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Abstract

We consider the problem of jointly inferring the M -best diverse labelings for a
binary (high-order) submodular energy of a graphical model. Recently, it was
shown that this problem can be solved to a global optimum, for many practically
interesting diversity measures. It was noted that the labelings are, so-called, nested.
This nestedness property also holds for labelings of a class of parametric submodu-
lar minimization problems, where different values of the global parameter γ give
rise to different solutions. The popular example of the parametric submodular
minimization is the monotonic parametric max-flow problem, which is also widely
used for computing multiple labelings. As the main contribution of this work
we establish a close relationship between diversity with submodular energies and
the parametric submodular minimization. In particular, the joint M -best diverse
labelings can be obtained by running a non-parametric submodular minimization
(in the special case - max-flow) solver for M different values of γ in parallel, for
certain diversity measures. Importantly, the values for γ can be computed in a
closed form in advance, prior to any optimization. These theoretical results suggest
two simple yet efficient algorithms for the joint M -best diverse problem, which
outperform competitors in terms of runtime and quality of results. In particular, as
we show in the paper, the new methods compute the exact M -best diverse labelings
faster than a popular method of Batra et al., which in some sense only obtains
approximate solutions.

1 Introduction

A variety of tasks in machine learning, computer vision and other disciplines can be formulated as
energy minimization problems, also known as Maximum-a-Posteriori (MAP) or Maximum Likelihood
(ML) estimation problems in undirected graphical models (Markov or Conditional Random Fields).
The importance of this problem is well-recognized, which can be seen by the many specialized
benchmarks [36, 21] and computational challenges [10] for its solvers. This motivates the task of
finding the most probable solution. Recently, a slightly different task has gained popularity, both from
a practical and theoretical perspective. The task is not only to find the most probable solution but
multiple diverse solutions, all with low energy, see e.g., [4, 31, 22, 23]. The task is referred to as the
“M -best-diverse problem” [4], and it has been used in a variety of scenarios, such as: (a) Expressing
uncertainty of the computed solutions [33]; (b) Faster training of model parameters [16]; (c) Ranking
of inference results [40]; (d) Empirical risk minimization [32]; (e) Loss-aware optimization [1]; (f)
Using diverse proposals in a cascading framework [39, 35].
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Horizon 2020 research and innovation programme (grant agreement No 647769). A. Shekhovtsov was supported
by ERC starting grant agreement 640156.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



In this work we build on the recently proposed formulation of [22] for theM -best-diverse problem. In
this formulation all M configurations are inferred jointly, contrary to the well-known method [4, 31],
where a sequential, greedy procedure is used. Hence, we term it “joint M -best-diverse problem”. As
shown in [22, 23], the joint approach qualitatively outperforms the sequential approach [4, 31] in a
number of applications. This is explained by the fact that the sequential method [4] can be considered
as an approximate and greedy optimization technique for solving the joint M -best-diverse problem.
While the joint approach is superior with respect to quality of its results, it is inferior to the sequential
method [4] with respect to runtime. For the case of binary submodular energies, the approximate
solver in [22] and the exact solver in [23] are several times slower than the sequential technique [4]
for a normally sized image. Obviously, this is a major limitation when using it in a practical setting.
Furthermore, the difference in runtime grows with the number M of configurations.

In this work, we show that in case of binary submodular energies an exact solution to the joint M -
best-diverse problem can be obtained significantly faster than the approximate one with the sequential
method [4]. Moreover, the difference in runtime grows with the number M of configurations.

Related work

The importance of the considered problem can be justified by the fact that a procedure of computing
M -best solutions to discrete optimization problems was proposed over 40 years ago, in [28]. Later,
more efficient specialized procedures were introduced for MAP-inference on a tree [34], junction-
trees [30] and general graphical models [41, 13, 3]. However, such methods are however not suited
for the scenario where diversity of the solutions is required, since they do not enforce it explicitly.

Structural Determinant Point Processes [27] is a tool for modelling probability distributions of
structured models. Unfortunately, an efficient sampling procedure to obtain diverse configurations is
feasible only for tree-structured graphical models. The recently proposed algorithm [8] to find M
best modes of a distribution is also limited to chains and junction chains of bounded width.

Training of M independent graphical models to produce multiple diverse solutions was proposed
in [15], and was further explored in [17, 9]. In contrast, we assume a single fixed model where
configurations with low energy (hopefully) correspond to the desired output.

The work of [4] defines the M -best-diverse problem, and proposes a solver for it. However, the
diversity of the solutions is defined sequentially, with respect to already extracted labelings. In
contrast to [4], the work [22] defined the “joint M -best-diverse problem” as an optimization problem
of a single joint energy. The most related work to ours is [23], where an efficient method for the
joint M -best-diverse problem was proposed for submodular energies. The method is based on the
fact that for submodular energies and a family of diversity measures (which includes e.g., Hamming
distance) the set of M diverse solutions can be totally ordered with respect to the partial labeling
order. In the binary labeling case, the M -best-diverse solutions form a nested set. However, although
the method [23] is a considerably more efficient way to solve the problem, compared to the general
algorithm proposed in [22], it is still considerably slower than the sequential method [4]. Furthermore,
the runtime difference grows with the number M of configurations.

Interestingly, the above-mentioned “nestedness property” is also fulfilled by minimizers of a para-
metric submodular minimization problem [12]. In particular, it holds for the monotonic max-flow
method [25], which is also widely used for obtaining diverse labelings in practice [7, 20, 19]. Natu-
rally, we would like to ask questions about the relationship of these two techniques, such as: “Do
the joint M -best-diverse configurations form a subset of the configurations returned by a parametric
submodular minimization problem?”, and conversely “Can the parametric submodular minimization
be used to (efficiently) produce the M -best-diverse configurations?” We give positive answers to
both these questions.

Contribution
• For binary submodular energies we provide a relationship between the joint M -best-diverse

and the parametric submodular minimization problems. In case of “concave node-wise diversity
measures” 1 we give a closed-form formula for the parameters values, which corresponds to the joint
M -best-diverse labelings. The values can be computed in advance, prior to any optimization, which
allows to obtain each labeling independently.
• Our theoretical results suggest a number of efficient algorithms for the joint M -best-diverse

1Precise definition is given in Sections 2 and 3.
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problem. We describe and experimentally evaluate the two simplest of them, sequential and parallel.
Both are considerably faster than the popular technique [4] and are as easy to implement. We
demonstrate the effectiveness of these algorithms on two publicly available datasets.

2 Background and Problem Definition

Energy Minimization Let 2A denote the powerset of a set A. The pair G = (V, F ) is called a
hyper-graph and has V as a finite set of variable nodes and F ⊆ 2V as a set of factors. Each variable
node v ∈ V is associated with a variable yv taking its values in a finite set of labels Lv. The set
LA =

∏
v∈A Lv denotes the Cartesian product of sets of labels corresponding to a subset A ⊆ V of

variables. Functions θf : Lf → R, associated with factors f ∈ F , are called potentials and define
local costs on values of variables and their combinations. Potentials θf with |f | = 1 are called
unary, with |f | = 2 pairwise and |f | > 2 high-order. Without loss of generality we will assume
that there is a unary potential θv assigned to each variable v ∈ V . This implies that F = V ∪ F ,
where F = {f ∈ F : |f | ≥ 2}. For any non-unary factor f ∈ F the corresponding set of variables
{yv : v ∈ f} will be denoted by yf . The energy minimization problem consists in finding a labeling
y∗ = (yv : v ∈ V) ∈ LV , which minimizes the total sum of corresponding potentials:

arg min
y∈LV

E(y) = arg min
y∈L

∑
v∈V

θv(yv) +
∑
f∈F

θf (yf ) . (1)

Problem (1) is also known as MAP-inference. Labeling y∗ satisfying (1) will be later called a solution
of the energy-minimization or MAP-inference problem, shortly MAP-labeling or MAP-solution.

Unless otherwise specified, we will assume that Lv = {0, 1}, v ∈ V , i.e. each variable may take only
two values. Such energies will be called binary. We also assume that the logical operations ≤ and ≥
are defined in a natural way on the sets Lv . The case, when the energy E decomposes into unary and
pairwise potentials only, we will term as pairwise case or pairwise energy.

In the following, we use brackets to distinguish between upper index and power, i.e. (A)n means
the n-th power of A, whereas n is an upper index in the expression An. We will keep, however, the
standard notation Rn for the n-dimensional vector space and skip the brackets if an upper index does
not make mathematical sense such as in the expression {0, 1}|V|.
Joint-DivMBest Problem Instead of searching for a single labeling with the lowest energy, one
might ask for a set of labelings with low energies, yet being significantly different from each other. In
[22] it was proposed to infer such M diverse labelings {y1, . . . ,yM} ∈ (L)M jointly by minimizing

EM ({y}) =

M∑
i=1

E(yi)− λ∆M ({y}) (2)

w.r.t. {y} := y1, . . . ,yM for some λ > 0. Following [22] we use the notation {y} and {y}v
as shortcuts for y1, . . . ,yM and y1v , . . . , y

M
v correspondingly. Function ∆M defines diversity of

arbitraryM labelings, i.e. ∆M ({y}) takes a large value if labelings {y} are in a certain sense diverse,
and a small value otherwise.

In the following, we will refer to the problem (1) of minimizing the energy E itself as to the master
problem for (2).

Node-Wise Diversity In what follows we will consider only node-wise diversity measures, i.e. those
which can be represented in the form

∆M ({y}) =
∑
v∈V

∆M
v ({y}v) (3)

for some node diversity measure ∆M
v : {0, 1}M → R. Moreover, we will stick to permutation

invariant diversity measures. In other words, such measures that ∆M
v ({y}v) = ∆M

v (π({y}v)) for
any permutation π of variables {y}v .

Let the expression JAK be equal to 1 if A is true and 0 otherwise. Let also m0
v =

∑M
m=1Jy

m
v = 0K

count the number of 0’s in {y}v . In the binary case Lv = {0, 1}, any permutation invariant measure
can be represented as

∆M
v ({y}v) = ∆̄M

v (m0
v) . (4)

To keep notation simple, we will use ∆M
v for both representations: ∆M

v ({y}v) and ∆̄M
v (m0

v).
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Example 1 (Hamming distance diversity). Consider the common node diversity measure, the sum of
Hamming distances between each pair of labels:

∆M
v ({y}v) =

M∑
i=1

M∑
j=i+1

Jyiv 6= yjvK. (5)

This measure is permutation invariant. Therefore, it can be written as a function of the number m0
v:

∆M
v (m0

v) = m0
v · (M −m0

v). (6)

Minimization Techniques for Joint-DivMBest Problem Direct minimization of (2) has so far been
considered as a difficult problem even when the master problem (1) is easy to solve. We refer to [22]
for a detailed investigation of using general MAP-inference solvers for (2). In this paragraph we
briefly summarize existing efficient minimization approaches for (2).

As shown in [22] the sequential method DivMBest [4] can be seen as a greedy algorithm for
approximate minimization of (2), by finding one solution after another. The sequential method [4]
is used for diversity measures that can be represented by sum of diversity measures between each
pair of solutions, i.e. ∆M ({y}) =

∑M
m1=1

∑M
m2=m1+1∆

2(ym1 ,ym2). For each m = 1, . . . ,M
the method sequentially computes

ym = arg min
y∈LV

[
E(y)− λ

m−1∑
i=1

∆2(y,yi)

]
. (7)

In case of a node diversity measure (3), this algorithm requires sequentially solving M energy
minimization problems (1), with only modified unary potentials comparing to the master problem (1).
It typically implies that an efficient solver for the master problem can also be used to obtain its diverse
solutions.

In [23] an efficient approach for (2) was proposed for submodular energies E. An energy E(y) is
called submodular if for any two labelings y,y′ ∈ LV it holds

E(y ∨ y′) + E(y ∧ y′) ≤ E(y) + E(y′) , (8)

where y ∨ y′ and y ∧ y′ denote correspondingly the node-wise maximum and minimum with respect
to the natural order on the label set Lv .

In the following, we will use the term the higher labeling. The labeling y is higher than the labeling
y′ if yv ≥ y′v for all v ∈ V . So, the labeling y ∨ y′ is higher than y and y′. Since the set of all
labelings is a lattice w.r.t. the operation ≥, we will speak also about the highest labeling.

It was shown in [23] that for submodular energies, under certain technical conditions on the diversity
measure ∆M

v (see Lemma 2 in [23]), the problem (2) can be reformulated as a submodular energy
minimization and, therefore, can be solved either exactly or approximately by efficient optimization
techniques (e.g., by reduction to the min-cut/max-flow in the pairwise case). However, the size of
the reformulated problem grows at least linearly with M (quadratically in the case of the Hamming
distance diversity (5)) and therefore even approximate algorithms require longer time than the
DivMBest (7) method. Moreover, this difference in runtime grows with M .

The mentioned transformation of (2) into a submodular energy minimization problem is based on the
theorem below, which plays a crucial role in obtaining the main results of this work. We first give a
definition of the “nestedness property”, which is also important for the rest of the paper.
Definition 1. An M -tuple (y1, . . . ,yM ) ∈ (LV)M is called nested if for each v ∈ V the inequality
yiv ≤ yjv holds for 1 ≤ i ≤ j ≤M , i.e. for LV = {0, 1}, yiv = 1 implies yjv = 1 for j > i.
Theorem 1. [Special case of Thm. 1 of [23]] For a binary submodular energy and a node-wise
permutation invariant diversity, there exists a nested minimizer to the Joint-DivMBest objective (2).

Parametric submodular minimization Let γ ∈ R|V|, i = {1, . . . , k} be a vector of parameters
with the coordinates indexed by the node index v ∈ V . We define the parametric energy minimization
as the problem of evaluating the function

min
y∈LV

Eγ(y) := min
y∈L

[
E(y) +

∑
v∈V

γvyv

]
(9)

for all values of the parameter γ ∈ Γ ⊆ R|V|. The most important cases of the parametric energy
minimization are
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Figure 1: Hamming distance (left) and linear (right) diversity measures for M = 5. Value m is
defined as

∑M
m=1Jy

m
v = 0K. Both diversity measures are concave.

• the monotonic parametric max-flow problem [14, 18], which corresponds to the case when E is
a binary submodular pairwise energy and Γ = {ν ∈ R|V| : νv = γv(λ)} and functions γv : Λ→ R
are non-increasing for Λ ⊆ R.
• a subclass of the parametric submodular minimization [12, 2], where E is submodular and

Γ = {γ1,γ2, . . . ,γk ∈ R|V| : γ1 ≥ γ2 ≥ . . . ≥ γk}, where operation≥ is applied coordinate-wise.

It is known [38] that in these two cases, (i) the highest minimizers y1, . . . ,yk ∈ LV of Eγ
i

,
i = {1, . . . , k} are nested and (ii) the parametric problem (9) is solvable efficiently by respective
algorithms [14, 18, 12]. In the following, we will show that for a submodular energy E the Joint-
DivMBest problem (2) reduces to the parametric submodular minimization with the values γ1 ≥
γ2 ≥ . . . ≥ γM ∈ R|V| given in closed form.

3 Joint M -Best-Diverse Problem as a Parametric Submodular Minimization

Our results hold for the following subclass of the permutation invariant node-wise diversity measures:
Definition 2. A node-wise diversity measure ∆M

v (m) is called concave if for any 1 ≤ i ≤ j ≤M it
holds

∆M
v (i)−∆M

v (i− 1) ≥ ∆M
v (j)−∆M

v (j − 1). (10)

There are a number of practically relevant concave diversity measures:
Example 2. Hamming distance diversity (6) is concave, see Fig. 1 for illustration.
Example 3. Diversity measures of the form

∆M
v (m0

v) = −
(
|m0

v − (M −m0
v)|
)p

= −
(
|2m0

v −M |
)p

(11)

are concave for any p ≥ 1. Here M − m0
v is the number of variables labeled as 1. Hence,

|m0
v − (M −m0

v)| is an absolute value of the difference between the numbers of variables labeled
as 0 and 1. It expresses the natural fact that a distribution of 0’s and 1’s is more diverse, when their
amounts are similar.

For p = 1 we call the measure (11) linear; for p = 2 the measure (11) coincides with the Hamming
distance diversity (6). An illustration of these two cases is given in Fig. 1.

Our main theoretical result is given by the following theorem:
Theorem 2. Let E be binary submodular and ∆M be a node-wise diversity measure with each
component ∆M

v , v ∈ V , being permutation invariant and concave. Then a nested M -tuple (ym)Mm=1
minimizing the Joint-DivMBest objective (2) can be found as the solutions of the following M
problems:

ym = arg min
yV

[
E(y) +

∑
v∈V

γmv yv

]
, (12)

where γmv = λ
(
∆M

v (m)−∆M
v (m− 1)

)
. In the case of multiple solutions in (12) the highest

minimizer must be selected.

We refer to the supplement for the proof of Theorem 2 and discuss its practical consequences below.

First note that the sequence (γm)Mm=1 is monotone due to concavity of ∆M
v . Each of the M

optimization problems (12) has the same size as the master problem (1) and differs from it by
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unary potentials only. Theorem 2 implies that γm in (12) satisfy the monotonicity condition:
γ1 ≥ γ2 ≥ . . . ≥ γM . Therefore, equations (12) constitute the parametric submodular minimization
problem as defined above, which reduces to the monotonic parametric max-flow problem for pairwise
E. Let b·c denote the largest integer not exceeding an argument of the operation.
Corollary 1. Let ∆M

v in Theorem 2 be the Hamming distance diversity (6). Then it holds:
1. γmv = λ(M − 2m+ 1).
2. The values γmv , m = 1, . . . ,M are symmetrically distributed around 0:

−γmv = γM+1−m
v ≥ 0, for m ≤ b(M + 1)/2c and γmv = 0, if m = (M + 1)/2 .

3. Moreover, this distribution is uniform, that is γm+1
v − γmv = 2λ, m = 1, . . . ,M .

4. When M is odd, the MAP-solution (corresponding to γ(M+1)/2 = 0) is always among the
M -best-diverse labelings minimizing (2).

Corollary 2. Implications 2 and 4 of Corollary 1 hold for any symmetrical concave ∆M
v , i.e., those

where ∆M
v (m) = ∆M

v (M + 1−m) for m ≤ b(M + 1)/2c.
Corollary 3. For linear diversity measure the value γmv in (12) is equal to λ · sgn

(
M
2 −m

)
, where

sgn(x) is a sign function, i.e., sgn(x) = Jx > 0K − Jx < 0K. Since all γmv for m < M
2 are the

same, this diversity measure can give only up to 3 different diverse labelings. Therefore, this diversity
measure is not useful for M > 3, and can be seen as a limit of useful concave diversity measures.

4 Efficient Algorithmic Solutions
Theorem 2 suggests several new computational methods for minimizing the Joint-DivMBest objec-
tive (2). All of them are more efficient than those proposed in [23]. Indeed, as we show experimentally
in Section 5, they outperform even the sequential DivMBest method (7).

The simplest algorithm applies a MAP-inference solver to each of the M problems (12) sequentially
and independently. This algorithm has the same computational cost as DivMBest (7) since it also
sequentially solves M problems of the same size. However, already its slightly improved version,
described below, performs faster than DivMBest (7).

Sequential Algorithm Theorem 2 states that solutions of (12) are nested. Therefore, from ym−1v = 1
it follows that ymv = 1 for labelings ym−1 and ym obtained according to (12). This allows to
reduce the size and computing time for each subsequent problem in the sequence.2 Reusing the
flow from the previous step gives an additional speedup. In fact, when applying a push relabel or
pseudoflow algorithm in this fashion the total work complexity is asymptotically the same as of a
single minimum cut [14, 18] of the master problem. In practice, this strategy is efficient with other
min-cut solvers (without theoretical guarantees) as well. In our experiments we evaluated it with the
dynamic augmenting path method [6, 24].

Parallel Algorithm The M problems (12) are completely independent, and their highest minimizers
recover the optimal M -tuple (ym)m according to Theorem 2. They can be solved fully in parallel or,
using p < M processors, in parallel groups of M/p problems per processor, incrementally within
each group. The overhead is only in copying data costs and sharing the memory bandwidth.

Alternative approaches One may suggest that for largeM it would be more efficient to solve the full
parametric maxflow problem [18, 14] and then “read out” solutions corresponding to the desired values
γm. However, the known algorithms [18, 14] would perform exactly the incremental computation
described in the sequential approach above plus an extra work of identifying all breakpoints. This
is only sensible when M is larger than the number of breakpoints or the diversity measure is not
known in advance (e.g., is itself parametric). Similarly, parametric submodular function minimization
can be solved in the same worst case complexity [12] as non-parametric, but the algorithm is again
incremental and would just perform less work when the parameters of interest are known in advance.

5 Experimental Evaluation
We base our experiments on two datasets: (i) The interactive foreground/background image segmen-
tation dataset utilized in several papers [4, 31, 22, 23] for comparing diversity techniques; (ii) A new

2By applying “symmetric reasoning” for the label 0, further speed-ups can be achieved. However, we stick to
the first variant in our experiments.
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Table 1: Interactive segmentation. The quality measure is a per-pixel accuracy of the best
segmentation, out of M , averaged over all test images. The runtime is in milliseconds (ms).
The quality for M = 1 is 91.57. Parametric-parallel is the fastest method followed by
Parametric-sequential. Both achieve higher quality than DivMBest, and return the same solu-
tion as Joint-DivMBest. M=2 M=6 M=10

quality time (ms) quality time (ms) quality time (ms)

DivMBest [4] 93.16 2.6 95.02 11.6 95.16 15.4
Joint-DivMBest [23] 95.13 5.5 96.01 17.2 96.19 80.3
Parametric-sequential (1 core) 95.13 2.2 96.01 5.5 96.19 8.4
Parametric-parallel (6 cores) 95.13 1.9 96.01 4.3 96.19 6.2

dataset for foreground/background image segmentation with binary pairwise energies derived from
the well-known PASCAL VOC 2012 dataset [11]. Energies of the master problem (1) in both cases
are binary and pairwise, therefore we use their reduction [26] to the min-cut/max-flow problem to
obtain solutions efficiently.

Baselines Our main competitor is the fastest known approach for inferring M diverse solutions, the
DivMBest method [4]. We made its efficient re-implementation using dynamic graph-cut [24]. We
also compare our method with Joint-DivMBest [23], which provides an exact minimum of (2) as
our method does.

Diversity Measure In all of our experiments we use the Hamming distance diversity measure (5).
Note that in [31] more sophisticated diversity measures were used e.g., the Hamming Ball. However,
the DivMBest method (7) with this measure requires to run a very time-consuming HOP-MAP [37]
inference technique. Moreover, the experimental evaluation in [23] suggests that the exact minimum
of (2) with Hamming distance diversity (5) outperforms DivMBest with a Hamming Ball distance
diversity.

Our Method We evaluate both algorithms described in Section 4, i.e., sequential and parallel. We
refer to them as Parametric-sequential and Parametric-parallel respectively. We utilize
the dynamic graph-cut [24] technique for Parametric-sequential, which makes it comparable to
our implementation of DivMBest. The max-flow solver of [6] is used for Parametric-parallel
together with OpenMP directives. For the experiments we use a computer with 6 physical cores (12
virtual cores), and run Parametric-parallel with M threads.

Parameters λ (from (7) and (2)) were tuned via cross-validation for each algorithm and each experi-
ment separately.

5.1 Interactive Segmentation
The basic idea is that after a user interaction, the system provides the user with M diverse seg-
mentations, instead of a single one. The user can then manually select the best one and add more
user scribbles, if necessary. Following [4] we consider only the first iteration of such an interactive
procedure, i.e., we consider user scribbles to be given and compare the sets of segmentations returned
by the system.

The authors of [4] kindly provided us their 50 super-pixel graphical model instances. They are based
on a subset of the PASCAL VOC 2010 [11] segmentation challenge with manually added scribbles.
An instance has on average 3000 nodes. Pairwise potentials are given by contrast-sensitive Potts
terms [5], which are submodular in the binary case. This implies that Theorem 2 is applicable.

Quantitative comparison and runtime of the different algorithms are presented in Table 1. As
in [4], our quality measure is a per-pixel accuracy of the best solution for each test image, averaged
over all test images. As expected, Joint-DivMBest and Parametric-* return the same, exact
solution of (2). The measured runtime is also averaged over all test images. Parametric-parallel
is the fastest method followed by Parametric-sequential. Note that on a computer with fewer
cores, Parametric-sequential may even outperform Parametric-parallel because of the
parallelization overheads.

5.2 Foreground/Background Segmentation
The Pascal VOC 2012 [11] segmentation dataset has 21 labels. We selected all those 451 images
from the validation set for which the ground truth labeling has only two labels (background and one
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Figure 2: Foreground/background segmentation. (a) Intersection-over-union (IoU) score
for the best segmentation, out of M . Parametric represents a curve, which is the same
for Parametric-sequential, Parametric-parallel and Joint-DivMBest, since they ex-
actly solve the same Joint-DivMBest problem. (b) DivMBest uses dynamic graph-cut [24].
Parametric-sequential uses dynamic graph-cut and a reduced size graph for each consecu-
tive labeling problem. Parametric-parallel solves M problems in parallel using OpenMP.

of the 20 object classes) and which were not used for training. As unary potentials we use the output
probabilities of the publicly available fully convolutional neural network FCN-8s [29], which is
trained for the Pascal VOC 2012 challenge. This CNN gives unary terms for all 21 classes. For each
image we pick only two classes: the background and the class-label that is presented in the ground
truth. As pairwise potentials we use the contrastive-sensitive Potts terms [5] with a 4-connected grid
structure.

Quantitative Comparison and Runtime As quality measure we use the standard Pascal VOC
measure for semantic segmentation – average intersection-over-union (IoU) [11]. The unary potentials
alone, i.e., output of FCN-8s, give 82.12 IoU. The single best labeling, returned by the MAP-inference
problem, improves it to 83.23 IoU.

The comparisons with respect to runtime and accuracy of results are presented in Fig. 2a and 2b
respectively. The increase in runtime with respect to M for Parametric-parallel is due to
parallelization overhead costs, which grow with M . Parametric-parallel is a clear winner in
this experiment, both in terms of quality and runtime. Parametric-sequential is slower than
Parametric-parallel but faster than DivMBest. The difference in runtime between these three
algorithms grows with M .

6 Conclusion and Outlook
We have shown that the M labelings, which constitute a solution to the Joint-DivMBest problem with
binary submodular energies, and concave node-wise permutation invariant diversity measures can be
computed in parallel, independently from each other, as solutions of the master energy minimization
problem with modified unary costs. This allows to build solvers which run even faster than the
approximate method of Batra et al. [4]. Furthermore, we have shown that such Joint-DivMBest
problems reduce to the parametric submodular minimization. This shows a clear connection of these
two practical approaches to obtaining diverse solutions to the energy minimization problem.
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Below we provide two proofs of Theorem 2. The first one is restricted to pairwise energies. It is based
on representing the submodular Joint-DivMBest problem (2) in the form of minimizing a convex
multilabel energy. This problem is known as Convex MRF or as total variation (TV) regularized
optimization with convex data terms. Thresholding theorems [8, 6, 5, 3, 9] then allow to break the
problem into independent minimization and connect it to parametric mincut. This approach reveals an
important link between our problem and the mentioned methods. It is also the shorter one. However,
it is limited by the existing thresholding theorems and does not fully cover e.g., the higher order case
(as discussed below).

The second proof is both more general (applies to arbitrary submodular energies) and simpler than the
respective proves of the related results. It is self contained and uses only basic concepts of submodular
function minimization, revealing the true simplicity of central fact that allows the problem to decouple.

7 Pairwise Case

For pairwise energies it holds f = {u, v}, u, v ∈ V . Therefore, we will denote θf as θu,v. The
energy of the master problem (1) then reads

E(y) =
∑

v∈V
θv(yv) +

∑

uv∈F
θu,v(yu, yv) . (13)

It is known [2] and straightforward to check that in the binary case it holds

E(y) = const +
∑

v∈V
avyv +

∑

uv∈F
Θu,v|yu − yv| , (14)

where av = θv(1)−θ(0) andΘu,v = θu,v(0, 1)+θu,v(1, 0)−θu,v(0, 0)−θu,v(1, 1). For submodular
E, the values Θu,v are non-negative. In what follows, we will use the representation (14) and omit
the constant in it, since it does not influence any further considerations.

A nested M -tuple {y} := (y1, . . . ,yM ) is unambiguously specified by |V| numbers m0
v ∈

{0, . . . ,M}, v ∈ V , where m0
v defines a number of labelings, which are assigned the label 0

in the node v. The link between the two representations is given by

m0
v =

∑

m

Jymv = 0K, (15)

ymv = m ≤ m0
v. (16)

In other words, labelings ym are superlevel sets of m0 : V → {0, . . . ,M}.
Let us write the Joint-DivMBest objective (2) as a function of m0. The label m ∈ {0, . . . ,M}
denotes that exactly m out of M labelings in {y} are assigned the label 0 in the node v. The unary
cost assigned to a label m in the node v is equal to av(M −m), since exactly (M −m) labelings
out of M are assigned the label 1 in the node v. The pairwise cost for a pair of labels {m,n} in the
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neighboring nodes {u, v} ∈ F is equal to Θu,v|m− n|, since exactly |m− n| labelings switch their
label 0 to the label 1 between nodes u and v. Therefore

M∑

i=1

E(yi) =
∑

v∈V
av(M −m0

v) +
∑

uv∈F
Θu,v|m0

u −m0
v| , (17)

where m0
v is defined as in (15).

Adding a node-wise diversity measure
∑

v∈V λ∆
M
v ({y}v) =

∑
v∈V λ∆

M
v (m0

v) and regrouping
terms, one obtains that the Joint-DivMBest objective (2) is equivalent to

∑

v∈V

(
av(M −m0

v)− λ∆M
v (m0

v)
)

+
∑

uv∈F
Θu,v|m0

u −m0
v| (18)

and must be minimized with respect to the labelingm0 ∈ {0, . . . ,M}V .

Since the diversity measure λ∆M
v (m0

v) is concave w.r.t. m0
v, the unary factors av(M − m0

v) −
λ∆M

v (m0
v) are convex. The pairwise factors Θu,v|m0

u −m0
v| are also convex w.r.t. m0

u −m0
v due to

non-negativity of Θu,v .

For concave diversity the problem can be solved efficiently in time O(T (n,m)+n logM) [8], where
n = |V|, m = |E| and T (n,m) is the complexity of a minimum s-t cut procedure that can be
implemented efficiently as parametric. Even for m0 ranging in the continuous domain the complexity
of the method [8] is polynomial, essentially matching the complexity of a single mincut. In particular,
[8, Theorem 3.1] shows that a solution of such convex multilabel energy minimization problem
decouples into M problems of the form (12). Our Theorem 2 then follows.

7.1 Related Results and Limitations

For a general (not necessarily concave) permutation invariant nodewise diversity, the problem (17)
can be still solved efficiently in time O(nm log n2

mM2 logM) by either [10] or [1, 9]. On the other
hand, the reformulation (14) expressing the regularizer as the function |m0

u − m0
v| holds for the

pairwise case only. The results of Hochbaum [8] are as well limited to the pairwise case and involve
min-cut / max-flow arguments.

Other related results are as follows. Chan and Esedoglu [5] give a thresholding theorem (related
to Theorem 2) for the Rudin-Osher-Fatemi denoising model [11], Darbon and Sigelle [6] for TV-
regularized L1 and L2 data fidelity problems, Chambolle [3] proposes further generalization towards
thresholding of TV-like regularized convex problems in a finite dimensional space. The thresholding
theorem of Chambolle [3] is applicable to higher order models, however the conditions on the
regularizer are stricter than in Theorem 2: only a certain convex subclass of submodular functions
qualifies.

8 General Case

In the following, we identify a simple and general thresholding theorem, applicable to arbitrary
submodular (not only pairwise) functions. This constitutes a basis for a general proof of Theorem 2.

8.1 Nestedness

The set of labeling LV together with the coordinate-wise maximum and minimum operations ∨,
∧ forms a distributive lattice. The respective partial order x ≤ y is the coordinate-wise order
(∀v ∈ V) xv ≤ yv .
Definition 3. Function F : LV → R is monotone (resp. antitone) if for all x ≤ y there holds
F (x) ≤ F (y) (resp. F (x) ≥ F (y)).

For example, a linear function 2V → R : y 7→ ∑V
v=1 avyv is monotone for av ≥ 0; a multilabel

modular function
∑V

v=1 θv(yv) is monotone if θv(y′v) ≥ θv(yv) for all y′v ≥ yv and all v ∈ V . The
sum, minimum and maximum of monotone (resp. antitone) functions is monotone (resp. antitone).
Note that, e.g., minimum of modular functions is in general not modular.
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The following lemma provides sufficient conditions under which the parametric min-cut and the
parametric submodular function minimization are monotone. It is essential for the subsequent
derivation that we formulate it in a constructive form, i.e., not only existence of nested minimizers is
shown but also the way to restore nestedness.

Lemma 1 (See [12] Theorem 6.1). Let E : LV → R be submodular and F : LV → R be antitone.
Then for any minimizer x of E and any minimizer y of E+F , the solution y′ = y∨x is a minimizer
of E + F and x ≤ y′.

Proof. Since x is a minimizer of E, E(x) ≤ E(y ∧ x). Adding this inequality to the submodularity
inequality,

E(x ∨ y) + E(x ∧ y) ≤ E(x) + E(y), (19)

we obtain

E(x ∨ y) ≤ E(y). (20)

For antitone F and x ∨ y ≥ y we have F (x ∨ y) ≤ F (y). Adding to (20), we get

(E + F )(x ∨ y) ≤ (E + F )(y). (21)

Since y was a minimizer of E + F , it follows that x ∨ y is a minimizer of E + F as well.

It follows that the minimal minimizer of E is nested (contained in the case of set functions) in the
minimal minimizer of E+F . Symmetrically, if E is submodular and F is monotone, then x∧y ≤ y
is a minimizer of E + F . Similar results appear in [8], [4, Lemma 3.4] in a somewhat less general
form. Fleischer and Iwata [7, Lemma 3.1] proves nestedness under a related condition called a strong
map. It can be easily shown that for submodular E +F the map E → E +F is a strong map iff F is
antitone.

8.2 Thresholding Theorem

Let a function E : (LV)M → R of a tuple {y} has the expression

E({y}) =

M∑

m=1

Em(ym), (22)

for some functions Em : LV → R. We will show that such a decomposition holds for the Joint-
DivMBest objective EM (2) under conditions of Theorem 2 (cf. coarea formula in [3]). Consider
minimizing the function E over nested tuples {y}.
Theorem 3 (Thresholding). Let Em : LV → R be submodular for each m and (Em − Em−1) be
antitone for each m > 1. Then the joint problem,

min
{y}

M∑

m=1

Em(ym) s.t. {y} is nested, (23)

decouples into independent problems
∑

m

min
y∈LV

Em(y). (24)

Where “decouples” means that the optimal values of both problems are equal and there is a simple
mapping between their optimal solutions.

Proof. We will prove the theorem by constructing, out of independent minimizers ŷm, m = 1, . . .M ,
a nested tuple of independent minimizers {ȳ}.
Assume that ŷk 6≥ ŷm for k > m. The function Ek can be expressed as

Ek = Em + F, (25)
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where F =
∑k

l=m+1(El−El−1) is antitone (by conditions of the theorem). We have: ŷm minimizes
Em, ŷk minimizes Ek. By the nestedness Lemma 1, it must be that ŷk ∨ ŷm also minimizes Ek.
Moreover, ŷk ∨ ŷm ≥ ŷm.

By going in m in order from 1 to M and replacing ŷm+1 with ŷm+1 ∨ ŷm we obtain a tuple which
is nested and each modifications has preserved optimality to (24). Let {ȳ} be the resulting nested
tuple. It is feasible to the joint problem (23) and optimal to decoupled problem (24). Since also (23)
is lower bounded by (24), the tuple {ȳ} is optimal to (23).

Corollary 4. Let elements of the tuple {ŷ} be defined as the highest minimizers of Em:

ŷm =
∨

arg min
y∈LV

Em(y) . (26)

Then under conditions of Theorem 3 the tuple {ŷ} is nested and optimal to (23).

Proof. The highest minimizer in (26), i.e., the maximum of the set of optimal solutions exists since
the set of minimizers to a submodular function on a lattice is a lattice itself [12]. Since for each
k > m, (i) the replacement ŷk ∨ ŷm is a minimizer of Ek(y) (with the same substantiation as in the
proof of Theorem 3) and (ii) ŷk is the highest minimizer of Ek, it therefore holds ŷk ∨ ŷm ≤ ŷk.
This is however the case only when ŷk ≥ ŷm.

8.3 Application to Submodular Joint-DivMBest Problem

Let LV = {0, 1}V and the master energy E be submodular. Then the Joint-DivMBest problem
according to Theorem 1 has the form

min
{y}

M∑

m=1

E(ym)−∆M ({y}) s.t. {y} is nested. (27)

In order to apply Theorem 3, we need to express the objective of this problem in the form (23). Since
the master energy E(ym) is the same for all m, clearly E − E ≡ 0 is an antitone function of y.
It remains to express ∆M ({y}) in the form (23). Recall that any permutation invariant diversity
measure ∆M

v ({yv}) expresses as a function gv(x), where x =
∑M

m=1Jymv = 0K. Any function
gv : {0, . . .M} → R can be expressed as a prefix (cumulative) sum:

gv(x) = gv(0) +

M∑

m=1

γmv Jm ≤ xK = gv(0) +
∑

m≤x
γmv , (28)

where γmv = gv(m)− gv(m− 1) for m ∈ {1, . . . ,M}.
For concave diveristy measures, the discrete derivatives γmv of gv are monotone non-increasing in m.
For a nested tuple {y} we have ymv = Jm ≤ xK, and it holds

∆M ({y}) =
∑

v∈V
gv(0) +

M∑

m=1

Fm(ym) (29)

for Fm(ym) =
∑

v∈V γ
m
v y

m
v .

Since the constant term
∑

v∈V gv(0) can be ignored we proved that ∆M ({y}) decomposes as (22).
It remains to show that −(Fm(y) − Fm−1(y)) is antitone to fulfill conditions of Theorem 3 w.r.t.
−∆M ({y}).

Indeed, the difference Fm(y)−Fm−1(y) expresses as
∑

v∈V avyv with av = γmv −γm−1v . Since γmv
is non-decreasing w.r.t. m, it holds av ≥ 0 and Fm − Fm−1 is monotone. It implies −(Fm − Fm−1)
is antitone.

As a result, the Joint-DivMBest problem (27) has the expression satisfying conditions of Theorem 3.
Thus Theorem 2 holds.

The study of the question which multilabel diversity measures have expression as a sum with
monotone differences is left for the future work.
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