the
CNN parameters and minimization over the dual variables of the LP-relaxation
of the CRF. This allows to solve the issue with a small number of inference
iterations comparing to the unrolled inference schemes. However, it requires to
store current values of the dual variables for each element of a training set. The
number of the dual variables is proportional to the number of labels in the used
CRF as well as to the number of its pairwise factors. Therefore, the size of such
a storage can significantly exceed the size required for the training set itself. We
will discuss this point in more details in Section 4.

Contribution. Inspired by the contrastive divergence approach [22], we pro-
pose a generic joint maximum likelihood learning framework for the combined
CNN-CRF models. In this context, “generic” means that (i) factors in our CRF
are of a non-parametric form, in contrast to e.g. [11], where Gaussian pairwise
potentials are considered; and (b) we maximize the likelihood itself instead of its
approximations. Our framework is based on a sampling technique and stochastic
gradient updates w.r.t. both CNN and CRF parameters. To avoid the time con-
suming, full inference we interleave sampling-based inference steps with CNN
parameters updates. In terms of the memory overhead, our method stores only
a single (current) labeling for each element of the training set during learning.
This requires less memory than the training set itself. Our method is efficient,
scalable and highly parallelizable with a low memory footprint, which makes it
an ideal candidate for a GPU-based implementation.

We show the efficiency of our approach on the task of semantic labeling of
body parts in depth images.

2 Preliminaries

Conditional Random Fields. Let y = (y1, . . . , yN ) be a random state vector,
where each coordinate is a random variable yi that takes its values from a finite
set Yi = {1, . . . , |Yi|}. Therefore y ∈ Y :=

∏N
i=1 Yi, where

∏
stands for a

Cartesian product. Let x be an observation vector, taking its values in some set
X . The energy function E : Y ×X ×Rm → R assigns a score E(y,x,θ) to a pair
(y,x) of a state and an observation vector and is parametrized by a parameter
vector θ ∈ Rm. An exponential posterior distribution related to the energy E
reads

p(y|x,θ) =
1

Z(x,θ)
exp(−E(y,x,θ)) . (1)
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Here Z(x,θ) is a partition function, defined as

Z(x,θ) =
∑
y∈Y

exp(−E(y,x,θ)) . (2)

Let I = 1, ..., N be a set of variable indexes and 2I denote its powerset. Let
also YA stand for the set

∏
i∈A Yi for any A ⊆ I. In CRFs, the energy function

E can be represented as a sum of its components depending on the subsets of
variables yf ∈ Yf , f ⊂ I:

E(y,x,θ) =
∑

f∈F⊂2I
ψf (yf ,x,θ) . (3)

The functions ψf : Yf ×X ×Rm → R are usually called potentials. For example,
in [9, 11] only CRFs with unary and pairwise potentials are considered, i.e. |f | ≤ 2
for any f ∈ F .

In what follows, we will assume that each ψf is potentially a non-linear
function of θ and x. It can be defined by e.g. a CNN with the input x and
weights θ.

Inference is a process of estimating the state vector y for an observation x.
There are several inference criteria, see e.g. [23]. In this work we will stick to the
so called maximum posterior marginals, or shortly max-marginal inference

y∗i = arg max
yi∈Yi

p(yi|x,θ) := arg max
yi∈Yi

∑
(y′∈Y : y′i=yi)

p(y′|x,θ) for all i . (4)

Though maximization in (4) can be done directly due to the typically small size of
the sets Yi, computing the marginals p(yi|x,θ) is NP-hard in general. Summation
in (4) can not be performed directly due to the exponential size of the set Y.
In our framework we approximate the marginals with Gibbs sampling [24]. The
corresponding estimates converge to the true marginals in the limit. We detail
this procedure in Section 3.

Learning. Given a training set {(xd,yd) ∈ (X × Y)}Dd=1, we consider the maxi-
mum likelihood learning criterion for estimating θ:

arg max
θ∈Rm

D∑
d=1

log p(yd|xd,θ) = arg max
θ∈Rm

D∑
d=1

[
−E(yd,xd,θ)− logZ(xd,θ)

]
.

(5)
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Since a (stochastic) gradient descent is used for CNN training, we stick to it for
estimating (5) as well. The gradient of the objective reads:

∂
∑D
d=1 log p(yd|xd,θ)

∂θ
=

D∑
d=1

[
−∂E(yd,xd,θ)

∂θ
− ∂ logZ(xd,θ)

∂θ

]

=

D∑
d=1

[
−∂E(yd,xd,θ)

∂θ
− 1

Z(xd,θ)

∂
∑
y∈Y exp(−E(y,xd,θ))

∂θ

]

=

D∑
d=1

−∂E(yd,xd,θ)

∂θ
+
∑
y∈Y

exp(−E(y,xd,θ))

Z(xd,θ)

∂E(y,xd,θ)

∂θ


=

D∑
d=1

−∂E(yd,xd,θ)

∂θ
+
∑
y∈Y

p(y|xd,θ)
∂E(y,xd,θ)

∂θ


=

D∑
d=1

[
−∂E(yd,xd,θ)

∂θ
+ Ep(y|xd,θ)

∂E(y,xd,θ)

∂θ

]
. (6)

Direct computation of the gradient (6) is infeasible due to an exponential num-
ber of possible variable configurations y, which must be considered to compute

Ep(y|xd,θ)
∂E(y,xd,θ)

∂θ . Inspired by [22], in our work we employ sampling based
approximation of (6) instead, which we detail in Section 3.

Stochastic Approximation. The stochastic gradient approximation proposed
in [25] is a common way to learn parameters of a CNN nowadays. It allows to
perform parameter updates for a single randomly selected input observation, or
a small subset of observations, instead of computing the update step for the
whole training set at once, as the latter can be very costly. Assume that the
gradient of some function f(θ) can be represented as follows:

∇θf = Ep(y|θ)∇θg(y, θ) . (7)

Then under mild technical conditions the following procedure

θi+1 = θi − ηi∇θg(y′, θi), where y′ ∼ p(y|θi) (8)

and ηi is a diminishing sequence of step-sizes, converges to a critical point of the
function f(θ). We refer to [25, 26] for details, for the cases of both convex and
non-convex functions f(θ).

3 Stochastic Optimization Based Learning Framework

Stochastic Likelihood Maximization. Since the value ∂E(yd,xd,θ)
∂θ does not

depend on y, we can rewrite the gradient (6) as

∂
∑D
d=1 log p(yd|xd,θ)

∂θ
=

D∑
d=1

Ep(y|xd,θ)

[
−∂E(yd,xd,θ)

∂θ
+
∂E(y,xd,θ)

∂θ

]
. (9)
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The summation over samples from the training set can be seen as an expectation
over a uniform distribution and therefore the index d can be seen as drawn from
this uniform distribution. According to this observation we can rewrite (9) as

∂
D∑
d=1

log p(yd|xd,θ)

∂θ
= D · Ep(y,d|xd,θ)

[
−∂E(yd,xd,θ)

∂θ
+
∂E(y,xd,θ)

∂θ

]
, (10)

where p(y, d|xd,θ) = p(d)p(y|xd,θ) and p(d) = 1
D . Assume that we can ob-

tain i.i.d. samples y′ from p(y|xd,θ). Then the following iterative procedure
converges to a critical point of the likelihood (5) according to (7) and (8)

θi+1 = θi − ηi
[
−∂E(yd,xd,θi)

∂θ
+
∂E(y′,xd,θi)

∂θ

]
, (11)

where d is uniformly sampled from {1, . . . , D} and y′ ∼ p(y|xd,θi).
Now we turn to the computation of the stochastic gradient −∂E(yd,xd,θ)

∂θ +
∂E(y′,xd,θ)

∂θ itself, provided yd,y′,xd and θ are given. In the overcomplete repre-
sentation [23] the energy (3) reads

E(y,x, θ) =
∑
f∈F

∑
ŷf∈Yf

ψf (ŷf ,x,θ) · Jyf = ŷf K , (12)

where expression JAK equals 1 ifA is true and 0 otherwise. Therefore ∂E(y,x,θ)
∂ψf (ŷf ,x,θ)

=

Jyf = ŷf K. If the potential ψf (ŷf ,x,θ) is an output of a CNN, then the value

− ∂E(yd,xd,θ)
∂ψf (ŷf ,x

d,θ)
+ ∂E(y′,xd,θ)

∂ψf (ŷf ,x
d,θ)

= −Jydf = ŷf K + Jy′f = ŷf K is the error to prop-

agate to the CNN. During the back-propagation of this error all parameters
θ of the CNN are updated. The overall stochastic maximization procedure for
the likelihood (5) is summarized in Algorithm 1. The algorithm is fully defined
up to sampling from the distribution p(y|xd,θ) in Step 5. We discuss different
approaches in the next subsection.

Algorithm 1 Sampling-based maximization of the likelihood (5)

1: Initialize parameters θ0 of the CNN-CRF model.
2: for i = 1 to M (max. number of iterations) do
3: Uniformly sample d from {1, . . . , D}
4: Perform forward pass of the CNN to get ψf (ŷ,xd,θi−1) for each f ∈ F and
ŷf ∈ Yf

5: Sample y′ from the distribution p(y|xd,θi−1) defined by (1)
6: Compute the error −Jyd

f = ŷf K + Jy′f = ŷf K for each f ∈ F and ŷf ∈ Yf

7: Back propagate the error through CNN to obtain a gradient ∇θ

8: Update the parameters θi := θi−1 − ηi∇θ

9: return θM
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Sampling. Obtaining an exact sample from p(y|x,θ) is a difficult problem
for a general CRF due to the exponential size of the set Y 3 y of all possible
configurations. There are, however, ways to mitigate it. The full Markov Chain
Monte Carlo (MCMC) sampling method [27] starts from an arbitrary variable
configuration y ∈ Y and generates the next one y′. In our case this generation can
be done with e.g. Gibbs sampling [24], as presented in Algorithm 2. Algorithm 2
passes over all variables yn and updates each of them according to the conditional
distribution p(yn|y\n,x,θ), where \n denotes all variable indexes except n. Let
nb(n) = {k ∈ I|∃f ∈ F : n, k ∈ f} denote all neighbors of the variable n. Note,
that due to the Markov property of CRFs [28], it holds

p(yn|y\n,x,θ) = p(yn|ynb(n)
,x,θ) ∝ exp

− ∑
f∈F :n∈f

ψf (yf ,x,θ)

 . (13)

Therefore, sampling from this distribution can be done efficiently, since it re-
quires evaluating only those potentials ψf (yf ,x,θ) which are dependent on the
variable yn, i.e. for f ∈ F such that n ∈ f . Algorithm 2 summarizes one iteration
of the sampling procedure. Note that it is highly parallelizable [29] and allows
for efficient GPU implementations. Under mild technical conditions the MCMC
sampling process converges to a stationary distribution after a finite number
of iterations [27]. This distribution coincides with p(y|x,θ). However, such a
sampling is time-consuming, because convergence to the stationary distribution
may require many iterations and must be performed after each update of the
parameters θ.

To overcome this difficulty a contrastive-divergence (CD) method was pro-
posed in [30] and theoretically justified in [31]. For a randomly generated index
d ∈ {1, . . . , D} of the training sample one performs a single step of the MCMC
procedure starting from a ground-truth variable configuration, which in our case
boils down to a single run of Algorithm 2 for y = yd. Unfortunately, the suffi-
cient conditions needed to justify this method according to [31] do not hold for
CRFs in general. Nevertheless, we provide an experimental evaluation of this
method in Section 5 along with a different technique described next.

Persistent contrastive divergence (PCD) [32] is a further development of con-
trastive divergence, where one step of the MCMC method is performed starting
from the sample obtained on a previous learning iteration. It is based on the as-
sumption that the distribution p(y,x,θ) changes slowly from iteration to itera-
tion and a sample from p(y|xd,θi−1) is close enough to a sample from p(y|xd,θi).
Moreover, when getting closer to a critical point, the gradient becomes smaller
and therefore p(y,x,θi) deviates less from p(y,x,θi−1). Therefore, close to a
critical point the generated samples can be seen as samples from the stationary
distribution of the full MCMC method, which coincides with the desired one
p(y|x,θ).

With the above description of the possible sampling procedures the whole
joint CNN-CRF learning Algorithm 1 is well-defined.
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Algorithm 2 Gibbs sampling

Require: A variable configuration y ∈ Y
1: for n = 1, . . . , N do
2: y′n is sampled from p(yn|y\n,x,θ)
3: yn ← y′n
4: return y

4 Comparison to Alternative Approaches

Unrolled Inference. In contrast to the learning method with the unrolled
inference proposed in [11] and [12], our approach is not limited to Gaussian
pairwise potentials. In our training procedure the potentials φf (yf ,x,θ) can
have arbitrary form.

The piece-wise training method [1] is able to handle arbitrary potentials in
CRFs. However, maximization of the likelihood (5) in that work is substituted
with

(arg) max
θ

D∑
d=1

∑
f∈F

[
−ψf (ydf ,x

d,θ)− log
∑
yf∈Yf

exp(−ψf (yf ,x
d,θ))

]
, (14)

which lacks a sound theoretical justification.

LP-relaxation and fractional entropy based approximation is employed
in [3]. As mentioned above, there is no clear evidence that the fractional en-
tropy always leads to tight likelihood approximations. Additionally, the method
requires a lot of memory: to avoid the time consuming, full message passing
based inference, the gradient steps w.r.t. the CNN parameters θ and minimiza-
tion over the dual variables of the LP-relaxation of the CRF are interleaved with
each other. This requires to store current values of the dual variables for each
training sample. The number of dual variables is proportional to the number of
labels used in the CRF as well as to the number of its factors. So, for example
in our experiments we use a dataset containing 2000 images of the approximate
size 320 × 120. The corresponding CRF has 20 labels and around 106 pairwise
factors (see Section 5 for details). The dual variables stored by the method [3]
would require around 200MB per image and 0.4TB for the whole dataset. Note
that our approach requires to store only the current variable configuration y for
each of the D training samples, when used with the PCD sampling. Therefore,
it requires only 78MB of working storage for the whole dataset. The difference
between our method and the method proposed in [3] gets even more pronounced
for larger problems and datasets, such as the augmented Pascal VOC dataset [33,
34] containing 10000 images with 500× 300 pixels each.
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5 Experiments

In the experimental evaluation we consider the problem of semantic body-parts
segmentation from a single depth image [35]. We specify a CRF, which has
unary potentials dependent on a CNN. We test different sampling options in
Algorithm 1 and compare our approach with another CRF-CNN learning frame-
work proposed in [11]. Additionally, we analyze the trained model, in order to
understand whether it can capture an object shape and contextual information.

Dataset and evaluation. We apply our approach to the challenging task of
predicting human body parts from a depth image. To the best of our knowledge,
there is no publicly available dataset for this task that contains real depth images.
For this reason, in [35], a set of synthetically rendered depth images along with
the corresponding ground truth labelings were introduced (see examples in Fig. 1
(left column)). In total there are 19 different body part labels, and one additional
label for the background. The dataset is split into 2000 images for training and
500 images for testing. As a quality measure, the authors use the averaged per-
pixel accuracy for body parts labeling, excluding the background. This makes
sense since the background can be easily identified from the depth map.

Our model. Following [4], in our experiments, we use a pixel-level CRF that is
able to capture geometrical layout and context. The state vector y defines a per
pixel labeling. Therefore the number N of coordinates in y is equal to the number
of pixels in a depth image, which has dimensions varying around 130×330. For all
n ∈ {1, . . . , N} the label space is Yn = {1, . . . , 20}. The observation x represents
a depth image. Our CRF has the following energy function E(y,x,θ):

E(y,x,θ) =

N∑
n=1

ψn(yn,x,θ) +
∑
c∈C

∑
(i,j)∈Ec

ψc(yi, yj ,θ) , (15)

where ψn(yn,x,θ) are unary potentials that depend on a CNN. Our CRF has
|C| classes of pairwise potentials. All potentials of one class are represented by a
learned value table, which they share. The neighborhood structure of the CRF is
visualized in Fig. 2b. All pixels are connected to 64 neighbors, apart from those
close to the image border.

The local distribution (13) used by the sampling Algorithm 2 takes the form:

pi(yi=l|x, yR\i; θ) ∝ exp
[
−ψi(l)−

∑
c

(
ψc(l, yj′) + ψc(yj′′ , l)

)]
. (16)

Note that according to our CRF architecture there are exactly two edges (apart
from the nodes close to the image border) in each edge class c that are incident
to a given node i. The corresponding neighboring nodes are denoted by j′ and
j′′ in (16).
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Table 1: CNN archutecture for body parts segmentation.

Layer conv1 relu1 conv2 relu2 conv3 maxpool1 relu3 conv4 Softmax
Kernel size 41× 41 - 17× 17 - 11× 11 3× 3 - 5× 5 -

Output channels 50 50 50 50 50 50 50 20 20

As mentioned above, the unary terms of our CRF model depend on the image
via a CNN. Since most existing pre-trained CNNs [7, 36, 37] use RGB images
as input, for the depth input we use our own fully convolutional architecture
and train it from scratch. Moreover, since some body parts, such as hands, are
relatively small, we use the architecture that does not reduce the resolution
in intermediate layers. This allows us to capture fine details. All intermediate
layers have 50 output channels and a stride of one. The final layer has 20 output
channels that correspond to the output labels. The architecture of our CNN is
summarized in Table 1. During training, we optimize the cross-entropy loss. The
CNN is trained using stochastic gradient descent with the momentum 0.99 and
with the batch size 1.2

In our experiments, we consider two learning scenarios: separate learning and
joint (end-to-end) learning. In both cases we start the learning procedure from
the same pre-trained CNN. For separate learning only the CRF parameters (pair-
wise potentials) are updated, whereas the CNN weights (unary potentials of the
CRF) are kept fixed. In contrast, for joint (end-to-end) learning all parameters
are updated. During the test-time inference we empirically observed that start-
ing Gibbs sampling (Algorithm 2) from a random labeling can lead to extremely
long runtimes. To speed-up the burn-in-phase, we use the marginal distribution
of the CNN without CRF. This means that the first sample is drawn from the
marginal distribution of the pre-trained CNN.

We also experiment with different sampling strategies during the training
phase: we considered (i) the contrastive-divergence with K sampling iterations,
denoted as CD-K for K equal to 1, 2, 5 and (ii) the persistent contrastive-
divergence PCD.

Baselines. We compare our approach to the method of [35], which introduced
this dataset. Their approach is based on a random forest model. Unfortunately,
we were not able to compare to the recent work [38], which extends [35], and
is also based on random forests. The reason is that in the work [38] its own
evaluation measure is used, meaning that the accuracy of only a small subset of
pixels is evaluated. This subset is chosen in such a way that each of the 20 classes
is represented by the same number of pixels. We are concerned, however, that
such small pixel subsets may introduce a bias. Furthermore, we did not have
this subset at our disposal. Since our main aim is to evaluate CNN-based CRF
models, we compare to the approach [11]. As described above, they incorporate a

2 We use the commonly adopted terminology from the CNN literature for technical
details, to allow reproducibility of our results.
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Table 2: Average per-pixel accuracy for all foreground parts. Separate learning
means that weights of the respective CNN were trained prior to CRF parameters.
In contrast, joint training means that all weights were learned jointly, starting
with a pre-trained CNN. We obverse that joint training is superior to separate
training, and furthermore that the model of [11], which is based on a dense
Gaussian CRF, is inferior to our generic CRF model.

Method Learning Accuracy

Online Random Forest [35] - ≈ 79.0%
CNN - 84.47

CNN + CRF [11] separate 86.55%
CNN + CRF [11] joint 88.17%

CNN + CRF (ours) PCD separate 87.62%
CNN + CRF (ours) CD-1 joint 88.17%
CNN + CRF (ours) CD-2 joint 88.15%
CNN + CRF (ours) CD-5 joint 88.23%
CNN + CRF (ours) PCD joint 89.01%

densely connected Gaussian CRF model into the CNN as a Recurrent Neuronal
Network of the corresponding Mean Field inference steps. This approach has
recently been the state-of-the-art in the VOC2012 object segmentation challenge.

Results. Qualitative and quantitative results are shown in Fig. 1 and Table 2
respectively. Our method with joint learning is performing best. In particular,
the persistent contrastive-divergence version shows the best results, which con-
forms to the observations made in other works [32]. The CNN-CRF approach
of [11] is inferior to ours. Note that the accuracy difference of 1% can mean
that e.g. a complete hand is incorrectly labeled. We attribute this to the fact
that for this task the spatial layout of body parts is of particular importance.
The underlying dense Gaussian CRF model of [11] is rotational invariant and
cannot capture contextual information such as “the head has to be above the
torso”. Our approach is able to capture this, which we explain in detail in Fig. 2
and 3. We expect that even higher levels of accuracy can be achieved by explor-
ing different network designs and learning strategies, which we leave for future
work.

6 Discussion and Future Work

We have presented a generic CRF model where a CNN models unary factors. We
have introduced an efficient and scalable maximum likelihood learning procedure
to train all model parameters jointly. By doing so, we were able to train and
test on large-size factor graphs. We have demonstrated a performance gain over
competing techniques for semantic labeling of body parts. We have observed
that our generic CRF model can capture the shape and context information of
relating body parts.
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Input
Depth

Ground
Truth CNN

86.53%

[11] joint
learning

90.88%

Ours
separate
learning

90.38%

Ours joint
learning

93.14%

83.93% 88.20% 87.74% 90.27%

90.15% 92.62% 91.98% 93.58%

Fig. 1: Results. (From left to right). The input depth image. The corresponding
ground truth labeling for all body parts. The result of a trained CNN model. The
result of [11] using an end-to-end training procedure. Our results with separate
learning and joint learning, respectively. Below each result we give the averaged
pixel-wise accuracy for all body parts.
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(a)

(b)

(c)

(d)

(e)

Fig. 2: Model Insights. (a) Illustrating the 19 body parts of a human. (c-
e) Weights of pairwise factors for different pairs of labels, see details below.
(b) Neighborhood structure for pairwise factors. The center pixel (red) is con-
nected via pairwise factors to all green pixels. Note that “opposite” edges share
same weights, e.g. the edge with x, y-shift (5, 10) has the same weights as the
edge with x, y-shift (−5,−10). (c) Weights for pairwise potentials that connect
the label “head” with the label “foot”. Red means a high energy value, i.e. a
discouraged configuration, while blue means the opposite. Since there is no sam-
ple in the training dataset where a foot is close to a head, all edges are positive
or close to 0. Note that the zero weights can occur even for very unlikely con-
figurations. The reason is that during training these unlikely configurations did
not occur. (d) Weights for pairwise potentials that connect the label “left torso”
with the label “right torso”. The potentials enforce a straight, vertical border
between the two labels, i.e. there is a large penalty for “left torso” on top (or
below) of “right torso” (x-shift 0, y-shift arbitrary). Also, it is encouraged that
“right torso” is to the right of the “left torso” (Positive x-shift and y-shift 0).
(e) Weights for pairwise potentials that connect the label “right chest” with the
label “right upper arm”. It is discouraged that the “right upper arm” appears
close to “right chest”, but this configuration can occur at a certain distance.
Since the training images have no preferred arm-chest configurations, all direc-
tions have similar weights.
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(a) (b) (c) (d)

Fig. 3: Model Insights. (a) The most likely labeling for a separately trained
CNN. For the circled pixel, the local marginal distribution is shown. (b) Max.
marginal labeling of a separately trained CRF, which uses the CNN unaries
from (a), i.e. our approach with separate learning. We observe that unaries are
spatially smoothed-out. (c) Most likely labeling of a CNN that was jointly trained
with the CRF. The labeling looks worse than (a). However, the main observation
is that the pixel-wise marginal distributions are more ambiguous than in (a), see
the circled pixel. (d) The final, max-marginal labeling of the jointly trained CRF
model, which is considerably better than the result in (b). The reason is that
due to the ambiguity in the local unary marginals, the CRF has more power
to find the correct body part configuration. The inlet shows the ground truth
labeling.

There are many exciting avenues for future research. We plan to apply our
method to other application scenarios, such as semantic segmentation of RGB
images. In this context, it would be interesting to combine the dense CRF model
of [11] with our generic CRF model. Note that a dense CRF is implicitly modeling
the property that objects have a compact color distribution, see [39], which is a
complementary modeling power to our generic CRF model.
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10. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian
edge potentials. In: NIPS. (2011)

11. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,
C., Torr, P.H.S.: Conditional random fields as recurrent neural networks. In: ICCV.
(2015)

12. Schwing, A.G., Urtasun, R.: Fully connected deep structured networks. preprint
arXiv:1503.02351 (2015)

13. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permu-
tohedral lattice. In: Computer Graphics Forum. Volume 29., Wiley Online Library
(2010)

14. Domke, J.: Learning graphical model parameters with approximate marginal in-
ference. TPAMI (2013)

15. Kiefel, M., Gehler, P.V.: Human pose estmation with fields of parts. In: ECCV.
(2014)

16. Barbu, A.: Training an active random field for real-time image denoising. Image
Processing, IEEE Transactions on 18 (2009) 2451–2462

17. Ross, S., Munoz, D., Hebert, M., Bagnell, J.A.: Learning message-passing inference
machines for structured prediction. In: CVPR. (2011)

18. Stoyanov, V., Ropson, A., Eisner, J.: Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure.
In: AISTATS. (2011)

19. Tompson, J.J., J., A., LeCun, Y., Bregler, C.: Joint training of a convolutional
network and a graphical model for human pose estimation. In: NIPS. (2014)

20. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via
deep parsing network. In: ICCV. (2015)

21. Sutton, C., McCallum, A.: Piecewise training of undirected models. In: Conference
on Uncertainty in Artificial Intelligence (UAI). (2005)

22. Richard, X.H., Zemel, R.S., Carreira-perpiñán, M.Á.: Multiscale conditional ran-
dom fields for image labeling. In: In CVPR, Citeseer (2004)

23. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-
ational inference. Foundations and Trends R© in Machine Learning 1 (2008) 1–305

24. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. TPAMI 6 (1984)



16 A. Kirillov, D. Schlesinger, S. Zheng, B. Savchynskyy, P.H.S. Torr, C. Rother

25. Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics (1951) 400–407

26. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simu-
lation, and control. Volume 65. John Wiley & Sons (2005)

27. Geyer, C.J.: Practical markov chain monte carlo. Statistical Science (1992) 473–483
28. Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)
29. Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.: Parallel gibbs sampling: From

colored fields to thin junction trees. In: International Conference on Artificial
Intelligence and Statistics. (2011) 324–332

30. Hinton, G.: Training products of experts by minimizing contrastive divergence.
Neural Computation 14 (2002) 1771–1800

31. Yuille, A.L.: The convergence of contrastive divergences. In: NIPS. (2004)
32. Tieleman, T.: Training restricted boltzmann machines using approximations to

the likelihood gradient. In: ICML, ACM (2008)
33. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: (The

PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results)
34. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours

from inverse detectors. In: International Conference on Computer Vision (ICCV).
(2011)

35. Denil, M., Matheson, D., de Freitas, N.: Consistency of online random forests. In:
ICML. (2013)

36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q., eds.: Advances in Neural Information Processing Systems 25. Curran Asso-
ciates, Inc. (2012) 1097–1105

37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

38. Ren, S., Cao, X., Wei, Y., Sun, J.: Global refinement of random forest. In: CVPR.
(2015)

39. Cheng, M.M., Prisacariu, V.A., Zheng, S., Torr, P.H.S., Rother, C.: Densecut:
Densely connected crfs for realtime grabcut. Computer Graphics Forum 34 (2015)


