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This chapter proposes a method for the construction of approximate feasible

primal solutions from infeasible ones for large-scale optimization problems

possessing certain separability properties. Whereas the infeasible primal es-

timates can typically be produced from (sub-)gradients of the dual function,

it is often not easy to project them to the primal feasible set, since the pro-

jection itself has a complexity comparable to the complexity of the initial

problem. We propose an alternative efficient method to obtain feasibility and

show that its properties influencing the convergence to the optimum are sim-

ilar to the properties of the Euclidean projection. We apply our method to

the local polytope relaxation of inference problems for Markov Random Fields

and discuss its advantages compared to existing methods.

Keywords: Markov random fields, inference, primal bound, feasible esti-

mate, optimizing projection, local polytope.
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1.1 Introduction

Convex relaxations of combinatorial problems, as appearing in computer

vision, processing of medical data or analysis of transport networks, often

contain millions of variables and hundreds of thousands of constraints.

It is also quite common to employ their dual formulations to allow for

more efficient optimization, which due to strong duality delivers also primal

solutions. Indeed, approximate primal solutions can usually be reconstructed

from (sub-)gradients of the dual objective. However, these are typically

infeasible. Because of the problem size, only first order methods (based on

the function and its (sub-)gradient evaluation only) can be applied. Since

feasibility is not guaranteed up to the optimum, it is hardly attainable

for such methods because of their slow convergence. The classical trick

— (Euclidean) projection to the feasible set — can not be used efficiently

because of the problem size.

A striking example of such a situation, which we explore in this chapter,

is the reconstruction of feasible primal estimates for local polytope relax-

ations of Markov random field (MRF) inference problems (Schlesinger, 1976;

Werner, 2007; Wainwright and Jordan, 2008), studied in Chapter ??.

Motivation: Why Feasible Relaxed Primal Estimates Are Needed. It is

often the case for convex relaxations of combinatorial problems that not a

relaxed solution, but an integer approximation thereof is used in applica-

tions. Such integer primal estimates can be obtained from the dual ones due

to the complementary slackness condition and using heuristic local search

or rounding procedures (Werner, 2007; Kolmogorov, 2006; Ravikumar et al.,

2010). However, such integer estimates do not converge to the optimum of

the relaxed problem in general.

In contrast, a sequence of feasible solution estimates of the relaxed problem

converging to the optimum guarantees vanishing of the corresponding dual-

ity gap, and hence (i) determines a theoretically sound stopping condition

(Boyd and Vandenberghe, 2004); (ii) provides a basis for the comparison

of different optimization schemes for a given problem; (iii) enables the con-

struction of adaptive optimization schemes depending on the duality gap,

for example adaptive step-size selection in subgradient-based schemes (Ko-

modakis et al., 2011; Kappes et al., 2012) or adaptive smoothing selection

procedures for non-smooth problems (Savchynskyy et al., 2012). Another ex-

ample is the tightening of relaxations with cutting-plane based approaches

(Sontag et al., 2008).
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Contribution. We propose an efficient and well-scalable method for con-

structing feasible points from infeasible ones for a certain class of separable

convex problems. The method guarantees convergence of the constructed

feasible point sequence to the optimum of the problem if only this conver-

gence holds for their infeasible counterparts. We theoretically and empiri-

cally show how this method works in a local polytope relaxation framework

for MRF inference problems. We formulate and prove our results in a general

way, which allows to apply them to arbitrary convex optimization problems

having a similar separable structure.

1.1.1 Formulation of the Main Result

We start by stating the main result of the chapter for a separable linear

programming problem. The result has a special form, which appears in the

MRF energy minimization problem. This example illustrates the idea of the

method and avoids shading it with numerous technical details. We refer to

Section 1.2 and Section 1.3 for all proofs, special cases and generalizations.

Let 〈·, ·〉 denote an inner product of two vectors in a Euclidean space. Let

Rn+ denote the non-negative cone of the n-dimensional Euclidean space Rn.

Let I = {1, . . . , N}, J = {1, . . . ,M}, be sets of integer indexes and

N(j), j ∈ J , be a collection of subsets of I. Let further x ∈ RnI+ be a

collection of (xi ∈ Rn+, i ∈ I) and y ∈ RmJ+ denote (yj ∈ Rm+ , j ∈ J). Let

Aij , i ∈ I, j ∈ J , and Bi, i ∈ I, be full-rank matrices of dimensions m× n
and n× k for some k < n and let ci ∈ Rk. Consider the following separable

linear programming problem in the standard form

min
x∈RnI

+

y∈RmJ
+

N∑
i=1

〈ai, xi〉+

M∑
j=1

〈bj , yj〉 (1.1)

Aijyj = xi, i ∈ N(j), j ∈ J ,
Bixi = ci, i ∈ I .

Let C be the feasible set of the problem (1.1) and the mapping P : RnI+ ×
RmJ+ → C be defined such that P(x, y) = (x′, y′), where

x′i = argmin
x̃i∈Rn

+

(xi − x̃i)2 s.t. Bix̃i = ci, i ∈ I ; (1.2)

y′j := argmin
yj∈Rm

+

〈bj , yj〉 s.t. Aijyj = x′i, i ∈ N(j) . (1.3)

The main result of this chapter states that from the convergence of

(xt, yt) ∈ RnI ×RmJ , t = 1, 2, . . .∞, to the set of optimal solutions of (1.1)

it follows that P(xt, yt) converges to the set of optimal solutions as well.
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Please note that

P(xt, yt) is always feasible due to its construction;

in contrast to the Euclidean projection onto the set C, which constitutes

a problem of size comparable to that of the initial one (1.1), to compute

P(xt, yt) one has to solve many, but small quadratic and linear optimization

problems (1.2)-(1.3), assuming that n � I, m � J and N(J) � I. To this

end such powerful, but not very well scalable tools as simplex or interior

point methods can be used due to the small size of these problems.

In Section 1.2 we additionally show how the convergence speed of P(xt, yt)

depends on coefficients ai and bi.

Assuming that the set C corresponds to the local polytope, variables

xi and yi to unary and binary ”max-marginals” and weights ai and bj to

unary and pairwise potentials respectively, this result allows for an efficient

estimation of feasible primal points from infeasible ones for MRF energy

minimization algorithms, which has been considered as a non-trivial problem

in the past (Werner, 2007).

1.1.2 Related Work on MRF Inference

The two most important inference problems for MRFs are maximum a poste-

riori (MAP) inference and marginalization (Wainwright and Jordan, 2008).

Both are intractable in general and thus both require some relaxation. The

simplest convex relaxation for both is based on exchanging the underlying

convex hull of the feasible set, the marginal polytope, by an approximation

called the local polytope, studied in Chapter ??. However, even with this ap-

proximation the problems remain non-trivial, though solvable, at least the-

oretically. A series of algorithmic schemes were proposed to this end for the

local polytope relaxations of both MAP (see Chapter ?? and works of Storvik

and Dahl (2000), Komodakis et al. (2011), Schlesinger and Giginyak (2007),

Ravikumar et al. (2010), Savchynskyy et al. (2011),Schmidt et al. (2011),

Kappes et al. (2012), Savchynskyy et al. (2012), Martins et al. (2011)) and

marginalization (Wainwright et al., 2005; Jancsary and Matz, 2011; Hazan

and Shashua, 2010). It turns out that the corresponding dual problems have

dramatically fewer variables and contain very simple constraints (Werner,

2007, 2009), hence they can even be formulated as unconstrained problems,

as done by Schlesinger and Giginyak (2007) and Kappes et al. (2012). There-

fore, most of the approaches address optimization of the dual objectives. A

common difficulty for such approaches is the computation of a feasible re-

laxed primal estimate from the current dual one. Infeasible estimates can

typically be obtained from the subgradients of the dual function, as shown
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by Komodakis et al. (2011), or from the gradients of the smoothed dual,

as done by Johnson et al. (2007), Werner (2009), and Savchynskyy et al.

(2011).

Even some approaches working in the primal domain (see Section ?? and

works of Hazan and Shashua (2010), Martins et al. (2011) and Schmidt et al.

(2011)) maintain infeasible primal estimates, whilst feasibility is guaranteed

only in the limit.

Quite efficient primal schemes based on graph cuts, as proposed by Boykov

et al. (2001), do not solve the problem in general and optimality guarantees

provided by them are typically too weak. Hence we discuss neither these here,

nor the widespread message passing and belief propagation (Kolmogorov,

2006; Weiss and Freeman, 2001) methods (discussed also in Chapter ??),

which also do not guarantee the attainment of the optimum of the relaxed

problem.

Feasible Primal Estimates. The literature on obtaining feasible primal

solutions for MRF inference problems from infeasible ones is not very vast.

Apart from our conference papers (Savchynskyy et al. (2011); Schmidt et al.

(2011); Savchynskyy et al. (2012)) describing special cases of our method in

application to the MRF local polytope, we are aware of only three recent

works contributing to this topic, by Schlesinger et al. (2011), Werner (2011).

The most recent and practical method is described in Chapter ??.

The method proposed by Schlesinger et al. (2011) is formulated in the

form of an algorithm able to determine whether a given solution accuracy ε

is attained or not. To this end it restricts the set of possible primal candidate

solutions and solves an auxiliary quadratic programming (QP) problem.

However, this approach is unsuited to compute the actually attained ε

directly and the auxiliary QP in the worst case grows linearly with the

size of the initial linear programming problem. Hence obtaining a feasible

primal solution becomes prohibitively slow as the size of the problem gets

larger.

Another closely related method was proposed by Werner (2011). It is,

however, only suited to determine whether a given solution of the dual

problem is an optimal one. This makes it non-practical, since the state-of-

the-art methods achieve the exact solution of the considered problem only

in the limit, after a potentially infinite number of iterations.

The very recent method described in Chapter ?? is simple, yet efficient.

However, as we show in Section 1.2 (Theorem 1.4), our method applied

on top of any other, including the one described in Chapter ??, delivers

better primal estimates, except for the cases when the estimates of the other

method coincide with ours.
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1.1.3 Content and Organization of the Chapter

In Section 1.2 we describe a general formulation and mathematical proper-

ties of the optimizing projection P(x, y), as already introduced for a special

case in (1.2)-(1.3). We do this without relating it to inference in MRFs. This

shows the generality of the method and keeps the exposition simple. Sec-

tion 1.3 is devoted to local polytope relaxations of the MAP and marginal-

ization inference problems for MRFs and specifies how the feasible estimates

can be constructed for these. In Section 1.4 we discuss different optimization

schemes for the local polytope relaxation for which the primal estimates can

be reconstructed from the dual ones. Finally, Section 1.5 and Section 1.6

contain the experimental evaluation and conclusions, respectively.

1.2 Optimizing Projection

Let us denote by ΠC : Rn → C an Euclidean projection to a set C ⊂ Rn.

Let X ⊆ Rn and Y ⊆ Rm be two subsets of Euclidean spaces and

C ⊂ X × Y be a closed convex set. We will denote as CX the set

{x ∈ X | ∃y ∈ Y : (x, y) ∈ C}, that is the projection of C to X.

The main definition of the chapter introduces the notion of the optimizing

projection in its general form. A possible simplification and the correspond-

ing discussion follow the definition.

Definition 1.1. Let f : X ×Y → R be a continuous convex function of two

variables. The mapping Pf,C : X × Y → C such that Pf,C(x, y) = (x′, y′)

defined as

x′ = ΠCX
(x) , (1.4)

y′ = arg miny : (x′,y)∈Cf(x′, y) , (1.5)

is called optimizing projection onto the set C w.r.t. the function f .

This definition provides the way to get the feasible point (x′, y′) ∈ C from

an arbitrary infeasible one (x, y). Of course, getting just any feasible point is

not a big issue in many cases. However, as we will see soon, the introduced

optimizing projection possesses properties similar to the properties of a

standard Euclidean projection, which makes it a useful tool in cases when its

computation is easier than the one needed for the Euclidean projection. To

this end both the partial projection (1.4) and the partial minimization (1.5)

should be efficiently computable.

The role of projection (1.4) is to make x “feasible”, i.e. to guarantee for x′
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that there is at least one y ∈ Y such that (x′, y) ∈ C, which guarantees the

definition to be well-defined. If this condition holds already for x, it is easy

to see that x′ = x and hence computing (1.4) is trivial. We will call such x

feasible w.r.t. C. Indeed, in (1.4) one can apply an arbitrary projection, since

they all satisfy the mentioned property. However, we provide our analysis

for Euclidean projections only.

Example 1.1. Consider the linear programming problem (1.1) from the

introduction. It is reasonable to construct an optimizing projection Pf,C(x, y)

for it as in (1.2)-(1.3), denoting with f and C the objective function and the

feasible set of the problem (1.1).

We will deal with objective functions, which fulfill the following definition:

Definition 1.2. A function f : X × Y → R is called Lipschitz-continuous

w.r.t. its first argument x, if there exists a finite constant LX(f) ≥ 0, such

that ∀y ∈ Y, x, x′ ∈ X,

|f(x, y)− f(x′, y)| ≤ LX(f)‖x− x′‖ (1.6)

holds. Similarly f is Lipschitz-continuous w.r.t.

y if |f(x, y)− f(x, y′)| ≤ LY (f)‖y − y′‖ for all x ∈ X, y, y′ ∈ Y and some

constant LY (f) ≥ 0;

z = (x, y) if |f(x, y) − f(x′, y′)| ≤ LXY (f)‖z − z′‖ for all z, z′ ∈ X × Y
and some constant LXY (f) ≥ 0 .

The following theorem specifies the main property of the optimizing

projection, namely its continuity with respect to the optimal value of f .

Theorem 1.1. Let f : X × Y → R be a continuous convex function and

let f∗C be its minimum on the convex set C. Then

for any zt = (xt, yt) ∈ X × Y , t = 0, . . . ,∞, from |f(xt, yt)− f∗C |
t→∞−−−→ 0

and ‖zt −ΠC(zt)‖ t→∞−−−→ 0 follows

|f(Pf,C(xt, yt))− f∗C |
t→∞−−−→ 0 . (1.7)

for any z = (x, y) ∈ X×Y , from Lipschitz-continuity of f w.r.t. its second

argument y and feasibility of x w.r.t. C follows:

|f(Pf,C(x, y))− f∗C | ≤ |f(x, y)− f∗C |+ LY (f)‖z −ΠC(z)‖ . (1.8)

for any z = (x, y) ∈ X × Y , from Lipschitz-continuity of f w.r.t. both its
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arguments x and y follows

|f(Pf,C(x, y))− f∗C | ≤ |f(x, y)− f∗C |+ (LX(f) +LY (f))‖z−ΠC(z)‖ .
(1.9)

Theorem 1.1 basically states that if the sequence zt = (xt, yt) ∈ X×Y, t =

1, . . . ,∞, weakly converges to the optimum of f , then the same holds also

for Pf,C(xt, yt). Moreover, for Lipschitz-continuous functions the rate of

convergence is preserved up to a multiplicative constant. Please note that

Pf,C(x, y) actually does not depend on y, the argument y is needed only

for the convergence estimates (1.9) and (1.8), but not for the optimizing

projection itself.

Remark 1.1. Let us provide a bound similar to (1.8) for the Euclidean

projection to get an idea how good the estimate (1.8) is:

|f(ΠC(z))− f∗C | ≤ |f(ΠC(z))− f(z)|+ |f(z)− f∗C |
≤ |f(z) − f∗C | + LXY (f)‖z − ΠC(z)‖ . (1.10)

We see that bounds (1.9) and (1.10) for the optimizing mapping and Eu-

clidean projection differ only by a constant factor: in the optimizing map-

ping, the Lipschitz continuity of the objective f is considered w.r.t. to each

variable x and y separately, whereas the Euclidean projection is based on the

Lipschitz continuity w.r.t. the pair of variables (x, y).

The following technical lemma shows the difference between these two

Lipschitz constants. Together with the next one it will be used in Section 1.3:

Lemma 1.2. The linear function f(x, y) = 〈a, x〉 + 〈b, y〉 is Lipschitz-

continuous with Lipschitz constants LX(f) ≤ ‖a‖, LY (f) ≤ ‖b‖ and

LXY (f) ≤
√
LX(f)2 + LY (f)2.

Lemma 1.3. The function f(z) = 〈a, z〉+
∑N

i=1 zi log zi, where log denotes

the natural logarithm, is

continuous on [0, 1]N 3 z and

Lipschitz-continuous on [ε, 1]N 3 z, ε > 0, with Lipschitz-constant

LXY (f) ≤ ‖a‖+N |1 + log ε| . (1.11)

An important property of the optimizing projection is its optimality.

Contrary to the Euclidean projection it can deliver better estimates even

when applied to an already feasible point (x, y) ∈ C, which is stated by the

following theorem.
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Theorem 1.4 (Optimality of optimizing projection). Let (x, y) ∈ C;

then f(Pf,C(x, y)) ≤ f(x, y), and the inequality holds strictly if y /∈
arg miny′ : (x,y′)∈Cf(x, y′).

The proof of the theorem is straightforward and follows from Definition 1.1

and the fact that x′ = x.

1.3 MRF Inference and Optimizing Projections

In this section we consider optimization problems related to inference in

MRFs and construct corresponding optimizing projections. We switch from

the general mathematical notation used in the previous sections to the one

specific for the considered field, in particular we mostly follow the book of

Wainwright and Jordan (2008).

1.3.1 MAP-inference problem

Let G = (V,E) be an undirected graph, where V is a finite set of nodes

and E ⊂ V × V is a set of edges. Let further Xv, v ∈ V, be finite sets of

labels. The set X = ⊗v∈VXv, where ⊗ denotes the Cartesian product, will be

called labeling set and its elements x ∈ X are labelings. Thus each labeling

is a collection (xv : v ∈ V) of labels. To shorten notation we will use xuv for

a pair of labels (xu, xv) and Xuv for Xu × Xv. The collections of numbers

θv,xv
, v ∈ V, xv ∈ Xv and θuv,xuv

, uv ∈ E, xuv ∈ Xuv, will be called unary

and pairwise potentials, respectively. The collection of all potentials will be

denoted by θ. The maximum a-posteriori (MAP) inference problem reads

min
x∈X

E(x) :=
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) , (1.12)

and consists of finding a labeling with the smallest total potential (energy).

An alternative way of writing problem (1.12) is to express it in the form

of a scalar product of the vector θ with a suitably constructed binary vector

δ(x), x ∈ X: minx∈X 〈θ, δ(x)〉.
The problem is NP-hard in general, hence it is commonly accepted to

consider its convex relaxations. The one most widely used is its local polytope

relaxation, defined in the following subsection.

1.3.2 Primal Relaxed MAP Problem

Denoting R
∑

v∈V |Xv|+
∑

uv∈E |Xuv| as R(M) and the corresponding non-

negative cone R
∑

v∈V |Xv|+
∑

uv∈E |Xuv|
+ as R+(M), one writes (Schlesinger,
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1976; Werner, 2007) the local polytope (linear programming) relaxation of

a MAP inference problem as

min
µ∈R+(M)

∑
v∈V

∑
xv∈Xv

θv,xvµv,xv +
∑
uv∈E

∑
xuv∈Xuv

θuv,xuvµuv,xuv

s.t.

∑
xv∈Xv

µv,xv = 1, v ∈ V ,∑
xv∈Xv

µuv,xuv
= µu,xu

, xu ∈ Xu, uv ∈ E ,∑
xu∈Xu

µuv,xuv
= µv,xv

, xv ∈ Xv, uv ∈ E .

(1.13)

The constraints in (1.13) form the local polytope, later on denoted

as L. Slightly abusing notation, we will briefly write problem (1.13) as

minµ∈LE(µ) := minµ∈L 〈θ, µ〉 .

Optimizing Projection. We will denote as θw and µw, w ∈ V ∪ E, the

collections of θw,xw
and µw,xw

, xw ∈ Xw, respectively. Hence the vectors

θ and µ become collections of θw and µw, w ∈ V ∪ E. The n-dimensional

simplex {x ∈ Rn+ :
∑n

i=1 xi = 1} will be denoted as ∆(n).

Problem (1.13) has a separable structure, that is, for suitably selected

matrices Auv it can be written as

min
µ∈R(M)

∑
v∈V
〈θv, µv〉+

∑
uv∈E

〈θuv, µuv〉

s.t.
µv ∈ ∆(|Xv|), v ∈ V ,

Auvµuv = µv, µuv ≥ 0, uv ∈ E .
(1.14)

Note that under fixed µv, the optimization of (1.14) splits into small

independent subproblems, one for each uv ∈ E. We will use this fact to

compute the optimizing projection onto the local polytope L as follows.

Let µV and µE be collections of primal variables corresponding to graph

nodes and edges respectively, i.e. µV = (µv, v ∈ V), µE = (µuv, uv ∈ E)

and µ = (µV, µE). The corresponding subspaces will be denoted by R(MV)

and R(ME). Then according to (1.14) and Definition 1.1, the optimizing

projection PE,L : R(MV) × R(ME) → L maps (µV, µE) to (µ′V, µ
′
E) defined

as

µ′v = Π∆(|Xv|)(µv), v ∈ V , (1.15)

µ′uv = arg min
µuv≥0

〈θuv, µuv〉

s.t. Auvµuv = µ′v

, uv ∈ E . (1.16)

Note that both (1.15) and (1.16) can be computed very efficiently. Projec-

tion to a simplex in (1.15) can be done e.g. by method proposed by Michelot

(1986). The optimization problem in (1.16) constitutes a small-sized trans-
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portation problem well-studied in linear programming, see e.g. the textbook

of Bazaraa and Jarvis (1977).

Let us apply Theorem 1.1 and Lemma 1.2 to the optimizing projec-

tion PE,L introduced by (1.15)-(1.16). According to these, the convergence

rate of a given sequence µt ∈ R(M) in the worst case slows down by a factor

LMV
(E) +LME

(E) ≤ ‖θV‖+ ‖θE‖. This factor can be quite large, but since

the optimum E∗ grows together with the value ‖θV‖+‖θE‖, its influence on

the obtained relative accuracy is typically much lower than the value itself.

Remark 1.2. However, if θ contains ”infinite” numbers, typically as-

signed to pairwise factors θE to model ”hard” constraints, both optimiz-

ing and Euclidean projections can be quite bad, which is demonstrated by

the following simple example: V = {v, u}, E = {uv}, Xv = Xu = {0, 1},
θ00 = θ11 = θ01 = 0, θ10 = ∞. If now µv,1 > µu,1, optimizing w.r.t. µuv
leads to θ10 · µvu,10 = ∞ · (µv,1 − µu,1), whose value can be arbitrary large,

depending on the actual numerical value approximating ∞. And since nei-

ther the optimizing projection nor the Euclidean one take into account the

actual values of pairwise factors when assigning values to µV, the relation

µv,1 > µu,1 is not controlled.

We provide a numerical simulation related to infinite values of pairwise

potentials in Section 1.5.

Remark 1.3 (Higher order models and relaxations). The generalization

of the optimizing projection (1.15)-(1.16) for both higher order models, and

higher order local polytopes (Wainwright and Jordan, 2008, Sec. 8.5) is quite

straightforward. The underlying idea remains the same: one has to fix a

subset of variables such that the resulting optimization problem splits into a

number of small ones.

Remark 1.4 (Efficient representation of the relaxed primal solution). Note

that since the pairwise primal variables µE can be easily recomputed from the

unary ones µV, it is sufficient to store only the latter if one is not interested

in specific values of pairwise variables µE. Because of possible degeneracy,

there may exist multiple vectors µE optimizing the energy E for a given µV.

1.3.3 Relaxed Dual MAP Problem

In this section we consider the Lagrange dual to the problem (1.13). Let

us denote as N(v) = {u ∈ V : uv ∈ E} the set of neighboring nodes of

a node v ∈ V. We consider the dual variable ν ∈ R(D) to consist of the

following groups of coordinates: νv, v ∈ V; νuv, uv ∈ E; and νv→u,xv
,
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v ∈ V, u ∈ N(v), xv ∈ Xv. In this notation the dual to (1.13) reads

max
ν∈R(D)

∑
v∈V

νv +
∑
uv∈E

νuv (1.17)

s.t.
θv,xv

−
∑

u∈N(v) νv→u,xv
≥ νv , v ∈ V, xv ∈ Xv ,

θuv,xuv
+ νu→v,xu

+ νv→u,xv
≥ νuv, uv ∈ E , xuv ∈ Xuv .

We will use the notation U(ν) :=
∑

v∈V νv +
∑

uv∈E νuv for the objective

function of (1.17).

Optimizing Projection. The dual (1.17) possesses clear separability as

well: after fixing all variables except νv, v ∈ V, and νuv, uv ∈ E, the

optimization splits into a series of small and straightforward minimizations

over a small set of values

νv = min
xv∈Xv

θv,xv
−
∑

u∈N(v)
νv→u,xv

, v ∈ V , (1.18)

νuv = min
xuv∈Xuv

θuv,xuv
+ νu→v,xu

+ νv→u,xv
, uv ∈ E . (1.19)

The formula (1.18) can be applied directly for each v ∈ V and (1.19)

accordingly for each uv ∈ E.

We denote by D the dual feasible set defined by the constraints of (1.17).

We split all dual variables into two groups. The first one will contain

”messages” ν→ = (νv→u, v ∈ V, u ∈ N(v)), that are variables, which

reweight unary and pairwise potentials leading to an improvement in the

objective. The vector space containing all possible values of these variables

will be denoted as R(D→). The second group will contain lower bounds on

optimal reweighted unary and pairwise potentials ν0 = (νw, w ∈ V∪E). The

total sum of their values constitutes the dual objective. All possible values

of these variables will form the vector space R(D0). Hence the optimizing

projection PU,D : R(D→)× R(D0)→ R(D) maps (ν→, ν0) to (ν ′→, ν
′
0) as

ν ′v→u = νv→u, v ∈ V, u ∈ N(v) , (1.20)

ν ′v = min
xv∈Xv

θv,xv
−
∑

u∈N(v)
ν ′v→u,xv

, v ∈ V , (1.21)

ν ′uv = min
xuv∈Xuv

θuv,xuv
+ νu→v,xu

+ ν ′v→u,xv
, uv ∈ E . (1.22)

Equation (1.20) corresponds to the projection (1.4), which has the form

ΠR(D→)(ν→) = ν→0 and is thus trivial.

Applying Theorem 1.1 and Lemma 1.2 to the optimizing projection PU,D
yields that the convergence of the projected νt slows down no more than

by a factor LD0
≤ |
√
V| + |

√
E| and does not depend on the potentials

θ. However, since the optimal energy value often grows proportionally to
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|V| + |E|, the influence of the factor on the estimated related precision is

typically insignificant.

1.3.4 Entropy-Smoothed Primal Problem

Let H : Rn+ → R be an entropy function defined as H(z) = −
∑n

i=1 zi log zi
and the dimensionality n defined by the dimensionality of the input. The

problem

min
µ∈R+(M)

Ê := min
µ∈R+(M)

〈θ, µ〉 −
∑

w∈V∪E
cwH(µw)

s.t.

∑
xv∈Xv

µv,xv
= 1, v ∈ V ,∑

xv∈Xv
µuv,xuv

= µu,xu
, xu ∈ Xu, uv ∈ E ,∑

xu∈Xu
µuv,xuv

= µv,xv
, xv ∈ Xv, uv ∈ E ,

(1.23)

is closely related to the primal relaxed one (1.13), and arises e.g. when

one applies the smoothing technique (Nesterov, 2004; Jojic et al., 2010;

Savchynskyy et al., 2011, 2012; Hazan and Shashua, 2010) or considers

approximations for marginalization inference (Wainwright and Jordan, 2008;

Wainwright et al., 2005; Jancsary and Matz, 2011). We refer to the works

of Heskes (2004), Weiss et al. (2007) and Hazan and Shashua (2010) for

a description of the sufficient conditions for convexity of (1.23). Assuming

a precision ε = 10−16 to be sufficient for practical needs, we equip (1.23)

with an additional set of box constraints µ ∈ [ε, 1]|M|, where |M| is the

dimensionality of the vector µ. This is done to obtain a finitely large

Lipschitz constant according to Lemma 1.3.

Optimizing projection. Denoting the local polytope L augmented with

the additional box-constraints µ ∈ [ε, 1]|M| as L̂, we define the corresponding

optimizing projection PÊ,L̂(µ) as

µ′v = Π∆(|Xv|)∩[ε,1]|Xv|(µv), v ∈ V , (1.24)

for uv ∈ E :

µ′uv = arg min
µuv∈[ε,1]|Xuv|

〈θuv − cuv log(µuv), µuv〉

s.t. Auvµuv = µ′v ,
(1.25)

where log z, z ∈ Rn, is defined coordinate-wise. By applying Theorem 1.1

and Lemma 1.3 one obtains that the convergence rate of a given sequence

µt ∈ R(M) in the worst case slows down by a factor ‖θV‖ + ‖θE‖ +∑
w∈V∪E |Xw||1 + log ε|, where the last term constitutes a difference to the

optimizing projection PE,L for the primal MAP-inference problem (1.13).
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Remark 1.5. Indeed, the additional constraints µ ∈ [ε, 1]|M| are needed only

for the theoretical analysis of the projected estimate PÊ,L̂(µ), to show that

when the true marginals µ become close to 0, the optimizing projection (and

in fact the Euclidean one also) behaves worse.

However, there is no reason to use these constraints in practice: according

to Theorem 1.1, the projected feasible estimates will converge to the optimum

of the problem together with the non-projected infeasible ones even without

the box constraints, due to continuity of the entropy H. It is only the speed of

convergence of the projected estimates, which will decrease logarithmically.

Moreover, omitting the box constraints µ ∈ [ε, 1]|M| simplifies the compu-

tations (1.24) and (1.25). The first one then corresponds to the projection

onto the simplex, and the second one to a small-sized entropy minimization,

efficiently solvable by the Newton method after resorting to its corresponding

smooth and unconstrained dual problem.

Moreover, we suggest to threshold µv by setting µv,xv
to zero if it is less

than the precision ε. That decreases the size of the subproblem (1.25) and

allows to avoid numerical problems.

1.4 Optimizing Projection in Algorithmic Schemes

In the previous sections, we concentrated on the way to compute the

optimizing projection, assuming that a weakly converging (but infeasible)

sequence is given. In this section, we briefly discuss how these infeasible

sequences can be generated.

1.4.1 Prox-Point Primal-Dual Algorithms

In the simplest case, the (infeasible) estimates µt for the primal (1.13) and

νt for the dual (1.17) problems are generated by an algorithm itself on each

iteration t, as is typical for primal-dual algorithms. These algorithms address

the relaxed problem (1.13) in its saddle-point formulation

max
µ≥0

min
ν

{〈−b, ν〉+
〈
µ,A>ν

〉
− 〈θ, µ〉} . (1.26)

The matrix A corresponds to equality constraints in (1.13). Some of the

methods (described in Section ?? and works of Martins et al. (2011), Fu and

Banerjee (2013)) additionally approach (1.26) with prox-terms of the form

‖Aµ − b‖2 or ‖A>ν − θ‖2. Some of these algorithms maintain feasible dual

estimates νt as in Section ?? and in works of Martins et al. (2011) and Fu and

Banerjee (2013), whereas others do not, as done by Schmidt et al. (2011).
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However, to the best of our knowledge, none of these algorithms maintains

feasibility of the primal estimates µt with respect to the problem (1.13). One

can obtain the feasible estimates, as well as the duality gap estimation, by

applying the optimizing projection PE,L(µt) defined by (1.15)-(1.16) and –

if needed – PU,D(νt) defined by (1.20)-(1.22), respectively.

1.4.2 Dual Decomposition Based Algorithms

There is an alternative way to formulate a dual problem to (1.13), based on

the Lagrangian or dual decomposition. This technique allows to construct

particularly efficient inference algorithms. We will review the reconstruction

of primal estimates for these algorithms in this section.

For the sake of brevity we consider the case, where the master-graph

G = (V,E) can be covered by two acyclic subgraphs Gi = (Vi,Ei), i = 1, 2,

such that each edge of G is covered only once, and each vertex twice, i.e. by

either subgraph: V1 = V2 = V, Ei ∪ E2 = E and E1 ∩ E2 = ∅. An example

is a grid graph, which allows such a decomposition into two subgraphs

corresponding to its rows and columns.

Introducing

θiuv =

{
θuv, uv ∈ Ei

0, uv /∈ Ei
, i = 1, 2 , (1.27)

and assuming θ1
v,xv

+θ2
v,xv

= θv,xv
, ∀v ∈ V, xv ∈ Xv, which can be rewritten in

a parametric way as θ1
v,xv

= θv,xv

2 +λv,xv
and θ2

v,xv
= θv,xv

2 −λv,xv
, λv,xv

∈ R,

one obtains a lower bound

min
x∈X

E(θ, x) = min
x∈X
〈θ, δ(x)〉 ≥ max

λ∈R(Λ)

2∑
i=1

min
x∈X

〈
θi, δ(x)

〉
= min

µ∈L
〈θ, µ〉 . (1.28)

Here R(Λ) := R
∑

v∈V |Xv|. The last equality is not straightforward and holds

for a decomposition of G to arbitrary acyclic subgraphs. We refer to the work

of Komodakis et al. (2011) for its proof.

The unconstrained concave, but non-smooth problem

max
λ∈R(Λ)

U(λ) := max
λ∈R(Λ)

2∑
i=1

min
x∈X

〈
θi, δ(x)

〉
(1.29)

is dual to the relaxed problem (1.13).

In the following two paragraphs we will provide several different expres-

sions for computing µitw, w ∈ Vi∪Ei, i = 1, 2, which will serve as coordinates

of the infeasible primal sequences converging to the optimum of the prob-
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lems (1.13) or (1.23), respectively. Although multiple ways of constructing

such a sequence out of these coordinates are possible, we will use the follow-

ing scheme in our experiments:

µtV =
1

2
(µ1t

V + µ2t
V ), µtuv =

{
µ1t
uv, uv ∈ E1

µ2t
uv, uv ∈ E2

, uv ∈ E . (1.30)

To transform the sequences into feasible ones we will apply corresponding

(PE,L or PÊ,L̂) optimizing projections to µt.

Subgradient and Bundle methods. Sub-gradient method of Shor et al.

(1985)

λt+1 = λt + τ t
∂U

∂λ
(λt), where τ t → 0 and

∞∑
t=1

τ t =∞ (1.31)

was one of the first optimization algorithms with convergence guarantees,

independently applied by Storvik and Dahl (2000) and later by Schlesinger

and Giginyak (2007) and Komodakis et al. (2007) to tackle (1.29). It is

based on the fact that the subgradient ∂U
∂λ = δV(x∗1)− δV(x∗2), where x∗i =

arg minx∈X
〈
θi(λ), δ(x)

〉
, is efficiently computable by dynamic programming

when graphs Gi are acyclic.

It is shown by Larsson et al. (1999) and later applied by Komodakis et al.

(2011) (see also (Sontag et al., 2011, Sec.1.7.1)) that both time-averaged

µitw :=

∑t
k=1 δw(x∗i,k)

t
, w ∈ Vi ∪ Ei (1.32)

and step-size averaged labelings

µitw :=

∑t
k=1 τ

kδw(x∗i,k)∑t
k=1 τ

k
, w ∈ Vi ∪ Ei , (1.33)

where x∗i = arg minx∈X
〈
θi(λt), δ(x)

〉
and t denotes the iteration counter

of the algorithm (1.31), can be used to construct a primal sequence con-

verging to the optimum of the primal relaxed problem (1.13). Sequences µt,

constructed as in (1.30) out of µitw defined either by (1.32) or by (1.33), are

infeasible however, i.e. they do not fulfill constraints of (1.13) up to the opti-

mum. They can be turned into feasible ones with the optimizing projection

PE,L defined by (1.15)-(1.16).

The coordinates of a converging infeasible primal sequence for the bundle

method can be constructed as µitw :=
∑t

k=1 ξ
kδw(x∗i,k)∑t
k=1 ξ

k , w ∈ Vi ∪ Ei, where

coefficients ξk are the weights of the k-th subgradient in the bundle (Kappes

et al., 2012, eq. 23).
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Smoothing/Marginalization Inference. Another group of optimization

algorithms (Savchynskyy et al., 2011, 2012; Hazan and Shashua, 2010;

Ravikumar et al., 2010; Johnson et al., 2007) overcomes the non-smoothness

of the dual problem (1.29) by smoothing it prior to optimization. To this

end the ’min’ operation in (1.29) is replaced by the well-known ’log-sum-

exp’ (or negative soft-max) function (Rockafellar and Wets, 2004; Nesterov,

2004) yielding

Ûρ(λ) := −
2∑
i=1

ρ log
∑
x∈X

exp
〈
−θi(λ)/ρ, δ(x)

〉
, ρ > 0 . (1.34)

This approximation becomes tighter as ρ decreases, as stated by the well-

known inequality Ûρ(λ) + 2ρ log |X| ≥ U(λ) ≥ Ûρ(λ). Maximization of Ûρ
over R(Λ) is dual to minimization of the entropy-smoothed energy Ê over L

(for certain coefficients cw) defined in (1.23) and hence is used also for an

approximate marginalization inference (Wainwright et al., 2005; Jancsary

and Matz, 2011).

Let us define coordinates of the primal sequence as

µitw,xw
:=

∑
x′∈X,x′w=xw

exp
〈
−θi(λt)/ρ, δ(x′)

〉
exp(−Û iρ(λt)/ρ)

, w ∈ Vi ∪ Ei , (1.35)

where λt converges to the optimum of Ûρ as t → ∞. Note that the µit

correspond to sum-prod marginals of the subgraphs Gi, and are efficiently

computable by dynamic programming when Gi are acyclic. It is known

(Savchynskyy et al., 2011) that the sequence µt constructed from µitw,xw
as

in (1.30) converges to the optimum of (1.23) as t → ∞. Application of the

optimizing projection PÊ,L̂(µ) defined in Section 1.3.4 turns the infeasible

sequence µt into a feasible one.

Remark 1.6. If the final objective of the optimization is not the entropy-

smoothed primal problem (1.23), but the primal MAP-inference (1.13), and

the smoothing is used as an optimization tool to speed up or guarantee con-

vergence (Savchynskyy et al., 2011, 2012; Hazan and Shashua, 2010; John-

son et al., 2007), one can obtain even better primal bounds at a lower com-

putational cost. Namely, the optimizing projection PE,L can be applied to ap-

proximate the optimal solution of the primal MAP-inference problem (1.13).

Denote µ̂′ = (µ̂′V, µ̂
′
E) = PÊ,L̂(µV, µE) and µ′ = (µ′V, µ

′
E) = PE,L(µV, µE).

Ignoring the box-constraints according to the recommendations of Re-

mark 1.5, from the definitions (1.15) and (1.24) it follows that µ̂′V = µ′V,

and thus due to (1.16) and (1.25), E(µ′) ≤ E(µ̂′). This means that the pro-

jection PE,L is preferable for approximating the minimum of E over L even
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in the case when the smoothed problem (1.23) was optimized, rather than

the original non-smooth (1.13). As an additional benefit, one obtains faster

convergence of the projection even from the worst-case analysis, due to a

better estimate of the Lipschitz constant for the function E compared to the

function Ê, as provided by Lemmas 1.2 and 1.3.

1.4.3 Non-smooth Coordinate Descent: TRWS, MPLP and others

We are not aware of methods for reconstructing primal solutions of the

relaxed MAP-inference problem (1.13) from dual estimates for non-smooth

coordinate descent based schemes like TRW-S of Kolmogorov (2006) and

MPLP of Globerson and Jaakkola (2007). Indeed, these schemes do not

solve the relaxed MAP problem in general, hence even if one would have

such a method at hand, it would not guarantee convergence of the primal

estimates to the optimum.

1.5 Experimental Analysis and Evaluation

The main goal of this section is to show how Theorem 1.1 works in practice.

To this end we provide three different experiments. All they address the

relaxed MAP inference problem (1.13) and include reconstruction of feasible

primal estimates for it. Additionally we refer to the works of Savchynskyy

et al. (2011), Schmidt et al. (2011), Savchynskyy et al. (2012) for experiments

with an extended set of benchmark data.

In the first experiment we show convergence of the feasible primal esti-

mates for three different algorithms. In the second one we show advantages

of the feasible relaxed primal estimates over integral primal estimates for

efficient adaptive algorithms. Finally, the third experiment shows that the

bounds (1.8)- (1.9) allow a qualitative prediction of the objective value in

the (feasible) projected point.

For the experiments we used our own implementations of the First Order

Primal-Dual Algorithm (acronym FPD) of Chambolle and Pock (2010) (orig-

inally proposed by Pock et al. (2009)) as described by Schmidt et al. (2011),

the adaptive diminishing smoothing algorithm ADSAL proposed by Savchyn-

skyy et al. (2012), the dual decomposition based subgradient ascent SG with

an adaptive step-size rule (Kappes et al., 2012, eq.17) and primal estimates

based on time-averaged subgradients (see Section 1.4.2), and finally Nes-

terov’s accelerated gradient ascent method NEST applied to the smoothed

dual decomposition-based objective studied by Savchynskyy et al. (2011).

All implementations are based on data structures of the OpenGM library
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by Andres et al. (2012).

The optimizing projection to the local polytope w.r.t. to the MAP-

energy (1.15)-(1.16) is computed using our implementation of a special-

ization of the simplex algorithm for transportation problems (Bazaraa and

Jarvis, 1977). We adopted an elegant method by Bland (1977), also discussed

in the textbook of Papadimitriou and Steiglitz (1998), to avoid cycling. The

source code of the solver is available as a part of the OpenGM library.

Feasible Primal Bound Estimation. In the first experiment, we demon-

strate that for all three groups of methods discussed in Section 1.4 our

method efficiently provides feasible primal estimates for the MAP inference

problem (1.13). To this end we generated a 256×256 grid model with 4 vari-

able states (|Xv| = 4) and potentials θ randomly distributed in the interval

[0, 1]. We solved the LP relaxation of the MAP inference problem (1.13) with

FPD as a representative of methods dealing with infeasible primal estimates,

ADSAL as the fastest representative of smoothing-based algorithms and the

subgradient method SG. The corresponding plot is presented in Figure 1.1

(left). We note that for all algorithms the time needed to compute the op-

timizing projection PE,L did not exceed the time needed to compute the

subgradient/gradient of the respective dual function and typically required

0.01-0.02 s on a 3GHz machine. The generated dataset is not LP tight, hence

the obtained relaxed primal solution has a significantly lower energy than

the integer one. In contrast to the situation when only non-relaxed integer

primal estimates would be computed, the primal and dual bounds of the

relaxed problem converge to the same limit value. Due to the feasibility of

both primal and dual estimates, the primal and dual objective functions’ val-

ues bound the optimal value of the relaxed problem from above and below,

respectively.

Relaxed Primal Estimates for Adaptive Algorithms We demonstrate the

practical usefulness of feasible relaxed primal estimates with the diminishing

smoothing ADSAL algorithm of Savchynskyy et al. (2012). It optimizes the

smooth dual (1.34) with a degree of smoothing ρ, which decreases with

the estimated duality gap. In the original work of Savchynskyy et al.

(2012) the primal bound is computed with the optimizing projection as

described in Remark 1.6. To demonstrate its importance we substituted this

computation with an estimation of an integer solution by rounding (as done

by Kolmogorov (2006) in the TRW-S algorithm). Figure 1.1 (right) shows

the difference between convergence of the original ADSAL algorithm and its

modification on the randomly generated 25 × 25 grid model with 4 labels.

Since the gap between the integer and the dual bounds does not vanish,
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Figure 1.1: Left: Convergence of the primal (upper curves) and dual (lower curves)
bounds to the same optimal limit value for ADSAL, FPD and SG algorithms. The
obtained integer bound is plotted as a dotted line.
Right: Convergence of the original ADSAL algorithm and its modification. In the
modified algorithm an integral labeling provides a primal bound for the smoothing
update, whereas in the original algorithm a feasible relaxed primal estimate is used.

the smoothing does not vanish either and the overall algorithm gets stuck

in a suboptimal point, whereas the original algorithm based on the relaxed

primal estimate converges to the optimum.

Evaluation of Convergence Estimates. The third experiment is devoted

to the evaluation of the convergence estimates (1.8)-(1.9) provided by The-

orem 1.1. To this end, we generated four LP-tight grid-structured datasets

with known optimal labeling. We refer to the work of Schmidt et al. (2011)

for a description of the generation process. The resulting unary and pair-

wise potentials were distributed in the interval [−10, 10]. We picked a ran-

dom subset of edges not belonging to the optimal labeling and assigned

them “infinite” values. We created four datasets with “infinities” equal to

10 000, 100 000, 1 000 000 and 10 000 000 and ran NEST for inference.

According to Theorem 1.1 the energy E evaluated on projected feasible es-

timates PE,L(µtV, µ
t
E), t = 1, . . . ,∞, where the infeasible estimates µt were

constructed as in Section 1.4.2, can be represented as

E(PE,L(µtV, µ
t
E)) = F (µt) + LY (E)‖µt −ΠLµ

t‖ (1.36)

for a suitably selected function F . Since NEST is a purely dual method

and “infinite” pairwise potentials did not contribute significantly to the

values and gradients of the (smoothed) dual objective, the infeasible primal

estimates µt (with t denoting an iteration counter) were the same for all four

different approximations of the infinity value. Since according to Lemma 1.2

the Lipschitz constant LY (E) is asymptotically proportional to the norm of

the pairwise potentials ‖θE‖ we plotted the values logE(PE,L(µtV, µ
t
E)) as a
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Figure 1.2: Convergence of the obtained primal feasible solution for four datasets
which differ only by the values used as “infinity”. The energy values are plotted
in logarithmic scale. From bottom to top: optimal log-energy, primal bounds
corresponding to infinity values equal to 10 000, 100 000, 1 000 000 and 10 000 000.

function of t for all four datasets in Figure 1.2. As predicted by Theorem 1.1

the corresponding energy values differ by approximately a factor of 10, as

the “infinite” values do. Due to the logarithmic energy scale this difference

corresponds to equal log-energy distances between the curves in Figure 1.2.

1.6 Conclusions

We presented an efficient and quite general optimizing projection method

for computing feasible primal estimates for dual and primal-dual optimiza-

tion schemes. The method provides convergence guarantees similar to those

of the Euclidean projection, but contrary to the latter allows for efficient

computations if the feasible set and the objective function possess certain

separability properties. As any optimization tool it has also certain limita-

tions related to the Lipschitz continuity of the primal objective, however,

exactly the same limitations are characteristic also for the Euclidean pro-

jection. Hence they can not be considered as particular disadvantages of

this method, but must rather be considered as disadvantages of projection

methods in general. These limitations can only be overcome by constructing

algorithms that intrinsically maintain feasible primal estimates during iter-

ations. The construction of such algorithms has to be addressed in future

work.
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Proofs

Theorem 1.1.

Proof. We will denote (xp, yp) = zp = ΠC(z) and (x′, y′) = Pf,C(x, y). Note

that

from f∗C ≤ f(x′, y′) ≤ f(x′, y′′) for any y′′ ∈ Y such that (x′, y′′) ∈ C it

follows that

f∗C ≤ f(x′, y′) ≤ f(x′, yp) , (1.37)

from ‖z − zp‖ =
√
‖x− xp‖2 + ‖y − yp‖2 it follows that

‖y − yp‖ ≤ ‖z − zp‖ and ‖x− xp‖ ≤ ‖z − zp‖ . (1.38)

according to (1.4) x′ = ΠCX
(x) = arg minx̃∈CX

‖x− x̃‖ and hence

‖x− x′‖ ≤ ‖x− xp‖ (1.39)

since xp ∈ CX . Combining this with (1.38) we obtain

‖x− x′‖ ≤ ‖z − zp‖ . (1.40)

The triangle inequality ‖x′−xp‖ ≤ ‖x′−x‖+ ‖x−xp‖ and (1.39) applied

to xt
′ := ΠCX

(xt) and (xtp, ytp) := ΠC(xt, yt) in place of x′ and (xp, yp)

respectively suggest that from ‖(xt, yt)−ΠC(xt, yt)‖ t→∞−−−→ 0 follows that

‖xt′ − xtp‖ t→∞−−−→ 0 and ‖x− xt′‖ t→∞−−−→ 0 . (1.41)

Implication (1.7) follows from (1.41), continuity of f and inequality

|f(Pf,C(xt, yt))− f∗C | = |f(xt
′
, yt
′
)− f∗C |

(1.37)

≤ |f(xt
′
, ytp)− f∗C |

≤ |f(xt
′
, ytp)− f(xt

′
, yt)|+ |f(xt

′
, yt)− f∗C | . (1.42)
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Implication (1.8) follows from

|f(Pf,C(x, y))− f∗C | = |f(x′, y′)− f∗C |
(1.37)

≤ |f(x′, yp)− f∗C |
≤ |f(x′, yp)−f(x′, y)|+|f(x′, y)−f∗C | ≤ LY (f)‖y−yp‖+|f(x′, y)−f∗C |

(1.38)

≤ LY (f)‖z − zp‖ + |f(x′, y) − f∗C | . (1.43)

assuming that x′ = x.

Implication (1.9) follows from (1.43) and Lipschitz-continuity of f w.r.t. x:

|f(Pf,C(x, y))− f∗C |
(1.43)

≤ LY (f)‖z − zp‖+ |f(x′, y)− f∗C |
≤ LY (f)‖z − zp‖+ |f(x′, y)− f(x, y)|+ |f(x, y)− f∗C |
≤ LY (f)‖z − zp‖+ LX(f)‖x′ − x‖+ |f(x, y)− f∗C |
(1.40)

≤ LY (f)‖z − zp‖+ LX(f)‖z − zp‖+ |f(x, y)− f∗C |
= (LY (f) + LX(f))‖z − zp‖+ |f(x, y)− f∗C | . (1.44)

Lemma 1.2.

Proof. All three Lipschitz-constants are derived from the Cauchy-Bunyakovsky-

Schwarz inequality 〈c, ν〉 ≤ ‖c‖ · ‖ν‖, c, ν ∈ RN , applied respectively to x, y

and z = (x, y) in place of ν.

Lemma 1.3.

Proof. The function fi(zi) = zi log zi of a single variable is differentiable on

[ε,M ] and its derivative f ′i(zi) = 1 + log zi is monotone increasing, hence

fi(zi) is convex. This implies fi(zi) − fi(z′i) ≤ f ′i(zi)(zi − z′i) and |fi(zi) −
fi(z

′
i)| ≤ |f ′i(zi)||(zi − z′i)|. Taking into account that due to monotonicity

|f ′i(zi)| ≤ max{|1+log ε|, |1+logM |} for zi ∈ [ε,M ], and using the fact that

L(f1+f2) ≤ L(f1)+Lf (f2) together with Lemma 1.2, one obtains (1.11).
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