Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation

Bogdan Savchynskyy, Jörg Kappes, Paul Swoboda, Christoph Schnörr

Heidelberg Collaboratory for Image Processing (HCI) University of Heidelberg

Acknowledgement: Thanks to A. Shekhovtsov, B. Flach, T. Werner, K. Antoniuk, V. Franc from CMP of TU Prague for the extreme patience and fruitful discussions

MRF Energy Minimization

$$\min_{x \in \mathcal{X}} E(x) := \min_{x \in \mathcal{X}} \sum_{v \in \mathcal{V}} \theta_v(x_v) + \sum_{uv \in \mathcal{E}} \theta_{uv}(x_u, x_v)$$

- Segmentation [Rother et al. 2004], [Nowozin, Lampert 2010]
- Multi-camera stereo [Kolmogorov, Zabih 2002]
- Stereo and Motion [Kim et al. 2003]
- Clustering [Zabih, Kolmogorov. 2004]
- Medical imaging [Raj et al. 2007]
- Pose Estimation [Bergtholdt et al. 2010], [Bray et al. 2006]

• . . .

Computer Vision energy minimization benchmarks: [Szeliski et al. 2008], [Kappes et al. CVPR, 2013]

MRF Energy Minimization

Integer LP Formulation

$$\begin{split} \min_{\mu \ge 0} \sum_{v \in \mathcal{V}} \sum_{x_v \in \mathcal{X}_v} \theta_v(x_v) \mu_v(x_v) + \sum_{uv \in \mathcal{E}} \sum_{x_u, x_v \in \mathcal{X}_{uv}} \theta_{uv}(x_u, x_v) \mu_{uv}(x_u, x_v) \\ \sum_{x_v \in \mathcal{V}} \mu_v(x_v) &= 1, \ v \in \mathcal{V} \\ \text{s.t.} \ \sum_{x_v \in \mathcal{V}} \mu_{uv}(x_u, x_v) &= \mu_u(x_u), \ x_u \in \mathcal{X}_u, \ uv \in \mathcal{E} \\ \sum_{x_u \in \mathcal{V}} \mu_{uv}(x_u, x_v) &= \mu_v(x_v), \ x_v \in \mathcal{X}_v, \ uv \in \mathcal{E} . \\ \mu \in \{0, 1\}^N \end{split}$$

Integer LP Formulation

$$\begin{split} \min_{\mu \ge 0} \sum_{v \in \mathcal{V}} \sum_{x_v \in \mathcal{X}_v} \theta_v(x_v) \mu_v(x_v) + \sum_{uv \in \mathcal{E}} \sum_{x_u, x_v \in \mathcal{X}_{uv}} \theta_{uv}(x_u, x_v) \mu_{uv}(x_u, x_v) \\ \sum_{x_v \in \mathcal{V}} \mu_v(x_v) &= 1, \ v \in \mathcal{V} \\ \text{s.t.} \ \sum_{x_v \in \mathcal{V}} \mu_{uv}(x_u, x_v) &= \mu_u(x_u), \ x_u \in \mathcal{X}_u, \ uv \in \mathcal{E} \\ \sum_{x_u \in \mathcal{V}} \mu_{uv}(x_u, x_v) &= \mu_v(x_v), \ x_v \in \mathcal{X}_v, \ uv \in \mathcal{E} . \\ \mu \in \{0, 1\}^N \mu \in [0, 1]^N \end{split}$$

LP Relaxation: typical solution

color segmentation problem

integer and fractional labelings

- Is the integer part of the solution correct?
- In general NO! In practice mostly YES.
- How can it be exploited to find an optimal integer solution?

Related Approach: Partial Optimality

QPBO:[Hammer et al. 1984],[Boros, Hammer 2002],[Rother et al. 2007], [Kohli et al. 2008],[Windheuser et al. 2012], [Kahl,Strandmark 2012]; Submodular relaxation:[Kovtun 2003], [Kovtun PhD Thesis 2005], [Shekhovtsov,Hlavač 2011];

LP relaxation: [Swoboda et al. 2013, 2014], [Shekhovtsov 2014].

Related Approach: Partial Optimality

QPBO:[Hammer et al. 1984],[Boros, Hammer 2002],[Rother et al. 2007], [Kohli et al. 2008],[Windheuser et al. 2012], [Kahl,Strandmark 2012]; Submodular relaxation:[Kovtun 2003], [Kovtun PhD Thesis 2005], [Shekhovtsov,Hlavač 2011];

LP relaxation: [Swoboda et al. 2013, 2014], [Shekhovtsov 2014].

Algorithm Idea

0) Initialize:

Identify LP and ILP parts.

t) Iterate till agreement on the border .

From Idea to Algorithm

- Is agreement on the border sufficient for optimality?
- How to select the initial LP/ILP splitting?
- How to encourage agreement on the border?
- How to avoid re-solving the LP part?
- (Do we need to solve the LP relaxation to optimality?)

Is agreement on the border sufficient for optimality?

Is consistency on the border sufficient for optimality?

Is consistency on the border sufficient for optimality?

Is consistency on the border sufficient for optimality?

Background: Reparametrization (Equivalent transformations)

$$\sum_{v \in \mathcal{V}} \theta_v(x_v) + \sum_{uv \in \mathcal{E}} \theta_{uv}(x_u, x_v) \equiv \sum_{v \in \mathcal{V}} \tilde{\theta}_v^{\phi}(x_v) + \sum_{uv \in \mathcal{E}} \tilde{\theta}_{uv}^{\phi}(x_u, x_v)$$

Background: Reparametrization, Dual problem

Primal:
$$E(x) = \min_{x} \sum_{v \in \mathcal{V}} \theta_{v}(x_{v}) + \sum_{uv \in \mathcal{E}} \theta_{uv}(x_{u}, x_{v})$$

Divid: $D(x) = \sum_{v \in \mathcal{V}} e^{i\omega x_{v}} \hat{e}^{\phi}(x_{v}) + \sum_{v \in \mathcal{V}} e^{i\omega x_{v}} \hat{e}^{\phi}(x_{v})$

Dual:
$$D(\phi) = \max_{\phi} \sum_{v \in \mathcal{V}} \min_{x_v} \theta_v^{\phi}(x_v) + \sum_{uv \in \mathcal{E}} \min_{x_{uv}} \theta_{uv}^{\phi}(x_{uv})$$

Background: Reparametrization, Dual problem

Primal:
$$E(x) = \min_{x} \sum_{v \in \mathcal{V}} \tilde{\theta}_{v}^{\phi}(x_{v}) + \sum_{uv \in \mathcal{E}} \tilde{\theta}_{uv}^{\phi}(x_{u}, x_{v})$$

Dual: $D(\phi) = \max_{\phi} \sum_{v \in \mathcal{V}} \min_{x_{v}} \tilde{\theta}_{v}^{\phi}(x_{v}) + \sum_{uv \in \mathcal{E}} \min_{x_{uv}} \tilde{\theta}_{uv}^{\phi}(x_{uv})$
 $D(\phi) \leq E(x)$

Background: Arc Consistency

Dual:
$$D(\phi) = \max_{\phi} \sum_{v \in \mathcal{V}} \underbrace{\min_{x_v} \tilde{\theta}_v^{\phi}(x_v)}_{\gamma_v} + \sum_{uv \in \mathcal{E}} \underbrace{\min_{x_{uv}} \tilde{\theta}_{uv}^{\phi}(x_{uv})}_{\gamma_{uv}}$$

Background: Trivial Problem, Strict Arc Consistency

Theorem. Strict arc consistency in all nodes ↓ the non-relaxed problem is solved.

Proof. Strict arc consistency $\Rightarrow D(\phi) = E(x^*)$, x^* consists of γ_v , γ_{uv} . $D(\phi) \leq E(x) \Rightarrow x^*$ is the solution.

strict arc consistency

Consistency on the border sufficient for optimality.

Theorem. Let θ^{ϕ} be strictly arc consistent on $\blacksquare+\blacksquare$. Then if LP ($\blacksquare+\blacksquare$) and ILP ($\blacksquare+\blacksquare$) solutions agree on the border (\blacksquare) their concatenation is globally optimal.

Helaxation: typical (approximate) solution

Blue - strictly arc consistent, red - otherwise.

Algorithm

0) Initialize:

Solve LP relaxation and reparametrize: $\theta \rightarrow \tilde{\theta}^{\phi}$ 'Blue' = the strictly arc consistent nodes.

t) Iterate till agreement on the border:

Why reparametrize?

Reparametrization provides:

- optimality condition (= consistency on border (=))
- initial splitting criterion (to and)

encouraging of border consistency

Optimal labels "vote" for themselves in both LP (\blacksquare + \blacksquare) and ILP (\blacksquare + \blacksquare) subproblems

• potential speed-up of combinatorial solvers Acts as LP pre-solving

Moreover...

An LP solver needs to be executed only once Because due to strict consistency local decisions are optimal: nodes removal does not change the remaining part of the solution

• Suboptimal reparametrization can be used as well Because we did not employ optimality of the reparametrization

Experimental Evaluation: OpenGM Library and Benchmark

OpenG	M2 +													
$\rightarrow \pi$	hci.iwr.uni-heidelt	perg.de	e/openg	1m2/?l	0=be		ark							
OpenG	M2 Library Bench	mark •	Contacts	· • Algo	rithm	s • Ri	eferen	es •						
Benchm	nark													
Jenchmai	Senchmark database of discrete energy minimization problems. For further details see													
Järg H. K. Leitmann Problem [pilf], [k	appens, Bjoern Andrea, Fred A. Harry n. Mikos Konsodakis, Carsten Aother 18°, CVPR, 2013 Nb], [sup]	recht, Chri "A Comp	atoph Schnör parative Stu	r, Sebastia ally of Mo	n Nowa dern In	nin, Dhru ference	r Aatra, d Techniq	ingecor ins for I	g Kim, ili Discrete	enhard X. Kausler, Jan Energy Minimization				
 Evelu Instru Optim 	ation scripts (feedback welcorne) actions to add novel models to nization methods provided with	the bench in OpenGI	mark 4 2.1											
Models E dataset (z(p) E model description (pdf) evaluation (html)														
		Variables	Labels	Onder	Structure	a function	Instance	a Referenc	• Comment					
۲	In-Painting (N4) J. Leilmann et.al. coveried by J. Leilmann and J.M. Kappes	809	14400	•	2	910H	parts	2	[40]					
۲	In-Painting (N8) J. Leilmann et.al. coveried by Leilmann and J.M. Kappes	849	14400	•	2	grat	parts	2	[40]					
EAst	ColorSegmentation (N4) J. Leilmann et.al. coverted by J. Leilmann and J.M. Kappen	849	76800	3-12	2	90H	patts	3	[40]					
El and	ColorSegmentation (N8) J. Leilmann et.al. corverted by J. Leilmann and J.M. Kappes	809	76800	3-33	2	pid	petts	1	[40]					
A	ColorSegmentation K. Alahari et.al. converted by JM. Kapper	809	21000-424729	34	2	gridt	potts	2	(7)					
(Him	Object Segmentation K. Alahari et.al. coveried by JM. Kapes	849	6060	41	2	910H	parts	2	[7]					
	MRF Photomontage R. Szeliski et.al. coverted by JM. Kapes	809	425633.534080	1.7	2	grat	equilate	2	[41]	Models include soft constraints.				
-			- 100000	34.65		-	-							

Open Library for Graphical Models:

- inference algorithms;
- benchmark data;
- includes Middlebury MRF benchmark
- comparison tables;

Just type ' OpenGM' in Google ...

Experimental Evaluation: OpenGM Library and Benchmark

OpenG	M2 +												
$\rightarrow \pi$	hci.iwr.uni-heidelt	perg.de	e/openg	m2/?l	0=be		ark						
OpenGM2 Library · Benchmark · Contacts · Algorithms · References ·													
Benchmark													
Benchmark database of discrete energy minimization problems. For further details see													
Xign K. Kappen, Bjerner Andres, Fred. A. Henreprecht, Christigen Schwitz, Schwalten Haussein, Dhav Bairs, Sungeneeg Kim, Bernhardt K. Kauster, Jan Leimmunn, Mich Campilali, Caroliton Archier, "A Comparative Study of Modern Inference Techniques for Discrete Tenergy Minimization Problems", CVPR, 2013 [perf], (Nik), (resp)													
Evaluation scripts (Fordback welcored) = astructions to add newel models to the benchmark or optimization monthosis prevident within OpenRH 2.1													
Models 🗄 dataset (zip) 🗟 model description (pdf) 💭 evaluation (html)													
			Variables	Labels	Onder	Structure	• Function	Instance	a Reference	Comment			
۲	In-Painting (N4) J. Leilmann et.al. coverted by J. Leilmann and J.M. Kappes	849	14400	•	2	910H	94731	3	[40]				
ŏ	In-Painting (N8) J. Leilmann et.al. coveried by J. Leilmann and J.M. Kappes	849	14600	•	2	gridit.	parts.	3	[40]				
A MARK	ColorSegmentation (N4) J. Leilmann et.al. coveried by J. Leilmann and J.M. Kappes	849	79800	3-12	2	9091	parts:	2	[40]				
- THE	ColorSegmentation (N8) J. Leilmann et.al. corverted by J. Leilmann and J.M. Kappes	809	76800	3-32	2	pid	petis	1	[40]				
A	ColorSegmentation K. Alahari et.al. corverted by JM. Kapper	809	25800-424729	34	2	gridi	peth	2	(3)				
(11)m	Object Segmentation K. Alahari et.al. coveried by JM. Kapes	895	68262	+1	2	90H	9473s	2	(2)				
	MRF Photomontage R. Szeliski et.al. coverted by //K. Kapes	809	425632-554080	1.7	2	gnat	equitalle	2	[41]	Models include self-constraints.			
			-180000	16.63	,		true.		1411				

Open Library for Graphical Models:

- inference algorithms;
- benchmark data;
- includes Middlebury MRF benchmark
- comparison tables;

Just type ' OpenGM' in Google ...

Our code is freely available as a part of OpenGM!

Experimental Evaluation: Methods

We used:

- TRW-S [Kolmogorov 2005] as LP solver
- CPLEX [IBM] as ILP solver.

Middlebury MRF Benchmark

tsukuba $384 \times 288, 16$ labels

 $E_{min} = 369218$ $E_{TRWS} = 369218$

venus 434×383 , 20 labels

 $E_{min} = 3048043$ $E_{TRWS} = 3048296$

family $752 \times 566, 5$ labels

 $E_{min} = 184813$ $E_{TRWS} = 184825$

Middlebury MRF Benchmark panorama $1071 \times 480, 7$ labels $450 \times 375, 60$ labels

teddy

1 iteration of ILP = out of memory

1 iteration of ILP = out of memory

Middlebury MRF Benchmark

Dataset	Step	o (1) LP (1	(RWS)	Ste	ep (3) ILP	$ \mathcal{B} $	$ \mathcal{B} $	
name	it	time, s	E	it	time, s	Ε	min	max
tsukuba	250	186	369537	24	36	369218	130	656
venus	2000	3083	3048296	10	69	3048043	66	233
teddy	10000	14763	1345214	1	-	-	2062	-
family	10000	20156	184825	18	2	184813	11	109
pano	10000	34092	169224	1		—	24474	—

Table : Results on Middlebury datasets

Color Segmentation: 26 Potts models

Solved

Hereiter Potts Models: Comparison to State-of-the-Art

Dataset	LP step 0		ILP steps 1-3		MCA		MPLP		
	it	time, s	it	time, s	time, s	LP it	LP time, s	ILP time, s	
pfau	1000	276	14 14		> 55496	10000	> 15000		
palm	200	65	17	93	561	700	1579	3701	
clownfish	100	32	8	10	328	350	790	181	
crops	100	32	6	6	355	350	797	1601	
strawberry	100	29	8	31	483	350	697	1114	

 Table : Exemplary Potts model comparison on Color segmentation (N8) dataset.

 Our method is the fastest.

MCA = Multiway cut: [Kappes et al. 2011],[Kappes et al. 2013] MPLP: [Globerson, Jaakkola 2007]+[Sonntag et al. 2008]

Comparison to Partial Optimality by [Kovtun 2003]

Method of Kovtun

Our approach

Solution

Figure : Red pixels mark nodes that need to be labeled by an ILP solver.

OpenGM Models: w/o our results

OpenGM Models: with our results

Conclusions and Future Work

Our approach

- does efficient extraction of the complex, combinatorial subproblem;
- is generic: allows almost any combination of LP and ILP solvers;
- makes the problems, which are easy in practice, easy in theory.

Limitations:

- sparse graphs;
- LP relaxation is *almost* tight.

Future work:

- Alternative and specialized solvers for LP and ILP.
- Higher order models.
- Tighter convex relaxations.

Proof of the Main Theorem

Definition $\mathcal{V}_{\mathcal{A}} \subset \mathcal{V}, \mathcal{V}_{\mathcal{C}} = \{ v \in \mathcal{V}_{\mathcal{A}} : \exists uv \in \mathcal{E}_{\mathcal{G}} : u \in \mathcal{V}_{\mathcal{G}} \setminus \mathcal{V}_{\mathcal{A}} \}, \mathcal{V}_{\mathcal{B}} = \mathcal{V}_{\mathcal{C}} \cup (\mathcal{V}_{\mathcal{G}} \setminus \mathcal{V}_{\mathcal{A}}), \mathcal{Q} = (\mathcal{V}_{\mathcal{Q}}, \mathcal{E}_{\mathcal{Q}}), \mathcal{E}_{\mathcal{Q}} = \{ uv \in \mathcal{E}_{\mathcal{G}} : u, v \in \mathcal{V}_{\mathcal{Q}} \}.$ **Theorem.** Let

x^{*}_A and x^{*}_B minimize the energy on A and B resp.,

•
$$x_{\mathcal{A}}^*|_{\mathcal{C}} = x_{\mathcal{B}}^*|_{\mathcal{C}},$$

• problem $\min_{x_{\mathcal{A}}} E_{\mathcal{A}}(x_{\mathcal{A}})$ is trivial.

Then $x^* = (x^*_{\mathcal{A}}, x^*_{\mathcal{B}}|_{\mathcal{B}\setminus \mathcal{C}})$ is optimal on \mathcal{G} . **Proof.** $E_{\mathcal{G}}(x) \to E_{\mathcal{G}}^{\theta}(x)$ $\theta'_{w}(x_{w}) := \begin{cases} 0, & w \in \mathcal{V}_{\mathcal{C}} \cup \mathcal{E}_{\mathcal{C}} \\ \theta_{w}(x_{w}), & w \notin \mathcal{V}_{\mathcal{C}} \cup \mathcal{E}_{\mathcal{C}} \end{cases}$ $E^{\theta}_{\mathcal{C}}(x) = E^{\theta'}_{\mathcal{A}}(x_{\mathcal{A}}) + E^{\theta}_{\mathcal{B}}(x_{\mathcal{B}})$ $\min_{x_{\mathcal{A}}} E_{\mathcal{A}}(x_{\mathcal{A}})$ is trivial $\Rightarrow x_{\mathcal{A}}^* \in \arg\min_{x_{\mathcal{A}}} E_{\mathcal{A}}^{\theta'}(x)$ $\min_{x} E^{\theta}_{\mathcal{G}}(x) = \{ \min_{x_{\mathcal{A}, x_{\mathcal{B}}}} E^{\theta'}_{\mathcal{A}}(x_{\mathcal{A}}) + E^{\theta}_{\mathcal{B}}(x_{\mathcal{B}}) | \text{ s.t. } x_{\mathcal{A}}|_{\mathcal{C}} = x_{\mathcal{B}}|_{\mathcal{C}} \}$ $= \min_{x'_{\mathcal{C}}} \min_{x_{\mathcal{A}} : x_{\mathcal{A}} \mid_{\mathcal{C}} = x'_{\mathcal{C}}} E^{\theta'}_{\mathcal{A}}(x_{\mathcal{A}}) + \min_{x_{\mathcal{B}} : x_{\mathcal{B}} \mid_{\mathcal{C}} = x'_{\mathcal{C}}} E^{\theta}_{\mathcal{B}}(x_{\mathcal{B}})$ $\geq \min E_{\mathcal{A}}^{\theta'}(x_{\mathcal{A}}) + \min E_{\mathcal{B}}^{\theta}(x_{\mathcal{B}}) = E_{\mathcal{A}}^{\theta'}(x_{\mathcal{A}}^*) + E_{\mathcal{B}}^{\theta}(x_{\mathcal{B}}^*) = E_{\mathcal{G}}^{\theta}(x^*)$