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Abstract

This work addresses the task of instance-aware seman-

tic segmentation. Our key motivation is to design a sim-

ple method with a new modelling-paradigm, which there-

fore has a different trade-off between advantages and dis-

advantages compared to known approaches.Our approach,

we term InstanceCut, represents the problem by two output

modalities: (i) an instance-agnostic semantic segmentation

and (ii) all instance-boundaries. The former is computed

from a standard convolutional neural network for semantic

segmentation, and the latter is derived from a new instance-

aware edge detection model. To reason globally about the

optimal partitioning of an image into instances, we com-

bine these two modalities into a novel MultiCut formulation.

We evaluate our approach on the challenging CityScapes

dataset. Despite the conceptual simplicity of our approach,

we achieve the best result among all published methods, and

perform particularly well for rare object classes.

1. Introduction

This work addresses the task of segmenting each indi-

vidual instance of a semantic class in an image. The task is

known as instance-aware semantic segmentation, in short

instance segmentation, and is a more refined task than se-

mantic segmentation, where each pixel is only labeled with

its semantic class. An example of semantic segmentation

and instance segmentation is shown in Fig. 1a-1b. While

semantic segmentation has been a very popular problem to

work on in the last half decade, the interest in instance seg-

mentation has significantly increased recently. This is not

surprising since semantic segmentation has already reached

a high level of accuracy, in contrast to the harder task of

instance segmentation. Also, from an application perspec-

tive there are many systems, such as autonomous driving or

robotics, where a more detailed understanding of the sur-

rounding is important for acting correctly in the world.

In recent years, Convolutional Neural Networks (CNN)

have tremendously increased the performance of many

computer vision tasks. This is also true for the task of in-

(a) (b)

(c) (d)

Figure 1: An image from the CityScapes dataset [13]: (a)

Ground truth semantic segmentation, where all cars have

the same label. (b) The ground truth instance segmentation,

where each instance, i.e. object, is highlighted by a dis-

tinct color. In this work we use a “limiting” definition of

instance segmentation, in the sense that each instance must

be a connected component. Despite this limitation, we will

demonstrate high-quality results. (c) Shows the result of our

InstanceCut method. As can be seen, the front car is split

into two instances, in contrast to (b). (d) Our connected-

component instances are defined via two output modalities:

(i) the semantic segmentation, (ii) all instance-boundaries

(shown in bold-black).

stance segmentation, see the benchmarks [13, 37]. How-

ever, for this task it is, in our view, not clear whether the

best modelling-paradigm has already been found. Hence,

the motivation of this work is to explore a new, and very

different, modelling-paradigm. To be more precise, we be-

lieve that the problem of instance segmentation has four

core challenges, which any method has to address. Firstly,

the label of an instance, e.g. “car number 5”, does not

have a meaning, in contrast to semantic segmentation, e.g.

class “cars”. Secondly, the number of instances in an image

can vary greatly, e.g. between 0 and 120 for an image in

the CityScapes dataset [13]. Thirdly, in contrast to object

detection with bounding boxes, each instance (a bounding

box) cannot simply be described by four numbers (corners

of bounding box), but has to be described by a set of pixels.

Finally, in contrast to semantic segmentation, a more refined

labeling of the training data is needed, i.e. each instance has
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to be segmented separately. Especially for rare classes, e.g.

motorcycles, the amount of training data, which is avail-

able nowadays, may not be sufficient. Despite these chal-

lenges, the state of the art techniques for instance segmenta-

tion are CNN-based. As an example, [16, 53] address these

challenges with a complex multi-loss cascade CNN archi-

tectures, which are, however, difficult to train. In contrast,

our modelling-paradigm is very different to standard CNN-

based architectures: assume that each pixel is assigned to

one semantic class, and additionally we insert some edges

(in-between pixels) which form loops – then we have solved

the problem of instance segmentation! Each connected re-

gion, enclosed by a loop of instance-aware edges is an indi-

vidual instance where the class labels of the interior pix-

els define its class. These are exactly the ingredients of

our approach: (i) a standard CNN that outputs an instance-

agnostic semantic segmentation, and (ii) a new CNN that

outputs all boundaries of instances. In order to make sure

that instance-boundaries encircle a connected component,

and that the interior of a component has the same class la-

bel, we combine these two outputs into a novel multi-cut

formulation. We call our approach InstanceCut.

Our InstanceCut approach has some advantages and dis-

advantages, which we discuss next. With respect to this, we

would like to stress that these pros and cons are, however,

quite different to existing approaches. This means that in

the future we envision that our approach may play an im-

portant role, as a subcomponent in an “ultimate” instance

segmentation system. Let us first consider the limitations,

and then the advantages. The minor limitation of our ap-

proach is that, obviously, we cannot find instances that are

formed by disconnected regions in the image (see Fig. 1b-

1c). However, despite this limitation, we demonstrate re-

sults that exceed all published methods in terms of accu-

racy. In the future, we foresee various ways to overcome

this limitation, e.g. by reasoning globally about shape.

We see the following major advantages of our approach.

Firstly, all the four challenges for instance segmentation

methods, listed above, are addressed in an elegant way: (i)

the multi-cut formulation does not need a unique label for

an instance; (ii) the number of instances arises naturally

from the solution of the multi-cut; (iii) our formulation is

on the pixel (superpixel) level; (iv) since we do not train a

CNN for segmenting instances globally, our approach deals

very well with instances of rare classes, as they do not need

special treatment. Finally, our InstanceCut approach has

another major advantage, from a practical perspective. We

can employ any semantic segmentation method, as long

as it provides pixel-wise log-probabilities for each class.

Therefore, advances in this field may directly translate to an

improvement of our method. Also, semantic segmentation,

here a Fully-Convolutional-Neural-Network (FCN) [52], is

part of our new edge-detection approach. Again, advances

in semantic segmentation may improve the performance of

this component, as well.

Our Contributions in short form are:

• We propose a novel paradigm for instance-aware

semantic segmentation, which has different pros and cons

than existing approaches. In our approach, we only train

classifiers for semantic segmentation and instance-edge

detection, and not directly any classifier for dealing with

global properties of an instance, such as shape.

• We propose a novel MultiCut formulation that reasons

globally about the optimal partitioning of an image into

instances.

• We propose a new FCN-based architecture for

instance-aware edge detection.

• We validate experimentally that our approach achieves

the best result, among all published methods, and performs

particularly well for rare object classes.

2. Related Work

Proposal-based methods. This group of methods uses de-

tection or a proposal generation mechanism as a subroutine

in the instance-aware segmentation pipeline.

Several recent methods decompose the instance-aware

segmentation problem into a detection stage and a fore-

ground/background segmentation stage [16, 23]. These

methods propose an end-to-end training that incorporates

all parts of the model. In addition, non-maximal suppres-

sion (NMS) may be employed as a post-processing step.

A very similar approach generates proposals using e.g.

MCG [3] and then, in the second stage, a different network

classifies these proposals [13, 22, 15, 11].

Several methods produce proposals for instance segmen-

tations and combine them, based on learned scores [33,

41, 42] or generate parts of instances and then combine

them [14, 38].

Although the proposal-based methods show state-

of-the-art performance on important challenges, Pascal

VOC2012 [18] and MSCOCO [37], they are limited by

the quality of the used detector or proposal generator. Our

method is, in turn, dependent on the quality of the used se-

mantic segmentation. However, for the latter a considerable

amount of research exists with high quality results.

Proposal-free methods. Recently, a number of alternative

techniques to proposal-based approaches have been sug-

gested in the literature. These methods explore different de-

compositions of instance-aware semantic segmentation fol-

lowed by a post-processing step that assembles results.

In [48] the authors propose a template matching scheme

for instance-aware segmentation based on three modalities:

predicted semantic segmentation, depth estimation, and per-

pixel direction estimation with respect to the center of the

corresponding instance. The approach requires depth data

for training and does not perform well on highly occluded
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objects.

Another work, which focuses on instance segmentation

of cars [55, 54] employs a conditional random field that rea-

sons about instances using multiple overlapping outputs of

an FCN. The latter predicts a fixed number of instances and

their order within the receptive field of the FCN, i.e. for

each pixel, the FCN predicts an ID of the corresponding in-

stance or background label. However, in these methods the

maximal number of instances per image must be fixed in

advance. A very large number may have a negative influ-

ence on the system performances. Therefore, this method

may not be well-suited for the CityScapes dataset, where

the number of instances varies considerably among images.

In [50] the authors predict the bounding box of an in-

stance for each pixel, based on instance-agnostic semantic

segmentation. A post-processing step filters out the result-

ing instances.

Recurrent approaches produce instances one-by-one.

In [43] an attention-based recurrent neural network is pre-

sented. In [44] an LSTM-based [24] approach is proposed.

The work [34] presents a proposal-free network that pro-

duces an instance-agnostic semantic segmentation, number

of instances for the image, and a per-pixel bounding box

of the corresponding instance. The resulting instance seg-

mentation is obtained by clustering. The method is highly

sensitive to the right prediction of the number of instances.

We also present a proposal-free method. However, ours

is very different in paradigm. To infer instances, it combines

semantic segmentation and object boundary detection via

global reasoning.

3. InstanceCut

3.1. Overview of the proposed framework

We begin with presenting a general pipeline of our new

InstanceCut framework (see Fig. 2) and then describe each

component in detail. The first two blocks of the pipeline

are processed independently: semantic segmentation and

instance-aware edge detection operate directly on the input

image. The third, image partitioning block, reasons about

instance segmentation on the basis of the output provided

by the two blocks above.

More formally, the semantic segmentation block (Sec-

tion 3.2) outputs a log-probability of a semantic class ai,l
for each class label l ∈ L = {0, 1 . . . , L} and each pixel

i of the input image. We call ai,l, per-pixel semantic class

scores. Labels 1, . . . , L correspond to different semantic

classes and 0 stands for background.

Independently, the instance-aware edge detection (Sec-

tion 3.3) outputs log-probabilities bi of an object boundary

for each pixel i. In other words, bi indicates how likely it

is that pixel i touches an object boundary. We term bi as a

per-pixel instance-aware edge score. Note that these scores

are class-agnostic.

Figure 2: Our InstanceCut pipeline - Overview. Given

an input image, two independent branches produce the per-

pixel semantic class scores and per-pixel instance-aware

edge scores. The edge scores are used to extract superpix-

els. The final image partitioning block merges the superpix-

els into connected components with a class label assigned to

each component. The resulting components correspond to

object instances and background.

Finally, the image partitioning block outputs the re-

sulting instance segmentation, obtained using the seman-

tic class scores and the instance-aware edge scores. We

refer to Section 3.4 for a description of the corresponding

optimization problem. To speed-up optimization, we re-

duce the problem size by resorting to a superpixel image.

For the superpixel extraction we utilize the well-known wa-

tershed technique [49], which is run directly on the edge

scores. This approach efficiently ensures that the extracted

superpixel boundaries are aligned with boundaries of the

instance-aware edge scores.

3.2. Semantic Segmentation

Recently proposed semantic segmentation frameworks

are mainly based on the fully convolution network (FCN)

architecture. Since the work [40], many new FCN ar-

chitectures were proposed for this task [52, 20]. Some
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of the methods utilize a conditional random field (CRF)

model on top of an FCN [10, 36], or incorporate CRF-based

mechanisms directly into a network architecture [39, 56,

45]. Current state-of-the-art methods report around 78%
mean Intersection-over-Union (IoU) for the CityScapes

dataset [13] and about 82% for the PASCAL VOC2012

challenge [18]. Due to the recent progress in this field, one

may say that with a sufficiently large dataset, with associ-

ated dense ground truth annotation, an FCN is able to pre-

dict semantic class for each pixel with high accuracy.

In our experiments, we employ two publicly available

pre-trained FCNs: Dilation10 [52] and LRR-4x [20]. These

networks have been trained by the respective authors and

we can also use them as provided, without any fine-tuning.

Note, that we also use the CNN-CRF frameworks [56, 10]

with dense CRF [31], since dense CRF’s output can also be

treated as the log-probability scores ai,l.
Since our image partitioning framework works on the su-

perpixel level we transform the pixel-wise semantic class

scores ai,l to the superpixel-wise ones au,l (here u in-

dexes the superpixels) by averaging the corresponding pix-

els’ scores.

3.3. InstanceAware Edge Detection

Let us first review existing work, before we describe

our approach. Edge detection (also know as boundary de-

tection) is a very well studied problem in computer vi-

sion. The classical results were obtained already back in

the 80’s [9]. More recent methods are based on spectral

clustering [47, 1, 3, 26]. These methods perform global

inference on the whole image. An alternative approach

suggests to treat the problem as a per-pixel classification

task [35, 17]. Recent advances in deep learning have made

this class of methods especially efficient, since they auto-

matically obtain rich feature representation for classifica-

tion [19, 30, 46, 6, 7, 51, 8].

The recent per-pixel classification method [8] constructs

features, which are based on an FCN trained for seman-

tic segmentation on Pascal VOC 2012 [18]. The method

produces state-of-the-art edge detection performance on the

BSD500 dataset [2]. The features for each pixel are de-

signed as a concatenation of intermediate FCN features,

corresponding to that particular pixel. The logistic regres-

sion trained on these features, followed by non-maximal

suppression, outputs a per-pixel edge probability map. The

paper suggests that the intermediate features of an FCN

trained for semantic segmentation form a strong signal for

solving the edge detection problem. Similarly constructed

features also have been used successfully for other dense

labelling problems [23].

For datasets like BSDS500 [2] most works consider gen-

eral edge detection problem, where annotated edges are

class- and instance-agnostic contours. In our work the

instance-aware edge detection outputs a probability for each

pixel, whether it touches a boundary. This problem is

more challenging than canonical edge detection, since it re-

quires to reason about contours and semantics jointly, dis-

tinguishing the true objects’ boundaries and other not rel-

evant edges, e.g. inside the object or in the background.

Below (see Fig. 3), we describe a new network architecture

for this task that utilizes the idea of the intermediate FCN

features concatenation.

As a base for our network we use an FCN that is trained

for semantic segmentation on the dataset that we want to use

for object boundary prediction. In our experiments we use

a pre-trained Dilation10 [52] model, however, our approach

is not limited to this architecture and can utilize any other

FCN-like architectures. We form a per-pixel feature rep-

resentation by concatenating the intermediate feature maps

of the semantic segmentation network. This is based on

the following intuition: during inference, the semantic seg-

mentation network is able to identify positions of transitions

between semantic classes in the image. Therefore, its inter-

mediate features are likely to contain a signal that helps to

find the borders between classes. We believe that the same

features can be useful to determine boundaries between ob-

jects.

Commonly used approaches [8, 23] suggest upscaling

feature maps that have a size which is smaller than the

original image to get per-pixel representation. However, in

our experiments such an approach produces thick and over-

smooth edge scores. This behavior can be explained by the

fact that the most informative feature maps have an 8 times

smaller scale than the original image. Hence, instead of up-

scaling, we downscale all feature maps to the size of the

smallest map. Since the network was trained with rectified

linear unit (ReLU) activations, the active neurons tends to

output large values, therefore, we use max-pooling with a

proper stride for the downscaling, see Fig. 3.

The procedure outputs the downscaled feature maps (of

a semantic segmentation FCN, see Fig. 3) that are concate-

nated to get the downscaled per-pixel feature map. We uti-

lize a 2-layer perceptron that takes this feature map as input

and outputs log-probabilities for edges (smooth instance-

aware edge map, see Fig. 3). The perceptron method is

the same for all spatial positions, therefore, it can be repre-

sented as two layers of 1 × 1 convolutions with the ReLU

activation in between.

In our experiments we have noticed that the FCN gives

smooth edge scores. Therefore, we apply a context net-

work [52] that refines the scores making them sharper. The

new architecture is an FCN, i.e. it can be applied to images

of arbitrary size, it is differentiable and has a single loss at

the end. Hence, straightforward end-to-end training can be

applied for the new architecture. We upscale the resulting

output map to match an input image size.

Since the image partition framework, that comes next,
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Figure 3: Instance-aware edge detection block. The semantic segmentation FCN is the front-end part of the network [52]

trained for semantic segmentation on the same dataset. Its intermediate feature maps are downsampled, according to the size

of the smallest feature map, by a max-pooling operation with an appropriate stride. The concatenation of the downsampled

maps is used as a feature representation for a per-pixel 2-layer perceptron. The output of the perceptron is refined by a context

network of Dilation10 [52] architecture.

operates on super-pixels, we need to transform the per-pixel

edge scores bi to edge scores bu,v for each pair {u, v} of

neighboring superpixels. We do this by averaging all scores

of of those pixels that touch the border between u and v.

In the following, we describe an efficient implementation

of the 2-layer perceptron and also discuss our training data

for the boundary detection problem.

Efficient implementation. In our experiments, the input

for the 2-layer perceptron contains about 13k features per

pixel. Therefore, the first layer of the perceptron consumes

a lot of memory. It is, however, possible to avoid this by

using a more efficient implementation. Indeed, the first

layer of the perceptron is equivalent to the summation of

outputs of multiple 1 × 1 convolutions, which are applied

to each feature map independently. For example, conv 1

is applied to the feature maps from the conv 1 x inter-

mediate layer, conv 2 is applied to the feature maps from

conv 2 x and its output is summed up with the output of

conv 1, etc. This approach allows reducing the memory

consumption, since the convolutions can be applied during

evaluation of the front-end network.

Training data. Although it is common for ground truth

data that object boundaries lie in-between pixels, we will

use in the following the notion that a boundary lies on a

pixel. Namely, we will assume that a pixel i is labeled as

a boundary if there is a neighboring pixel j, which is as-

signed to a different object (or background). Given the size

of modern images, this boundary extrapolation does not af-

fect performance. As a ground truth for boundary detec-

tion we use the boundaries of object instances presented in

CityScapes [13].

As mentioned in several previous works [51, 7], highly

Figure 4: Ground truth examples for our instance-aware

edge detector. Red indicates pixels that are labeled as edges,

blue indicates background, i.e. no edge and white pixels are

ignore.

unbalanced ground truth (GT) data heavily harms the learn-

ing progress. For example, in BSDS500 [2] less than 10%
of pixels on average are labeled as edges. Our ground truth

data is even more unbalanced: since we consider the object

boundaries only, less than 1% of pixels are labeled as be-

ing an edge. We employ two techniques to overcome this

problem of training with unbalanced data: a balanced loss

function [51, 25] and pruning of the ground truth data.

The balanced loss function [51, 25] adds a coefficient to

the standard log-likelihood loss that decreases the influence

of errors with respect to classes that have a lot of training

data. That is, for each pixel i the balanced loss is defined as

loss(pedge, y
GT ) =JyGT = 1K log(pedge) (1)

+ αJyGT = 0K log(1− pedge) ,

where pedge = 1/(1− e−bi) is the probability of the pixel i
to be labeled as an edge, yGT is the ground truth label for

i (the label 1 corresponds to an edge), and α = N1/N0 is

the balancing coefficient. Here, N1 and N0 are numbers of

pixels labeled, respectively, as 1 and 0 in the ground truth.

Another way to decrease the effect of unbalanced GT

data is to subsample the GT pixels, see e.g. [8]. Since we are

interested in instance-aware edge detection and combine its
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output with our semantic segmentation framework, a wrong

edge detection, which is far from the target objects (for ex-

ample, in the sky) does not harm the overall performance

of the InstanceCut framework. Hence, we consider a pixel

to be labeled as background for the instance-aware edge de-

tection if and only if it lies inside the target objects, or in

an area close to it, see Fig. 4 for a few examples of the

ground truth data for the CityScapes dataset [13]. In our

experiments, only 6.8% of the pixels are labeled as object

boundaries in the pruned ground truth data.

3.4. Image Partition

Let V be the set of superpixels extracted from the output

of the instance-aware edge detection block and E ⊆
(

V
2

)

be the set of neighboring superpixels, i.e., those having a

common border.

With the methods described in Sections 3.2 and 3.3 we

obtain:

• Log-probabilities αu,l of all semantic labels l ∈ L (in-

cluding background) for each superpixel u ∈ V .

• Log-probabilities bu,v for all pairs of neighbouring su-

perpixels {u, v} ∈ E, for having a cutting edge.

• Prior log-probabilities of having a boundary between

any two (also equal) semantic classes βl,l′ , for any two la-

bels l, l′ ∈ L. In particular, the weight βl,l defines, how

probable it is that two neighboring super-pixel have the

same label l and belong to different instances. We set β0,0

to −∞, assuming there are no boundaries between super-

pixels labeled both as background.

We want to assign a single label to each superpixel and

have close-contour boundaries, such that if two neighbor-

ing superpixels belong to different classes, there is always a

boundary between them.

Our problem formulation consists of two components:

(i) a conditional random field model [27] and (ii) a graph

partition problem, known as MultiCut [12] or correlation

clustering [4]. In a certain sense, these two problems are

coupled together in our formulation. Therefore, we first

briefly describe each of them separately and afterwards con-

sider their joint formulation.

Conditional Random Field (CRF). Let us, for now, as-

sume that all βl,l = −∞, l ∈ L, i.e., there can be no bound-

ary between superpixels assigned the same label. In this

case our problem is reduced to the following famous for-

mat: Let G = (V,E) be an undirected graph. A finite set

of labels L is associated with each node. With each label

l in each node v a vector αv,l is associated, which denotes

the score of the label assigned to the node. Each pair of

labels l, l′ in neighbouring nodes {u, v} is assigned a score

cu,v,l,l′ :=

{

bu,v + βl,l′ , l 6= l′

0, l = l′
.

The vector l ∈ L|V | with coordinates lu, u ∈ V being labels

assigned to each node is called a labeling. The maximum a

posteriori inference problem for the CRF is defined above

reads
max
l∈L|V |

∑

u∈V

αu,lu +
∑

uv∈E

cu,v,lu,lv . (2)

A solution to this problem is a usual (non-instance-aware)

semantic segmentation, if we associate the graph nodes with

superpixels and the graph edges will define their neighbor-

hood.

For the MultiCut formulation below, we will require a

different representation of the problem (2), in a form of

an integer quadratic problem. Consider binary variables

xu,l ∈ {0, 1} for each node u ∈ V and label l ∈ L. The

equality xu,l = 1 means that label l is assigned to the node

u. The problem (2) now can be rewritten as follows:

max
x

∑

u∈V

∑

l∈L

αu,lxu,l +
∑

uv∈E

∑

l∈L

∑

l′∈L

cu,v,l,l′xu,lxv,l′

s.t.

{

xu,l ∈ {0, 1}, u ∈ V, l ∈ L
∑

l∈L xu,l = 1, u ∈ V .
(3)

The last constraint in (3) is added to guarantee that each

node is assigned exactly one label. Although the prob-

lem (3) is NP-hard in general, it can be efficiently (and of-

ten exactly) solved for many practical instances appearing

in computer vision, see [27] for an overview.

MultiCut Problem. Let us now assume a different situa-

tion, where all nodes have already got an assigned semantic

label and all that we want is to partition each connected

component (labeled with a single class) into connected re-

gions corresponding to instances. Let us assume, for in-

stance, that all superpixels of the component have a label

l. This task has an elegant formulation as a MultiCut prob-

lem [12]:

Let G = (V,E) be an undirected graph, with the scores

θu,v := bu,v + βl,l assigned to the graph edges. Let also

∪̇ stand for a disjoint union of sets. The MultiCut problem

(also known as correlation clustering) is to find a partition-

ing (Π1, . . . , Πk), Πi ⊆ V , V = ∪̇
k
i=1

Πi of the graph ver-

tices, such that the total score of edges connecting different

components is maximized. The number k of components

is not fixed but is determined by the algorithm itself. Al-

though the problem is NP-hard in general, there are efficient

approximate solvers for it, see e.g. [5, 28, 29].

In the following, we will require a different represen-

tation of the MultiCut problem, in form of an integer lin-

ear problem. To this end, we introduce a binary variable

ye = yu,v ∈ {0, 1} for each edge e = {u, v} ∈ E.

This variable takes the value 1, if u and v belong to dif-

ferent components, i.e. u ∈ Πi, v ∈ Πj for some i 6= j.

Edges {u, v} with yu,v = 1 are called cut edges. The vec-

tor y ∈ {0, 1}|E| with coordinates ye, e ∈ E is called a

MultiCut. Let C be the set of all cycles of the graph G. It

is a known result from combinatorial optimization [12] that

the MultiCut problem can be written in the following form:
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max
y∈{0,1}|E|

∑

{u,v}∈E

θu,vyu,v , s.t. ∀C ∀e′ ∈ C :
∑

e∈C\{e′}

ye ≥ ye′ .

(4)

Here, the objective directly maximizes the total score of the

edges and the inequality constraints basically force each cy-

cle to have none or at least two cut edges. These cycle con-

straints ensure that the set of cut edges actually defines a

partitioning. Obviously, the cut edges correspond to bound-

aries in our application.

Our InstanceCut Problem. Let us combine both subprob-

lems: We want to jointly infer both the semantic labels and

the partitioning of each semantic segment, with each par-

tition component defining an object instance. To this end,

consider our InstanceCut problem (5)-(8) below:

max
x∈{0,1}|V ||L|

y∈{0,1}|E|

∑

u∈V

∑

l∈L

αu,lxu,l (5)

+ w
∑

uv∈E

∑

l∈L

∑

l′∈L

(bu,v + βl,l′)xu,lxv,l′yu,v

∑

l∈L

xu,l = 1, u ∈ V (6)

∀e′ ∈ C :
∑

e∈C\{e′}

ye ≥ ye′ (7)

xu,l − xv,l ≤ yuv
xv,l − xu,l ≤ yuv

}

, {u, v} ∈ E, l ∈ L . (8)

Objective (5) and inequalities (6)-(7) are obtained directly

from merging problems (3) and (4). We also introduced the

parameter w that balances the modalities. Additional con-

straints (8) are required to guarantee that as soon as two

neighboring nodes u and v are assigned different labels, the

corresponding edge yu,v is cut and defines a part of an in-

stance boundary. Two nodes u and u are assigned different

labels if at most one of the variables xu,l, xv,l takes value

1. In this case, the largest left-hand side of one of the in-

equalities (8) is equal to 1 and therefore yu,v must be cut.

The problem related to (5)-(8) was considered in [21] for

foreground/background segmentation.

Although the problem (5)-(8) is NP-hard and it contains

a lot of hard constraints, there exists an efficient approxi-

mate solver for it [32], which we used in our experiments.

For solving the problem over 3000 nodes (superpixels) and

9 labels (segment classes) it required less than a second on

average.

4. Experiments

Dataset. There are three main datasets with full anno-

tation for the instance-aware semantic segmentation prob-

lem: PASCAL VOC2012 [18], MS COCO [37] and

CityScapes [13]. We select the last one for our experimen-

tal evaluation for several reasons: (i) CityScapes has very

fine annotation with precise boundaries for the annotated

objects, whereas MS COCO has only coarse annotations,

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0.0

0.1

0.2

0.3

0.4

0.5

PASCAL VOC 2012

MS COCO

CityScapes

Figure 5: The histograms shows distribution of number of

instances per image for different datasets. For illustrative

reasons we cut long tails of CityScapes and MS COCO. We

use CityScapes dataset since it contains significantly more

instances per image.

for some objects, that do not coincide with the true bound-

aries. Since our method uses an edge detector, it is impor-

tant to to have precise object boundaries for training. (ii)

The median number of instances per image in CityScapes

is 16, whereas PASCAL VOC has 2 and MS COCO has

4. For this work a larger number is more interesting. The

distribution of the number of instances per image for differ-

ent datasets is shown in Fig. 5. (iii) Unlike other datasets,

CityScapes’ annotation is dense, i.e. all foreground objects

are labeled.

The CityScape dataset has 5000 street-scene images

recorded by car-mounted cameras: 2975 images for train-

ing, 500 for validation and 1525 for testing. There are 8
classes of objects that have an instance-level annotation in

the dataset: person, rider, car, truck, bus, train, motorcycle,

bicycle. All images have the size of 1024× 2048 pixels.

Training details. For the semantic segmentation block in

our framework we test two different networks, which have

publicly available trained models for CityScapes: Dila-

tion10 [52] and LRR-4x [20]. The latter is trained using the

additional coarsely annotated data, available in CityScapes.

Importantly, CityScapes has 19 different semantic segmen-

tation classes (and only 8 out of them are considered for in-

stance segmentation) and both networks were trained to seg-

ment all these classes. We do not retrain the networks and

directly use the log-probabilities for the 8 semantic classes,

which we require. For the background label we take the

maximum over the log-probabilities of the remaining se-

mantic classes.

As an initial semantic segmentation network for the

instance-aware edge detection block we use Dilation10 [52]

pre-trained on the CityScapes. We exactly follow the train-

ing procedure described in the original paper [52]. That is,

we pre-train first the front-end module with the 2-layer per-

ceptron on top. Then we pre-train the context module of the

network separately and, finally, train the whole system end-

to end. All the stages are trained with the same parameters

as in [52]. In our experiments the 2-layer perceptron has 16
hidden neurons. On the validation set the trained detector

achieves 97.2% AUC ROC.

Parameters w (see (5)) and βl,l′ , for all l, l′ ∈ L, in our
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(a) Ground truth (b) Edges map (c) InstanceCut prediction

Figure 6: Qualitative results of InstanceCut framework. Left column contains input images with the highlighted ground truth

instances. Middle column depicts per-pixel instance-aware edge log-probabilities and the last column shows the results of our

approach. Note that in the last example the bus and a car in the middle are separated by a lamp-post, therefore, our method

returns two instances for the objects.

AP AP50% AP100m AP50m

MCG+R-CNN [13] 4.6 12.9 7.7 10.3

Uhrig et al. [48] 8.9 21.1 15.3 16.7

InstanceCut 13.0 27.9 22.1 26.1

Table 1: CityScapes results for instance-aware semantic

segmentation on the test set.

InstanceCut formulation (5) are selected via 2-fold cross-

validation. Instead of considering different βl,l′ for all pairs

of labels, we group them into two classes: ’big’ and ’small’.

All βl,l′ , where either l or l′ corresponds to a (physically)

big object, i.e., train, bus, or truck, are set to βbig . All other

βl,l′ are set to βsmall. Therefore, our parameter space is

only 3 dimensional and is determined by the parameters w,

βsmall and βbig .

Instance-level results - quantitative and qualitative. We

evaluated our method using 4 metrics that are suggested

by the CityScapes benchmark: AP, AP50%, AP100m and

AP50m. We refer to the webpage of the benchmark for a

detailed description.

The InstanceCut framework with Dilation10 [52] as

the semantic segmentation block gives AP = 14.8 and

AP50% = 30.7 on the validation part of the dataset. When

we replace Dilation10 by LRR-4x [20] for this block the

performance improves to AP = 15.8 and AP50% = 32.4,

on the validation set.

Quantitative results for the test set are provided in Ta-

ble 1. We compare our approach to all published methods

that have results for this dataset. Among them our method

shows the best performance, despite its simplicity.

5. Conclusion

We have proposed an alternative paradigm for instance-

aware semantic segmentation. The paradigm represents

the instance segmentation problem by a combination of

two modalities: instance-agnostic semantic segmentation

and instance-aware boundaries. We have presented a new

framework that utilize this paradigm. The modalities are

produced by FCN networks. The standard FCN model is

used for semantic segmentation, whereas a new architecture

is proposed for object boundaries. The modalities are com-

bined are combined by a novel MultiCut framework, which

reasons globally about instances. The proposed framework

achieves the best results amongst all published methods for

the challenging CityScapes dataset[13].
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In Table 2 we present a detailed performance compari-
son. Fig. 7 contains the subset of difficult scenes where In-
stanceCut is able to predict most instances correctly. Fig. 8
contains failure cases of InstanceCut. The main sources of
failure are: small objects that are far away from the cam-
era, groups of people that are very close to camera and have
heavy mutual occlusions, and occluded instances that have
several disconnected visible parts.

Method Metric M
ea

n

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
cy

cl
e

B
ic

yc
le

MCG+R-CNN [13] AP 4.6 1.3 0.6 10.5 6.1 9.7 5.9 1.7 0.5
Uhrig et al. [48] AP 8.9 12.5 11.7 22.5 3.3 5.9 3.2 6.9 5.1
InstanceCut AP 13.0 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

MCG+R-CNN [13] AP50% 12.9 5.6 3.9 26.0 13.8 26.3 15.8 8.6 3.1
Uhrig et al. [48] AP50% 21.1 31.8 33.8 37.8 7.6 12.0 8.5 20.5 17.2
InstanceCut AP50% 27.9 28.0 26.8 44.8 22.2 30.4 30.1 25.1 15.7

MCG+R-CNN [13] AP100m 7.7 2.6 1.1 17.5 10.6 17.4 9.2 2.6 0.9
Uhrig et al. [48] AP100m 15.3 24.4 20.3 36.4 5.5 10.6 5.2 10.5 9.2
InstanceCut AP100m 22.1 19.7 14.0 38.9 24.8 34.4 23.1 13.7 8.0

MCG+R-CNN [13] AP50m 10.3 2.7 1.1 21.2 14.0 25.2 14.2 2.7 1.0
Uhrig et al. [48] AP50m 16.7 25.0 21.0 40.7 6.7 13.5 6.4 11.2 9.3
InstanceCut AP50m 26.1 20.1 14.6 42.5 32.3 44.7 31.7 14.3 8.2

Table 2: CityScapes results. Instance-aware semantic segmentation results on the test set of CityScapes, given for each
semantic class.

11



(a) Ground Truth (b) Edges Map (c) InstanceCut Prediction

Figure 7: Curated difficult scene, where InstanceCut performs well. The left column contains input images with ground truth
instances highlighted. The middle column depicts per-pixel instance-aware edge log-probabilities and the last column shows
the results of our approach.



(a) Ground Truth (b) Edges Map (c) InstanceCut Prediction

Figure 8: Failure cases. The left column contains input images with ground truth instances highlighted. The middle column
depicts per-pixel instance-aware edge log-probabilities and the last column shows the results of our approach.


