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Abstract
We consider energy minimization for undirected graphical models, known as
MAP- or MLE-inference.
We propose a novel method of combining combinatorial and convex
programming techniques to obtain an optimal integer solution of the initial
combinatorial problem.
Our method enables to confine the application of the combinatorial solver to a
small fraction of the initial graphical model, where the convex programming
solver fails.
The method shows superior results on a computer vision benchmark. In
particular we report solving so far unsolved large scale benchmark problems
and outperform in speed a state-of-the-art specialized method on Potts models.

Problem Formulation
Given the graph G = (V , E), associated variables xv ∈ Xv , v ∈ V, and potentials
θw ,xw ∈ R, w ∈ V ∪ E , we consider the energy minimization problem

min
x∈X

E(θ, x) = min
x∈X

{∑
v∈V

θv ,xv +
∑
uv∈E

θuv ,xuv

}
= min

x∈X
〈θ, δ(x)〉 = min

µ∈conv(δ(X ))
〈θ, µ〉 .

LP Relaxation

min
µ∈Λ
〈θ, µ〉 : Λ = {µ ≥ 0 :

∑
xv

µv = 1,
∑
xu

µuv ,xuv = µv ,xv ,
∑
xv

µuv ,xuv = µu,xu}︸ ︷︷ ︸
local polytope (LP)

⊃ conv(δ(X )),

xv

θuv(xu, xv)
θu(xu) θv(xv)
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Typical Relaxed Solution
Input

color segmentation problem

LP solution

integer and fractional labels

Is the integer part of the solution correct?
In general - NO! In practice - mostly YES.
How can it be exploited to find an optimal integer solution?

Algorithm Idea

- the strictly arc consistent nodes
- nodes with fractional labels

- border nodes
- nodes with inconsistent LP ( + ) and ILP ( + ) solutions.

step 0 step 1 step 2 step 3
Solve LP relaxation

Reparametrize: θ → θ̃φ
apply ILP solver to

+
check agreement
on the border

increase ILP subproblem
+ if disagree

# Check the second column of this poster for definitions and analysis

Questions

Is the consistency on the border ( ) sufficient for optimality?
How to select the initial LP/ILP ( / ) splitting?
How to encourage consistency on the border ( )?
How to avoid re-solving the LP ( + ) part?
Do we need to solve the LP ( + ) part to optimality?

See
Answers ...

below

Consistency on the Border is Insufficient for Optimality

Border ( ) consistency alone is not
enough. Example:
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Background: Reparametrization

vu

+φu,v(xu)
−φu,v(xu)

xu

⇔

vu

θ̃φu(xu)
θ̃φuv(xu, xv)

Primal: E(θφ, x) = min
x

∑
v∈V

θ̃φv(xv) +
∑

uv∈E
θ̃φuv(xu, xv) = E(θ, x)

‖
Dual: D(φ) = max

φ

∑
v∈V

min
xv

θ̃φv(xv)︸ ︷︷ ︸
γv

+
∑

uv∈E
min
xuv

θ̃φuv(xuv)︸ ︷︷ ︸
γuv

≤ E(θφ, x)

Background: Arc Consistency

vu

θ̃φv (xv) θ̃φuv(xu, xv)

γuv

γu

γv

strict arc consistency
vu

θ̃φv (xv) θ̃φuv(xu, xv)

γuv

γuv

γu

γu γv

arc consistency
vu

θ̃φv (xv)
θ̃φuv(xu, xv)

γuv

γu

γv

no arc consistency
Theorem. Strict arc consistency in all nodes⇒ the non-relaxed problem is solved.

Main Theorem
Theorem. Let θφ be strictly arc consistent on + . Then if LP ( + ) and ILP ( + )
solutions agree on the border ( ) their concatenation is globally optimal.

Answers: Why reparametrize?
Reparametrization provides:

optimality condition (= consistency on border ( ))

initial splitting criterion (to and )

encouraging of border consistency
Optimal labels ”vote“ for themselves in both LP ( + ) and ILP ( + ) subproblems

potential speed-up of combinatorial solvers
Acts as LP pre-solving

Moreover...
An LP solver needs to be executed only once
Because due to strict consistency local decisions are optimal: nodes removal does not change
the remaining part of the solution

Suboptimal reparametrization can be used as well
Because we did not employ optimality of the reparametrization

Implementation Details

Approximative LP solver→ TRW-S [2]
Arc consistency→ tree agreement
Combinatorial (ILP) solver→ CPLEX

Results: Color Segmentation Potts models [1]

. . . . . .
Overall 26 instances from color segmentation datasets 360 × 240, 4 − 12
labels and brain (up to 7 · 106 variables, 5 labels) – solved to optimality

Dataset EG,θ(x∗) LP step 0 ILP steps 1-3 MCA MPLP
# it time, s # it time, s time, s # LP it LP time, s ILP time, s

pfau 24010.44 1000 276 14 14 > 55496 10000 > 15000
palm 12253.75 200 65 17 93 561 700 1579 3701
clownfish 14794.18 100 32 8 10 328 350 790 181
crops 11853.12 100 32 6 6 355 350 797 1601
strawberry 11766.34 100 29 8 31 483 350 697 1114

Table: Exemplary Potts model comparison on Color segmentation (N8) [1] dataset.
Our method is the fastest.

Comparison to Partial Optimality Methods [3]

Method of Kovtun [3] Our approach Solution (remained unsolved so far!)
Figure: Red pixels mark nodes that need to be labeled by an ILP solver.

Results: Stereo [4, 1]

(a) tsukuba 384× 288, 16 labels (b) venus 434× 383, 20 labels (c) teddy 450× 375, 60 labels
solved solved (remained unsolved so far!) not solved

Figure: Red pixels show the final subproblem passed to the ILP solver

Results: Photomontage [4, 1]

(a) family 752× 566,5 labels (b) panorama 1071× 480,7 labels
solved (remained unsolved so far!) not solved

Figure: Red points show the final subproblem passed to ILP solver (CPLEX)
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