
Partially supervised learning for text recognition

problem∗

Savchynskyy B.D., Ole�renko S.A.

Introduction

Despite its popularity, the problem of text recognition still contains considerable space for research.

Recognition of images of text lines is, probably, one of the simplest examples in structural image recog-

nition. That is why it is often used as a ground for implementation and experimental testing of new

methods in structural recognition.

One of the �elds of structural recognition that, in our opinion, needs further research, is an estimation

of recognition algorithm parameters on the basis of a learning sample. A learning sample contains some

number of images and corresponding recognition results. In case of text line recognition these results are

not only corresponding character sequences, but also segmentations of the image into separate characters.

Usually these segmentations should meet rather strict requirements: the same characters in di�erent

segments must be centered in the same way. It means that coordinates of corresponding pixels of the

same characters in di�erent segments should have the same values. Creation of such segmentations

requires signi�cant e�orts and time of a teacher.

In this paper we will consider the problem of parameters estimation of a text recognition algorithm on

a basis of the learning sample that contains only images and corresponding character sequences and does

not contain segmentations of these images into separate characters. We will propose a formulation of

the problem and an algorithm of its e�ective solution. This problem can be called a partially supervised

learning because of partial information from the teacher in the learning sample. Formulation of the

problem in such a way allows to signi�cantly simplify the process of learning by reducing construction of

the learning sample to typing of a text that corresponds to sample images.

The paper consists of four chapters, the �rst one is devoted to main de�nitions and formulation of the

problem, the second one | to its solution. The third and the fourth chapters are devoted to experimental

testing of algorithms and conclusions, respectively.

1 De�nitions and formulation of the learning problem

Let's introduce notation, which will be used further in this paper.

∗The paper was supported by the EU INTAS project PRINCESS 04-77-7347

1

bogdan
Published: Bogdan Savchynskyy, Sergiy Olefirenko. Partially supervised learning for text recognition problem. Control Systems and Computers, 2007(1), Kiev, pp.19-29

A rectangular subset of two-dimensional integer grid, i.e. the set of image pixel coordinates, we will

call a �eld of view T :

T = { (i, j) | i = 0,W − 1, j = 0,H − 1 }.

Value W denotes width of the �eld of view, value H denotes its height. Elements of the �eld of view t ∈ T

will be treated as two-dimensional vectors. In particular, addition operation is de�ned as a component-

wise addition of corresponding coordinates.

Let V be a set of pixel brightness values. We will call function x : T → V the image, width and height

of the image equal to width and height of its �eld of view. We will distinguish two kinds of images:

images given for a recognition and template images of characters. The second type of images will be

discussed further. We will consider all the mentioned images having the same height H, but di�erent

widths.

Finite set A0 will be called an alphabet. Its elements are characters of text. Sequence of alphabet

elements k̄ = (k1, k2, . . . , kL), kl ∈ A0, l = 1, L we will call a text line. Notation Lk̄ will stand for the

length of a line k̄.

A template image ek for each character k ∈ A0 is de�ned on a �eld of view of height H and width d(k).

Template widths d(k), k ∈ A0 for all characters are �xed and known. The set of template images we will

denote as E.

We will assume that an ideal, unnoised image, that corresponds to a given text line, is a horizon-

tal sequence of character templates. These templates do not overlap and possible gaps between them

including spaces between words in a text are �lled with a background color.

To describe these gaps between character images formally we will introduce an additional element of

the alphabet. We will call it an insertion and denote with κ. A template of the insertion is considered

to have width d(κ) = 1, height H, and to belong to the template set E. The set A0

⋃
{κ} we will denote

with A and call its elements a ∈ A symbols. Thus symbol a ∈ A is either an alphabet character k ∈ A0

or the insertion κ.

A rectangular image fragment that contains an image of some symbol we will call a segment. Its

height coincides with the height H of an input image, its width is equal to the width of the corresponding

symbol. Thus segment s is de�ned by its left border coordinate i ∈ {0, . . . ,W − d(a)} and a name a ∈ A.

Left border coordinate and a name of a segment s = (i, a) will be denoted with i(s) and a(s), respectively.

Notation S stands for the set of all possible segments on the input image. For a top-left corner of each

segment s notation ts will be used: ts = (i(s), 0).

Let us consider a sequence of segments s̄ = (s1, . . . , sN) of an arbitrary length N such that these

segments cover the whole �eld of view and are placed closely to each other:
i(s1) = 0;

i(sn+1) = i(sn) + d(a(sn)), n = 1, N − 1;

i(sN) + d(a(sN)) = W.

We will call such a sequence a segmentation of the image. Thus the segmentation can be regarded as a

complete description of an ideal image. The set of all segmentations will be denoted with S̄.

2

We have already described the process of construction of ideal text line image. Now we assume that

an input image di�ers from the ideal one only by Gaussian noise with de�ned deviation σ, which is added

in each pixel independently from others.

Now we will introduce some probability distributions and use for them a standard probabilistic no-

tation, i.e. px|s̄(x| s̄;E) stands for the conditional probability of image x under condition of known

segmentation s̄ (that determines an ideal image) parametrized by templates E; px,s̄(x, s̄;E) stands for

the joint probability of the image x and segmentation s; and ps̄(s̄) stands for the a priori probability of

segmentations. To simplify the notation we will omit the description indexes, i.e. we will write p(x| s̄;E)

instead of px|s̄(x| s̄;E).

According to the assumption, a probability p(x| s̄;E), conditioned by segmentation s̄, can be rep-

resented as a product of independent probabilities p(x| s;E), conditioned by separate segments of this

segmentation, and will be considered to be equal to:

p(x| s̄;E) =
N(s̄)∏
n=1

p(x| sn;E) =
N(s̄)∏
n=1

∏
t∈T (sn)

1√
2πσ2

exp
{
−

(x(tsn + t)− ea(sn)(t))2

2σ2

}
, (1)

where N(s̄) is a number of segments in the segmentation s̄ and T (s) is a rectangular fragment of �eld of

view which corresponds to the segment s.

The problem of an image x recognition consists in search for the most probable segmentation s̄∗ for

the image x:

s̄∗ = arg max
s̄

p(s̄|x;E) = arg max
s̄

p(x, s̄;E) = arg max
s̄

p(s̄) · p(x| s̄;E).

As it is known [1], this problem can be solved by dynamic programming algorithm.

Unknown recognition parameters here are templates E and a priori probability distribution {p(s̄) |

s̄ ∈ S̄} of segmentations. Learning of the recognition algorithm, which is actually a topic of this paper,

consists in estimation of these parameters on the basis of a learning sample.

Before we proceed to formulation of the learning problem, let us note the connection between segmen-

tations, symbol and character sequences. A symbol sequence ā(s̄) = (a1, . . . , aN |an = a(sn), n = 1, N)

corresponds to each segmentation s̄ = (s1, . . . , sN). From the symbol sequence we can obtain a character

sequence by removing all insertions. Thus, for each character sequence k̄ = (k1, . . . , kN), kn ∈ A0 there

is a set S̄[k̄] of such segmentations that correspond to this sequence in a described way.

Now we proceed to the formulation of the learning problem. Let

D =

x1 x2 . . . xM

k̄1 k̄2 . . . k̄M

be a learning sample that consists of M input images and M corresponding text lines.

Joint probability p(x, k̄;E) of an image x and a text line k̄ is equal to a sum
∑

s̄∈S̄[k̄] p(x, s̄;E) of

probabilities of all segmentations of the image x that correspond to the text line k̄. Thus, the probability

3

of a learning sample p(D;E) can be presented in the following form:

p(D;E) =
M∏

m=1

p(xm, k̄m;E) =
M∏

m=1

∑
s̄∈S̄[k̄m]

p(xm, s̄;E) =
M∏

m=1

∑
s̄∈S̄[k̄m]

p(s̄) · p(xm| s̄;E) =

=
M∏

m=1

∑
s̄∈S̄[k̄m]

p(s̄)√
2πσ2

exp

−
N(s̄)∑
n=1

∑
t∈T (sn)

(xm(tsn
+ t)− ea(sn)(t))2

2σ2

.

Problem 1 The problem of a recognition algorithm learning consists in �nding such templates E∗ and

a priori probabilities p∗(s̄) of segmentations that maximize probability of the learning sample D:

(E∗, p∗(s̄)) = arg max
(E,p(s̄))

M∏
m=1

∑
s̄∈S̄[k̄m]

p(s̄)√
2πσ2

exp

−
N(s̄)∑
n=1

∑
t∈T (sn)

(xm(tsn + t)− ea(sn)(t))2

2σ2

. (2)

The algorithm of an exact solution of the problem 1 is unknown to us. In this paper a non-supervised

learning algorithm, described in [1], is used to solve the problem 1. As it is known, this algorithm

guaranties �nding only local extremum. But from practical point of view this is not a serious problem

because quality of parameter estimation can be easily controlled visually.

However, the non-supervised learning algorithm, described in [1], can't be used for problem 1 solution

directly, because it demands exponential on input image dimensions time and memory. In the next

chapter it is described how this algorithm should be implemented to e�ectively solve the problem 1.

2 Learning task solution

First, we will formulate the non-supervised learning algorithm for problem 1 in the form as it is described

in [1]. As it was already mentioned, this algorithm cannot be used directly in that form because of

its considerable time and space complexity. After that we will transform it equivalently to decrease its

complexity without altering the results of performed operations.

2.1 Base non-supervised learning algorithm

Before we proceed, let us introduce additional notations. We will use an equivalent notation S̄m for the

set S̄[k̄m] of all such segmentations that their symbol sequences after removing all insertions coincide

with m-th text line k̄m from the learning sample D. We will call segmentations from this set allowable

for a given text line k̄m. Notation S̄m(s) stands for such subset of the set S̄m that consists only of the

segmentations containing segment s.

The non-supervised learning algorithm is an iterative one. Upper index r denotes values of parameters,

which they take on the r-th iteration of the algorithm. Let E0 be the initial values of symbol templates

and p0(s̄), s̄ ∈ S̄ be a priori distribution of image segmentations s̄. Each iteration consists of two steps. At

the �rst step (named recognition) a posteriori probabilities α̂r(xm, s̄) of allowable segmentations s̄ ∈ S̄m

for each learning image xm are estimated:

α̂r(xm, s̄) =
pr(s̄) · p(xm|s̄;Er)∑

s̄∈S̄m

pr(s̄) · p(xm|s̄;Er)
, m = 1,M, s̄ ∈ S̄m. (3)

4

At the second step (named learning) a priori probabilities of segmentations pr+1(s̄) and symbol templates

E r+1 are estimated according to formulas:

pr+1(s̄) =

M∑
m=1

α̂r(xm, s̄)

M
, s̄ ∈ S̄; (4)

E r+1 = arg max
E

M∑
m=1

∑
s̄∈S̄m

α̂r(xm, s̄) · log p(xm|s̄;Er). (5)

Implementation of the non-supervised learning algorithm in the form (3){(5) is impossible because

values α̂r(xm, s̄) should be calculated for all possible segmentations of the learning sample and their

number increases exponentially with image dimensions. To optimize the algorithm we will modify it to

deal with separate segments instead of segmentations.

2.2 E�ective implementation of non-supervised learning algorithm

Let us assume that segments of any segmentation are independent, that is, the probability of the seg-

mentation s̄ is de�ned by the formula:

p(s̄) =
N(s̄)∏
n=1

p(sn), (6)

where p(s), s ∈ S are a priori probabilities of segments. Obviously, the following equation is ful�lled:

p(s) =
∑

s̄∈S̄m(s)

p(s̄), s ∈ S. (7)

Instead of probabilities of segmentations α̂(x, s̄) we will calculate values α(x, s), s ∈ S, which are

estimated a posteriori probabilities of segments:

αr(xm, s) =
∑

s̄∈S̄m(s)

α̂r(xm, s̄) =

∑
s̄∈S̄m(s)

pr(s̄) · p(xm|s̄;Er)∑
s̄∈S̄m

pr(s̄) · p(xm|s̄;Er)
, m = 1,M, s ∈ S. (8)

By substitution of (1) and (6) into (8) we will obtain:

αr(xm, s) =

∑
s̄∈S̄m(s)

N(s̄)∏
n=1

pr(sn) · p(xm| sn; er
a(sn))

∑
s̄∈S̄m

N(s̄)∏
n=1

pr(sn) · p(xm| sn; er
a(sn))

, m = 1,M, s ∈ S. (9)

It is clear, that calculations according to the formula (9) cannot be done directly, but later in the

subsection 2.3 an e�ective algorithm of these calculations based on dynamic programming method will

be proposed.

Let us proceed to the formula (4) and sum equation (4) over all segmentations that contain a �xed

arbitrary segment s ∈ S. Then, according to (7) and (8), we will obtain:

pr+1(s) =

M∑
m=1

αr(xm, s)

M
, s ∈ S. (10)

Values pr+1(s) can be calculated directly according to this formula.

5

The set of templates E consists of pixel values over templates of all symbols: E = {ea(t) | t ∈ Ta, a ∈

A}. A condition of the local maximum of (5) is determined with the following system of equations:

∂

∂ea(t)

M∑
m=1

∑
s̄∈S̄m

α̂r(xm, s̄) · log p(xm|s̄;Er) = 0, t ∈ Ta, a ∈ A.

After substituting values p(xm|s̄;Er) according to (1) and performing simple algebraic transformations

we will consecutively obtain:

∂

∂ea(t)

M∑
m=1

∑
s̄∈S̄m

α̂r(xm, s̄)
N(s̄)∑
n=1

∑
t∈T (sn)

(xm(t(sn) + t)− ea(sn)(t))2

2σ2
= 0,

M∑
m=1

∑
s̄∈S̄m

α̂r(xm, s̄)
N(s̄)∑
n=1

1{a(sn)=a} · (ea(t)− xm(tsn + t)) = 0,

M∑
m=1

∑
s∈S:

a(s)=a

∑
s̄∈S̄m(s)

α̂r(xm, s̄) · (ea(t)− xm(ts + t)) = 0,

M∑
m=1

∑
s∈S:

a(s)=a

αr(xm, s) · (ea(t)− xm(ts + t)) = 0.

It can be seen from the last equation that the extremum point is unique and in this point the global

maximum of sum (5) is reached. Thus an optimal template for an arbitrary symbol a ∈ A is constructed

as a weighted average of corresponding image fragments with weights α(xm, s) over all segments with a

name a:

er+1
a (t) =

∑
s∈S:

a(s)=a

∑M
m=1 αr(xm, s) · xm(ts + t)∑

s∈S:
a(s)=a

∑M
m=1 αr(xm, s)

, t ∈ Ta. (11)

Thus, starting from the base algorithm (3){(5), we obtained the algorithm that solves the same

problem but estimates the di�erent set of parameters, namely symbol template images and a priori

probabilities of segments: {ea, p(s) | a ∈ A, s ∈ S}. Unlike the base algorithm, this one can be e�ectively

implemented: values p(s), s ∈ S and templates ea, a ∈ A can be calculated directly in accordance with

formulas (10) and (11), and algorithm of calculation of αr(x, s) values is proposed in the next subsection.

2.3 Algorithm of a posteriori segment probabilities α(x, s) estimation

In this subsection we will consider algorithm of segment probabilities α(x, s) calculation for an arbitrary

image x and corresponding text line k̄. Let L denote the length of line k̄: k̄ = (k1, . . . , kl, . . . , kL).

Probability p(s) · p(x| s; ea(s)) of a segment s = (i, a) we will call a penalty for this segment and denote

with f(i, a). A penalty for a segmentation s̄ is a product of penalties over all segments in this segmen-

tation. We will distinguish segments with a name a ∈ A0 from the alphabet, and segments-insertions.

Segments of the �rst type will be called signi�cant.

We will consider only segmentations which correspond to a text line k̄, namely segmentations from the

set S̄[k̄]. Such segmentations contain L signi�cant segments that correspond to text line characters, and

arbitrary number of insertions. Let us introduce function sgf : {1, . . . , L} × S̄[k̄] → S, its value sgf(l, s̄)

6

indicates l-th signi�cant segment of the segmentation s̄, namely the segment, which corresponds to the

l-th character of the line k̄. Furthermore, we will use two functions bL(l, s̄) and bR(l, s̄), l = 1, L, that

point out left and right border coordinates of l-th signi�cant segment, respectively.

For an arbitrary segmentation s̄ the segment with left border coordinate 0 will be called the beginning

of the segmentation s̄, and segment with right border coordinate W will be called its end.

From formula (9) follows that, for arbitrary segment s = (i, a), value α(x, s) is a ratio of a total penalty

for segmentations that contain segment s, and a total penalty for all segmentations. A numerator can be

represented as a product of two sums: the sum of penalties for segmentation parts from the beginning of

an image to the segment s, and the sum of penalties for segmentation parts from segment s till the end.

Segment s can be either a signi�cant segment or an insertion segment, and in these two cases calculation

of α(x, s) di�ers. For the signi�cant segment s (a(s) ∈ A0) the numerator of the formula (9) can be

rewritten as follows:

∑
s̄∈S̄[k̄](s)

N(s̄)∏
n=1

p(sn) · p(x| sn; ea(sn)) =
∑

1≤l≤L:
kl=a

∑
s̄∈S̄[k̄](s)
sgf(l,s̄)=s

f(i1, a1) · f(i2, a2) · . . . · f(iN(s̄), aN(s̄)) = (12)

=
∑

1≤l≤L:
kl=a

 ∑
s̄∈S̄[k̄](s)
sgf(l,s̄)=s

f(i1, a1) · . . . · f(i, a)

×

 ∑
s̄∈S̄[k̄](s)
sgf(l,s̄)=s

f(i, a) · . . . · f(iN(s̄), aN(s̄))

× 1
f(i, a)

,

where s̄ = (s1, s2, . . . , sN(s̄)), sn = (in, an). The penalty for the segment s = (i, a) is included in both

expressions bounded by parenthesis, so we divide the expression by this penalty to compensate this. Let

us note here that conditions sgf(l, s̄) = s, bR(l, s̄) = i+d(kl) and bL(l, s̄) = i are identical, so later instead

of the �rst condition we will use two others.

Expressions in square parenthesis depend on l, which is a number of l-th character in the text line,

and segment s = (i, kl). We will denote the �rst of these expressions with F1(i + d(kl), l) and the second

one with B1(i, l), where i + d(kl) is right border coordinate of segment s:

F1(i, l) =
∑

s̄∈S̄[k̄](s):
bR(l,s̄)=i

f(i1, a1) · f(i2, a2) · . . . · f(i− d(kl), kl), (13)

B1(i, l) =
∑

s̄∈S̄[k̄](s):
bL(l,s̄)=i

f(i, kl) · . . . · f(iN(s̄), aN(s̄)). (14)

We will consider now all segmentations with l-th signi�cant segment equal to s(i, kl) for an arbitrary

pair (i, l) of indexes. Value F1(i + d(kl), l) equals to a total penalty for segmentation parts from the

beginning to segment s inclusive; B1(i, l) equals to a total penalty for segmentation parts from segment

s inclusive to the end.

7

In the case when s is an insertion segment (a(s) = κ), formula (9) transforms into:

∑
s̄∈S̄[k̄](s)

N(s̄)∏
n=1

p(sn) · p(x| sn; ea(sn)) =
L∑

l=0

∑
s̄∈S̄[k̄](s)

bR(l,s̄)≤i,
bL(l+1,s̄)≥i+1

f(i1, a1) · f(i2, a2) · . . . · f(iN(s̄), aN(s̄)) = (15)

=
L∑

l=0

 ∑
s̄∈S̄[k̄](s)

bR(l,s̄)≤i,
bL(l+1,s̄)≥i+1

f(i1, a1) · . . . · f(i, a)

×

 ∑
s̄∈S̄[k̄](s)

bR(l,s̄)≤i,
bL(l+1,s̄)≥i+1

f(i, a) · . . . · f(iN(s̄), aN(s̄))

× 1
f(i, a)

.

Again, we will denote the �rst expression in square parenthesis with F0(i + 1, l) and the second one with

B0(i, l):

F0(i, l) =
∑

s̄∈S̄[k̄](s):
bR(l,s̄)≤i−1,
bL(l+1,s̄)≥i

f(i1, a1) · f(i2, a2) · . . . · f(i− 1, κ), (16)

B0(i, l) =
∑

s̄∈S̄[k̄](s):
bR(l,s̄)≤i,

bL(l+1,s̄)≥i+1

f(i, kl) · . . . · f(iN(s̄), aN(s̄)), (17)

where for uniformity is put bR(0, s̄) = 0, bL(L + 1, s̄) = W .

Let us consider all such segmentations, which contain segment s = (i, κ) and it is placed after exactly

l signi�cant segments and arbitrary number of insertions. Then F0(i + 1, l) equals to the total penalty

for segmentation parts from the beginning to segment s inclusive; B0(i, l) equals to the total penalty for

segmentation parts from segment s to the end inclusive.

Since the last segment (with right border coordinate equal to W) of any segmentation could be either

L-th signi�cant segment or such insertion segment that there are exactly L signi�cant segments between

it and the beginning, the total penalty for all segmentations (denominator in formula (9)) equals to

Z =
∑

s̄∈S̄[k̄]

N(s̄)∏
n=1

p(sn) · p(x| sn; ea(sn)) = F0(W,L) + F1(W,L). (18)

Similarly, we can express Z via values B0 and B1:

Z = B0(0, 0) + B1(0, 0).

Values F0 and F1 can be treated as penalties for paths on some graph. Let us consider a graph,

which vertices are column coordinates i = 0,W of image �eld of view, and edges correspond to segments

on this image: for each segment s = (i, a) there is an edge (i → i + d(a)) with name a, which we will

denote with ε(i, i + d(a), a). The edges are present for those and only those segments that can be found

in segmentations from S̄[k̄]. A penalty f(i, a) is assigned to each edge ε(i, i + d(a), a). Penalty for a

path on the graph is a product of edge penalties on this path. An edge will be called signi�cant if it

corresponds to a signi�cant segment. Then values F1(i, l) and F0(i, l) equal to total penalties for all

paths on the graph from vertex 0 to vertex i that contain l signi�cant edges and end up with signi�cant

and non-signi�cant edge, respectively. Penalty for all segmentations Z equals to the total penalty for all

paths from vertex 0 to vertex W that contain exactly L signi�cant edges.

8

In the similar way, values B0 and B1 can be treated as penalties for paths to the ending vertex W

from other vertices: B1(i, l) is a total penalty for all paths from i to W that contain L− l + 1 signi�cant

edges and starts with a signi�cant edge ε(i, i + d(kl), kl); B0(i, l) is a total penalty for all paths from i to

W that contain L− l signi�cant edges and start with non-signi�cant edge ε(i, i + 1, κ).

Now, we will propose equivalent recursive de�nition of values F0 and F1 that determines an e�ective

algorithm of their calculation.

Let i take all possible values of image column coordinates including virtual column with coordinate W :

i = 0,W , and let l take all possible ordinal numbers of text line k̄ character including the "empty-line"

character with number 0: l = 0, L. Then values F0(i, l) and F1(i, l) can be de�ned by following recursive

equations:

F0(0, 0) = 1,

F1(0, 0) = 0,

F0(i, l) = f(i− 1, κ) · (F0(i− 1, l) + F1(i− 1, l)), l = 0, L, i = 1,W ,

F1(i, l) = f(i− d(kl), kl) · (F0(i− d(kl), l − 1) + F1(i− d(kl), l − 1)), l = 1, L, i = d(kl),W .

(19)

Obviously, values F1 and F0, de�ned in such way, coincide with values de�ned by (13) and (16).

Similarly, let us give recursive de�nition of values B0(i, l) and B1(i, l):

B0(W,L) = 1,

B1(W,L) = 0,

B0(i, l) = f(i, κ) · (B0(i + 1, l) + B1(i + 1, l)), l = 0, L, i = 0,W − 1,

B1(i, l) = f(i, kl) · (B0(i + d(kl), l + 1) + B1(i + d(kl), l + 1)), l = 0, L− 1, i = 0,W − d(kl).

(20)

Values B1 and B0, de�ned by (20), also coincide with values, de�ned by (14) and (17).

Expressions (9), (12) and (15) result in the �nal expression for the a posteriori probability α(x, s) of

an arbitrary segment s = (i, a):

α(x, s) =

1
Z

∑
1≤l≤L:

kl=a

F1(i+d(a),l)·B1(i,l)
f(i,a) , if a ∈ A0;

1
Z

L∑
l=0

F0(i+1,l)·B0(i,l)
f(i,a) , if a = κ,

(21)

where F1 and F0 are calculated according to (13) and (16), B1 and B0 are calculated according to (14)

and (17), and Z is calculated according to (18).

2.4 The algorithm of recognition problem learning

Now methods for the computing of all values necessary for algorithm's e�ective implementation are

described and we will formulate it again as a whole. But �rst we will point out initial values of symbol

templates E0, a priori segment probabilities p0(s̄), s̄ ∈ S̄ that are set on the �rst step of algorithm, and

9

the algorithm's stopping criteria. Their variations and their inuence on results are described in a section

dedicated to experiments.

Algorithm 1 Recognition problem learning

1: De�ne initial values of parameters (E0, p0(s̄)).

2: Using obtained parameters (Er, pr(s̄)) as a ground truth, calculate values F0, F1 and B0, B1 accord-

ing to (19) and (20).

3: Using F0, F1 and B0, B1, calculate αr(xm, s) according to (21).

4: According to (10) and (11), estimate new parameter values (Er+1, pr+1(s)).

5: If stopping criteria is ful�lled, stop. Otherwise, go to step 2.

3 Experiments

3.1 Test samples

Experiments were carried out in the following way: the input to the algorithm was a learning sample that

consisted of text line images and corresponding text lines. Widths of symbol templates and deviation σ2

of the Gaussian distribution (1) were considered known. Experimental samples were divided into two

parts: the learning one and the test one. The �rst part was used for estimation of symbol templates as

it was described in the paper, the second part served for quality testing of recognition using constructed

templates.

In this subsection we will consider four di�erent samples. The �rst one was created arti�cially, others

are natural with di�erent types of image degradation.

3.1.1 "Jabberwocky" sample

In this example images were generated arti�cially using document image degradation model described

in [2]. This model represents degradation of black and white text images after numerous printing and

copying operations. Degradation of such kind �ts rather well the statistic model of this paper. In a �g. 1

input images and algorithm work results are presented. Type of degradation can be seen in samples of an

input image (�g. 1(a)). Fig. 1(b) contains symbol templates, which were estimated during the learning.

Image pairs in �g. 1(c) demonstrate text recognition results. In each pair the �rst line is an initial

image from the test sample, and the second one is a line constructed as a concatenation of templates of

recognized symbols. At last, recognized text is shown on �g. 1(d).

Recognition error for the test sample, which contained 240 characters, was about 1%. In fact, there

were 2 mistakes in recognition results and in both cases characters "l" and "i" were mischanged. Templates

of these characters are very similar and noise easily makes wrong character more probable.

The learning sample contained about 600 characters and was recognized without errors.

10

(a) (b)

(c)

��� ��� ���� �	�
� ��� �������� �

��� � �� �� ��� � � �� ���
�� �� �

� ���
�� � ��� � ��		��� � ��	
�� �

�� �����	�� 	� �
� ��� �

(d)

Figure 1: "Jabberwocky" sample. (a) | input image example, (b) | constructed templates, (c), (d) |

recognition results

3.1.2 "Book Intro" sample

Another example contains scanned images of a book page. Results of algorithm's work are presented in

�g. 2. Both the learning and test samples contained about 550 characters. Test sample recognition error

made 0.8%. Typical error in this example was mischange of cyrillic characters "¯", "", "¨", which again

have similar templates.

During recognition of the learning sample one error was made (0.8%), which was caused by signi�cant

local noise on the image.

3.1.3 "Gothic" sample

Next example is a real image with rather strong degradation, in fact, it is not easy to read the text on

the images. The test sample contained 550 characters. Results of its recognition are presented in �g. 3.

There was 3% recognition error, however, about the half of errors appeared due to lack of necessary

characters in the learning sample. Recognition of the learning sample, which was 350 characters long,

resulted in 2% error rate.

3.1.4 "BigBrother" sample

The last example was obtained by scanning of text, which was previously printed on defected laser printer.

As it can be seen from �g. 4(a), type of noise considerably di�ers from the assumed model, mostly in a

non-uniformity of background brightness. However, by manipulating the deviation σ2 recognition error

rate of 5% was reached for the test sample, which was 650 characters long. In this example the learning

sample contained 1250 characters and was recognized with 5.3% of errors. The fact that the test sample

11

(a)

������������� �	
� � ������ ��������

��	� ��� ����	���� �	
	���� ������� �

������� �	
� � ����	���� ����
� ����	���

���������� �������	��� ���
��	����

� ��������� ����	���	���� � ��������	

(b)

Figure 2: "Book Intro" sample. Recognition results

was recognized with less errors can be explained with selection of less noisy lines into the test sample.

3.2 Initial values of algorithm parameters

On the �rst step of algorithm initial values of symbol templates and segment a priori probabilities are

to be set. Moreover, the algorithm requires widths of all templates along with deviation of the Gaussian

distribution (1).

The choice of initial values has some inuence on algorithm's output. For instance, setting initial

character templates to solid foreground color and insertion template to solid background color results

in more con�dent algorithm functioning, namely the algorithm converges faster and builds templates of

insigni�cantly better visual quality. However, setting of templates in that very way is not obligatory. For

example, randomly generated templates are also fully acceptable.

An inuence of initial segment a priori probabilities p0(s) is not so obvious. For instance, setting

probabilities of some segments to zero forbid the use of these segments. But, in general, the most

suitable initial values of a priori probabilities are equal values for all segments.

In considered experiments initial values (E0, p0(s̄)) were set as follows: probabilities were equal for all

segments, character templates were solid black and insertion template was solid white. Such templates

are natural for dark text on light background.

Besides described initial templates, experiments with randomly generated templates were carried out.

Di�erence from black and white templates lies mainly in an increase of iteration number needed to obtain

the same result and is only dimly visible when comparing qualitatively learning and recognition results.

Deviation σ2 is a characteristics of an input image degradation. An increase of this parameter results

in diminishing of a di�erence between penalties for di�erent characters on one rectangular fragment. A

decrease leads to an increase of inuence of a noise non-uniformity. Optimal deviation value depends on

an input image, but for experimental images these optimal values di�ered slightly, namely the same value

12

(a)

���� ��� ���� ��	 ��
�� � ���	���

�� � �
�� ������ ������� � 	
�������

��� ������ ��� ��� ������ ����

�����	 ��� ����� ��� ���� �

	�� � �� 	��� ��	 	��� �� 	 ������

(b)

Figure 3: "Gothic" sample. Recognition results

was satisfactory for all of them.

Experiments showed that small deviations of parameter values from empirically optimal ones do not

result in signi�cant inuence of learning results. Instead, the algorithm is very sensitive to uctuations

of character template widths. Setting them to values, that are larger than correct ones, can considerably

worsen learning and recognition results. This can be explained with particularities in recognition problem

formulation, where overlapping of neighbour templates is forbidden.

3.3 Learning algorithm stopping criteria

An obvious criterion of algorithm stopping is a correct recognition of all images in the learning sample.

But the learning problem in this paper is formulated as a search of such parameters that maximize a

likelihood function. Such a formulation does not guarantee convergence to the set of parameters that

ensures correct learning sample recognition. So this criterion, at least in its pure form, cannot be used.

The simplest stopping criterion is reaching of a certain iteration count. But such criterion is quantita-

tive and does not guarantee obtaining of some qualitative result. An example of another simple criterion

could be a decrease of relative di�erence of likelihood function to some threshold.

Experiments showed that the algorithm converges rather quickly. In general, about 3 to 5 iterations

are needed to obtain result that cannot be improved, in the sense that likelihood function increases

slightly from iteration to iteration. However, obtained result could happen to be only local maximum of

the likelihood function, not the global one. That leads to incorrectly built templates of some symbols

and, as a result, in large error rate of the learning sample recognition. In such cases the algorithm can be

thrown from this local maximum by a reinitialization of incorrectly built templates and segment a priori

probabilities.

A heuristic algorithm of parameter reinitialization was developed on the basis of these observations.

13

(a) (b)

����� ��� ��� 	
�	 ��� ��� ��� ���

�
 ��	 ���
��
� ��� ��	����
� ���

��	��� �
 ���� �
 �
� ��� � �
���

�� ��� �	
�� 	
� � ����� ��������

������	�� �� ����	 ���� �

(c)

Figure 4: "Big Brother" sample. (a) | input image, (b), (c) | recognition results

It consists in the following. On its each step the learning algorithm makes several iterations and after

that the learning sample is recognized. Recognized text lines are compared with ground truth lines from

the sample, and templates of characters, which were not guessed correctly by the algorithm, are declared

"guilty" and are reset to initial values. After that the new step begins. Algorithm works until all learning

images are recognized correctly or given iteration count is reached.

3.4 Algorithm usage as an auxiliary for parameter tuning algorithms

An approach described in the paper can be used not only as an independent method of template statistical

estimation but also as an auxiliary method for other learning algorithms, for example tuning (see [3]).

Tuning algorithms depend in lesser way, comparing to described here, on image degradation type,

therefore they give better results for images with considerably di�erent noise model.

A disadvantage of tuning algorithms is a requirement of exact segmentations for all images from

the learning sample. As it was repeatedly stated, construction of such segmentations usually requires

signi�cant operator e�orts and time.

However, on the basis of described approach even for strongly degraded images we can obtain segmen-

tations of enough precision. Segmentation construction consists of two steps: at the �rst one, using input

14

images and text lines as a learning sample, templates are estimated as it is described in the paper. At

the second step, using estimated templates, we search for the most probable segmentations among those

that correspond to input text lines from the �rst step. These segmentations along with input images are

used as an input to the tuning algorithm.

Below an example of such combined template tuning usage is shown, based on the "Big Brother"

sample. Recognition results are presented on �g. 5(a). The �rst line of each group is an input image,

the second one is an ordinary recognition result, the third one is the most probable segmentation among

those that correspond to a text line from the learning sample. Fig. 5(b) shows pixel-wise di�erences of

the �rst and the third image from each group. Precision of constructed segmentations can be examined

in the following �gure.

(a) (b)

Figure 5: Automatic construction of precise segmentations. (a) | results of ordinary and modi�ed

recognition, (b) | the same results displayed as a pixel-wise subtraction of the �rst and the third lines

form each group of previous image

Conclusion

An approach to character templates estimation for text recognition problems, proposed in the paper,

allows to signi�cantly reduce amounts of manual work during preparation of learning samples, because

instead of exact segmentations of learning images into separate characters algorithm's input consists only

of text lines that correspond to these images.

Natural direction of following research in this area is such a modi�cation of a learning algorithm that

allows to automatically estimate not only colors (shades of gray) of character templates but also sizes of

these templates.

15

References

[1] Michail I. Schlesinger and V�aclav Hlav�a�c. Ten lectures on statistical and structural pattern recognition.

Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.

[2] Prateek Sarkar, Henry S. Baird, and Xiaohu Zhang. Training on severely degraded text-line images.

In IAPR 7th International Conference on Document Analysis and Recognition (ICDAR03), pages

38{43, Edinburgh, Scotland, August 2003.

[3] Bogdan Savchynskyy and Olexander Kamotsky. Character templates learning for textual images

recognition as an example of learning in structural recognition. In Second International Conference

on Document Image Analysis for Libraries (DIAL'06), pages 88{95, Lyon, France, April 2006.

16

