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Abstract. We exploit recent progress on globally optimal MAP infer-
ence by integer programming and perturbation-based approximations of
the log-partition function. This enables to locally represent uncertainty
of image partitions by approximate marginal distributions in a mathe-
matically substantiated way, and to rectify local data term cues so as
to close contours and to obtain valid partitions. Our approach works for
any graphically represented problem instance of correlation clustering,
which is demonstrated by an additional social network example.
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1 Introduction

Clustering, image partitioning and related NP-hard decision problems abound
in the fields image analysis, computer vision, machine learning and data mining,
and much research has been done on alleviating the combinatorial difficulty of
such inference problems using various forms of relaxations. A recent assessment
of the state-of-the-art using discrete graphical models has been provided by [13].
A subset of specific problem instances considered there (Potts-like functional
minimisation) are closely related to continuous formulations investigated, e.g.,
by [7, 17].

From the viewpoint of statistics and Bayesian inference, such Maximum-A-
Posteriori (MAP) point estimates have been always criticised as falling short of
the scope of probabilistic inference, that is to provide – along with the MAP
estimate – “error bars” that enable to assess sensitivities and uncertainties for
further data analysis. Approaches to this more general objective are less uniquely
defined than the MAP problem. For example, a variety of approaches have been
suggested from the viewpoint of clustering (see more comments and references
below) which, on the other hand, differ from the variational marginalisation
problem in connection with discrete graphical models [25]. From the computa-
tional viewpoint, these more general problems are not less involved than the
corresponding MAP(-like) combinatorial inference problems.

In this paper, we consider the general multicut problem [8], also known as
correlation clustering in other fields [5], which includes the image partitioning
problem as special case. Our work is based on
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(i) recent progress [19, 10] on the probabilistic analysis of perturbed MAP
problems applied to our setting in order to establish a sound link to basic
variational approximations of inference problems [25],

(ii) recent progress on exact solvers of the multicut problem [15, 16], which is
required in connection with (i).

Figure 1 provides a first illustration of our approach. Our general problem formu-
lation enables to address not only the image partitioning problem. We demon-
strate this in the experimental section by applying correlation clustering to a
problem instance from machine learning that involves network data on a general
graph.

Fig. 1. Two examples demonstrating our approach. Left column: images subject to
unsupervised partitioning. Center column: globally optimal partitions. Right col-
umn: probabilistic inference provided along with the partition. The color order: white
→ yellow→ red→ black, together with decreasing brightness, indicate uncertainty, cf.
Fig. 2. We point out that all local information provided by our approach is intrinsically
non-locally inferred and relates to partitions, that is to closed contours.

Related Work. The susceptibility of clustering to noise is well known. This con-
cerns, in particular, clustering approaches to image partitioning that typically
employ spectral relaxation [22, 12, 23]. Measures proposed in the literature [24]
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to quantitatively assess confidence in terms of stability, employ data perturba-
tions and various forms of cluster averaging. While this is intuitively plausible,
a theoretically more convincing substantiation seems to be lacking, however.

In [11], a deterministic annealing approach to the unsupervised graph parti-
tioning problem (called pairwise clustering) was proposed by adding an entropy
term weighted by an artificial temperature parameter. Unlike the simpler contin-
uation method of Blake and Zisserman [6], this way of smoothing the combina-
torial partitioning problem resembles the variational transition from marginali-
sation to MAP estimation, by applying the log-exponential function to the latter
objective [25]. As in [6], however, the primary objective of [11] is to compute a
single “good” local optimum by solving a sequence of increasingly non-convex
problems parametrised by an artificial temperature parameter, rather than sam-
pling various “ground states” (close to zero-temperature solutions) in order to
assess stability, and to explicitly compute alternatives to the single MAP so-
lution. The latter has been achieved in [18] using a non-parametric Bayesian
framework. Due to the complexity of model evaluation, however, authors have
to resort to MCMC sampling.

Concerning continuous problem formulations, a remarkable approach to as-
sess “error bars” of variational segmentations has been suggested by [20]. Here,
the starting point is the “smoothed” version of the Mumford-Shah functional
in terms of the relaxation of Ambrosio and Tortorelli [2] that is known to Γ -
converge to the Mumford-Shah functional in the limit of corresponding parame-
ter values. Authors of [20] apply a particular perturbation (“polynomial chaos”)
that enables to locally infer confidence of the segmentation result. Although be-
ing similar in scope to our approach, this approach is quite different. An obvious
drawback results from the fact that minima of the Ambrosio-Tortorelli functional
do not enforce partitions, i.e. may involve contours that are not closed.

Finally, we mention recent work [21] that addresses the same problem using
– again – a quite different approach: “stochastic” in [21] just refers to the relax-
ation of binary indicator vectors to the probability simplex, and this relaxation
is solved by a local minimisation method. Our approach, on the other hand, is
based on random perturbations of exact solutions of the correlation clustering
problem. This yields a truly probabilistic interpretation in terms of the induced
approximation of the log-partition function, whose derivatives generate the ex-
pected values of the variables of interest.

Organization. Sec. 2 defines the combinatorial correlation clustering problem
and introduces multicuts. The variational formulation for probabilistic inference
is presented in Sec. 3, followed by the perturbation approach in Sec. 4. A range
of experiments demonstrate the approach in Sec. 5. Since alternative approaches
rely on quite different methods, as explained above, a re-implementation is be-
yond the scope of this paper. We therefore restrict our comparison to the eval-
uation of local potentials that we consider as an efficient alternative. This com-
parison reveals that contrary to this local method, our perturbation approach
effectively enforces global topological constraints so as to sample from most likely
partitions.
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Basic Notation. We set [n] := {1, 2, . . . , n}, n ∈ N and use the indicator
function I(p) = 1 if the predicate p is true, and I(p) = 0 otherwise. |S| denotes
the cardinality of a finite set S. 〈x, y〉 =

∑
i∈[n] xiyi denotes the Euclidean inner

product of vectors x, y ∈ Rn. E[X] denotes the expected value of a random
variable X. Pr[Ω] denotes the probability of an event Ω.

2 Correlation Clustering and Multicuts

The correlation clustering problem is defined in terms of partitions of an undi-
rected weighted graph

G = (V,E,w), V = [n], E ⊆ V × V, (1a)

w : E → R, e 7→ we := w(e) (1b)

with signed edge-weight function w. A positive weight we > 0, e ∈ E indicates
that two adjacent nodes should be merged, whereas a negative weight indicates
that these nodes should be separated into distinct clusters Si, Sj .

We formally define valid partitions and interchangeably call them segmenta-
tions or clusterings.

Definition 1 (partition, segmentation, clustering). A set of subsets {S1,
. . . , Sk}, called shores, components or clusters, is a (valid) partition of a graph
G = (V,E,w) iff (a) Si ⊆ V, i ∈ [k], (b) Si 6= ∅, i ∈ [k], (c) the induced
subgraphs Gi :=

(
Si, (Si×Si)∩E

)
are connected, (d)

⋃
i∈[k] Si = V , (e) Si∩Sj =

∅, i, j ∈ [k], i 6= j. The set of all valid partitions of G is denoted by S(G).

The number |S(G)| of all possible partitions is upper-bounded by the Bell num-
ber [1] that grows very quickly with |V |.

The correlation clustering or minimal cost multicut problem is to find a par-
tition that minimizes the cost of intra cluster edges as defined by the weight
function w. This problem can be formulated as a minimization problem of a
Potts model

arg minx∈V |V |

∑
ij∈E

wijI(xi 6= xj). (2)

Because any node can form its own cluster, |V | labels are needed to represent
all possible assignments in terms of variables xi, i ∈ V .

A major drawback of this formulation is the huge inflated space represent-
ing the assignments. Furthermore, due to the lack of an external field (unary
terms), any permutation of an optimal assignment results in another optimal la-
beling. As a consequence, the standard relaxation in terms of the so-called local
polytope [25] becomes too weak.

In order to overcome these problems, we adopt an alternative representation
of partitions based on the set of inter cluster edges [8]. We call the edge set

δ(S1, . . . , Sk) :=
{
uv ∈ E : u ∈ Si, v ∈ Sj , i 6= j, i, j ∈ [k]

}
(3)
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a multicut. To obtain a polyhedral representation of multicuts, we define indica-
tor vectors χ(E′) ∈ {0, 1}|E| for each subset E′ ⊆ E by

χe(E
′) :=

{
1, if e ∈ E′,
0, if e ∈ E \ E′.

The multicut polytope MC(G) then is given by the convex hull

MC(G) := conv
{
χ
(
δ(S)

)
: S ∈ S(G)

}
. (4)

The vertices of this polytope are the indicator functions of valid partitions and
denoted by

Y(G) :=
{
χ
(
δ(S)

)
: S ∈ S(G)

}
. (5)

The correlation clustering problem then amounts to find a partition S ∈ S(G)
that minimizes the sum of the weights of edges cut by the partition

arg minS∈S(G)

∑
e∈E

we · χe(δ(S)) = arg miny∈MC(G)

∑
e∈E

we · ye. (6)

Although problem (6) is a linear program, solving it is NP-hard, because a
representation of the multicut polytope MC(G) by half-spaces is of exponen-
tial size and moreover, unless P = NP , it is not separable in polynomial time.
However, one can develop efficient separation procedures for an outer relaxation
of the multicut polytope which involves all facet-defining cycle inequalities. To-
gether with integrality constraints, this guarantees globally optimal solutions of
problem (6) and performs best on benchmark datasets [14, 13].

3 Probabilistic Correlation Clustering

A major limitation of solutions to the correlation clustering problem is that
the most likely segmentations are returned without any measurement of the
corresponding uncertainty. To overcome this, one would like to compute the
marginal probability that an edge is an inter-cluster edge or, in other words,
that an edge is cut.

The most direct approach to accomplish this is to associate a Gibbs distri-
bution with the Potts model in (2)

p(x|w, β) = exp
(
− β

∑
ij∈E

wijI(xi 6= xj)− log
(
Zx(w, β)

))
, (7a)

Zx(w, β) =
∑
x∈X

exp
(
− β

∑
ij∈E

wijI(xi 6= xj)
)
, (7b)

where X denotes the feasible set of (2)

X := X1 × . . .×X|V | := V |V |, Xi = V, i ∈ V. (8)
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Parameter β is a free parameter (in physics: “inverse temperature”) and Z(w, β)
the partition function. Performing the reformulation

−β
∑
ij∈E

wijI(xi 6= xj) =
∑
ij∈E

∑
x′
i∈Xi

x′
j∈Xj

−β wij I(x′i 6= x′j)︸ ︷︷ ︸
:=θij;x′

i
,x′

j

· I(xi = x′i ∨ xj = x′j)︸ ︷︷ ︸
:=φij;;x′

i
,x′

j
(x)

, (9)

we recognise the distribution as a member of the exponential family with model
parameter θ and sufficient statistics φ(x):

p(x|θ) = exp
(〈
θ, φ(x)

〉
− log

(
Zx(θ)

))
, (10a)

Zx(θ) =
∑
x∈X

exp
(
〈θ, φ(x)〉

)
. (10b)

Note that the dimension d = |V | · |V | · |E| of the vectors θ, φ is large. Therefore,
while (10) in principle provides the “correct” basis for assessing uncertainty in
terms of marginal distributions p(xi, xj |θ), ij ∈ E, this is infeasible computa-
tionally due to the huge space X and the aforementioned permutation invariance.

To overcome this problem, we resort to the problem formulation (6) in terms
of multicuts, define the model parameter vector θ and the sufficient statistics
φ(y) by

θ = −β w, φ(y) = y, (11)

to obtain the distribution

p(y|θ) = exp
(
〈θ, y〉 − log

(
Z(θ)

))
, (12a)

Z(θ) =
∑

y∈Y(G)

exp (〈θ, y〉) . (12b)

Note that the dimension d = |E| of the vectors w, y is considerably smaller than
in problem (10).

Applying basic results that hold for distributions of the exponential fam-
ily [25], the following holds regarding (12). For the random vector Y = (Ye)e∈E
taking values in Y(G), the marginal distributions, also called mean parameters
in a more general context, are defined by

µe := E[φe(Y )] =
∑

y∈Y(G)

φe(y)p(y|θ), ∀e ∈ E. (13)

Likewise, the entire vector µ ∈ R|E| results as convex combination of the vectors
φ(y), y ∈ Y(G). The closure of the convex hull of all such vectors corresponds
to the (closure) of vectors µ that can be generated by valid distributions. This
results in the representation of the multicut polytope (4)

MC(G) = conv{φ(y) : y ∈ Y(G)} (14a)

=
{
µ ∈ R|E| : µ =

∑
y∈Y(G)

p(y)φ(y) for some p(y) ≥ 0,
∑

y∈Y(G)

p(y) = 1
}
. (14b)
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Furthermore, the log-partition function generates the mean parameters through

µ = ∇θ logZ(θ), (15)

which a short computation using (12) shows. Due to this relation, approximate
probabilistic inference rests upon approximations of the log-partition function.
In connection with discrete models, the Bethe-Kikuchi approximation and the
local polytope relaxation provide basic examples for the marginal polytope [25].

In connection with the multicut polytope (14), however, we are not aware of
an established outer relaxation and approximation of the log-partition function
that is both tight enough and of manageable polynomial size. It is this fact that
makes our approach presented in the subsequent section an attractive alternative,
because it rests upon progress on solving several times problem (6) instead,
together with perturbing the objective function.

4 Perturbation & MAP for Correlation Clustering

Recently, Hazan and Jaakkola [10] showed the connection between extreme value
statistics and the partition function, based on the pioneering work of Gumbel [9].
In particular they provided a framework for approximating and bounding the
partition function using MAP-inference with randomly perturbed models.

Analytic expressions for the statistics of a random MAP perturbation can
be derived for general discrete sets, whenever independent and identically dis-
tributed random perturbations are applied to every assignment.

Theorem 1 ([9]). Given a discrete Gibbs distribution p(x) = 1/Z(θ) exp(θ(x))
with x ∈ X and θ : X → R ∪ {−∞}, let Γ be a vector of i.i.d. random variables
Γx indexed by x ∈ X , each following the Gumbel distribution whose cumulative
distribution function is F (t) = exp

(
− exp(−(t + c))

)
(here c is the Euler-

Mascheroni constant). Then

Pr
[
x̂ = arg max

x∈X
{θ(x) + Γx}

]
= 1/Z(θ) · exp

(
θ(x̂)

)
, (16a)

E
[

max
x∈X
{θ(x) + Γx}

]
= logZ. (16b)

For our problem at hand the set X = Y(G) is complex and thus Thm. 1 not
directly applicable. Hazan and Jaakkola [10] develop computationally feasible
approximations and bounds of the partition function based on low -dimensional
random MAP perturbations.

Theorem 2 ([10]). Given a discrete Gibbs distribution p(x) = 1/Z(θ) exp(θ(x))
with x ∈ X = [L]n, n = |V | and θ : X → R ∪ {−∞}. Let Γ ′ be a collection of
i.i.d. random variables {Γ ′i;xi

} indexed by i ∈ V = [n] and xi ∈ Xi = [L], i ∈ V ,
each following the Gumbel distribution whose cumulative distribution function is
F (t) = exp

(
− exp(−(t+ c))

)
(here c is the Euler-Mascheroni constant). Then

logZ(θ) = EΓ ′
1;x1

[
max
x1∈X1

· · ·EΓ ′
N;xn

[
max
xn∈Xn

θ(x) +
∑
i∈V

Γ ′i;xi

]
. . .
]
. (17)
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Note that the random vector Γ ′ includes only nL random variables. Appying
Jensen’s inequality, we arrive at a computationally feasible upper bound of the
log partition function,

logZ(θ) ≤ EΓ ′

[
max
x∈X

θ(x) +
∑
i∈V

Γ ′i;xi

]
. (18)

In the case of graph partitioning, we specifically have

θ(y) =

{
〈θ, y〉 if y ∈ Y(G)
−∞ else

, y ∈ {0, 1}|E| (19)

with θ = −β w due to (11) which after insertion into Eq. (18) yields

logZ(θ) ≤ EΓ ′

[
max
y∈Y(G)

〈θ, y〉+
∑
e∈E

Γ ′e;ye

]
=: Ã(θ). (20)

Our final step towards estimating the marginals (13) consists in replacing the log-
partition function in (15) by the approximation (20) and computing estimates
for the mean parameters

µ ≈ µ̃ := ∇θÃ(θ) := EΓ ′

[
arg max
y∈Y(G)

{
〈θ, y〉+

∑
e∈E

Γ ′e;ye

}]
(21a)

≈ 1

M

M∑
k=1

arg max
y∈Y(G)

{
〈θ, y〉+

∑
e∈E

γ′(n)e;ye

}
, γ′(n)e;ye ∼ Γ

′
e;ye . (21b)

Note that the expression in the brackets [. . . ] is a subgradient of the correspond-
ing objective function. Thus, in words, we define our mean parameter estimate
as empirical average of specific subgradients of the randomly perturbed MAP
objective function.

5 Experiments

5.1 Setup

For the empirical evaluation of our approach we consider standard benchmark
datasets for correlation clustering [14]. As solver for the correlation clustering
problems we use the cutting-plane solver suggested by Kappes et al. [16], which
can solve these problems to global optimality. We use the publicly available
implementation of OpenGM2 [3].

For each instance we compare the globally optimal solution (mode)

µ∗ = arg maxy∈Y(G)

∑
e

we · ye (22)
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and the local boundary probabilities µ̄ given as softmax-function of the edge-
weight

µ̄e = Prlocalβ (ye = 1) :=
exp(−β · we)

exp(−β · we) + 1
(23)

with our estimates (21) for the boundary marginals based on the global model

µ̃e
Eq.(21)
≈ Prβ(ye = 1) :=

∑
y′∈Y(G),y′e=ye

1

Z(w, β)
exp

(
− β ·

∑
e

we · y′e
)

(24)

for the same β as in eq. 23 and M = 100 samples for eq. 21. While µ∗ and µ̃ are
by definition contained in the multicut polytope MC(G) and hence valid mean
parameters, for µ̄ this is not necessarily the case, as the experiments will clearly
show. For visualization we use the color map shown in Fig. 2.

Fig. 2. Color coding used for visualization of boundary probabilities.

5.2 Evaluation and Discussion

Synthetic Example. We considered the image shown in Fig. 3(a). Local bound-
ary detection was simply estimated by gray-value difference, i.e.

wij = |I(i)− I(j)| − 0.1. ∀ij ∈ E.

As shown in Fig. 3(c) this gives a strong boundary prediction in the lower part,
but obviously no response in the upper part of the image. Applying correla-
tion clustering to find the most likely clustering returns the partition shown in
Fig. 3(b). However, this gives no information on the uncertainty of the solution.
Fig. 3(d) shows our estimated mean parameters. These not only encode uncer-
tainty but also enforce the boundary probability to be topologically consistent
in terms of a convex combination of valid partitions.

Image Segmentation. For real world examples we use the public available
benchmark model of Andres et al. [4, 14]. This model is based on super pixels
and local boundary probabilities are learned by a random forest. Fig. 4 shows
as example one of the 100 instances. Contrary to the mode (Fig. 4(b)), the
boundary marginals (Fig. 4(d)) describe the uncertainty of the boundary and
alternative contours. In contrast to the local boundary probability learned by a
random forest, shown in Fig. 4(c), our marginal contours are closed and have no
dangling contour-parts. This leads to a better boundary of the brown tree and
removes or closes local artefacts in the koalas head. Note that Fig. 4(c) cannot
be described as a convex combinations of valid clusterings.
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(a) Image (b) µ∗ (c) µ̄ (d) µ̃

Fig. 3. The optimal clustering (b) encodes no uncertainty, the local probability (c)
is topological not consistent. Our estimate (d) encodes uncertainty and is topological
consistent.

(a) Image (b) µ∗ (c) µ̄ (d) µ̃

Fig. 4. The proposed global boundary probability (d) can only guarantee topological
consistency and reflect uncertainty. This leads to a better boundary probabilities of
the brown tree and removes or closes local artefacts in the koalas head compared to
(c). The optimal partitioning (b) and the local boundary probabilities (c) can handle
only either aspect and, in the latter case, signal invalid partitions.

Social Networks. As an example for data mining and to demonstrate the gen-
erality of our approach, we consider the karate network [13]. Nodes in the graph
correspond to members of the karate club and edges indicate friendship of mem-
bers. The task is to cluster the graph such that the modularity is maximized,
which can be reformulated into a correlation clustering problem over a fully con-
nected graph with the same nodes. Because edge weights are not probabilistically
motivated for this model, the local boundary probabilities are poor (Fig. 5(c)).
Global inference helps to detect the two members (nodes) for which the assign-
ment to the cluster is uncertain (Fig. 5(d)). Fig. 5(a) shows the clustering that
maximizes the modularity. Our result enables the conclusion that the two un-
certain nodes (marked with red boundary and arrows) can be moved to another
cluster without much worsening the modularity.
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(a) network (b) µ∗ (c) µ̄ (d) µ̃

Fig. 5. The clustering of members of a karate club is a example for correlation clus-
tering in social networks. Figure (a) and (b) show the clustering that maximizes the
modularity. Nodes marked with a red boundary in (a) are nodes with an uncertain
assignment. The uncertainty is measured by the marginal probabilities (d). Pseudo
probabilities calculated by local weights only, shown in (c), do not reveal this detailed
information. Our result (d) enables to conclude that for the network graph (a) the
modularity would not change much if the two nodes with uncertain assignment would
be moved to the orange and brown cluster, respectively.

6 Conclusion

We presented a probabilistic approach to correlation clustering and showed how
perturbed MAP estimates can be used to efficiently calculate globally consistent
approximations to marginal distributions. Regarding image partitioning, by en-
forcing this marginal consistency, we are able to close open contour parts caused
by imperfect local detection and thus reduce local artefacts by topological priors.
In future work we would like to speed up our method by making use of warm
start techniques, to reduce the computation time from a few minutes to seconds.
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