
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Towards Globally Optimal Normal Orientations for Large
Point Clouds

Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold

TU Dresden, Germany

Abstract

Various processing algorithms on point set surfaces rely on consistently oriented normals (e.g. Poisson surface
reconstruction). While several approaches exist for the calculation of normal directions, in most cases their ori-
entation has to be determined in a subsequent step. This paper generalizes propagation-based approaches by
reformulating the task as a graph-based energy minimization problem. By applying global solvers, we can achieve
more consistent orientations than simple greedy optimizations. Furthermore, we present a streaming-based frame-
work for orienting large point clouds. This framework orients patches locally and generates a globally consistent
patch orientation on a reduced neighbor graph, which achieves similar quality to orienting the full graph.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

With the increasing availability of scene acquisition technol-
ogy, point clouds have become an important way to represent
surfaces. Assigning only a position to points is not enough
for most use cases. Shaded renderings, most surface recon-
struction algorithms, or scan registration are some examples
that additionally rely on oriented point normals.

Given a set of point positions, the direction of point nor-
mals can be estimated by locally fitting a low-order surface
whose normal can be calculated analytically, e.g. PCA is
one simple means of fitting a plane [Pea01]. However, those
fitting processes leave the orientation of a normal ambigu-
ous, i.e. the correct normal could be the calculated one or
its inverse. If the acquisition scenario is known and a ro-
bust normal estimation method is used, a consistent orienta-
tion can usually be achieved by setting all normals to point
towards the sensor. If, however, only raw point cloud data
are available, the orientation must be computed in a sepa-
rate step. Furthermore, non-robust normal estimation meth-
ods can result in wrong orientations even if the sensor posi-
tion is known, especially in the presence of noise.

In this article, we present a propagation-based method
that finds approximately optimal orientations for raw unor-
ganized point sets. Our main contributions are:

• Formal definition of the orientation problem as a dis-
crete graph-based labeling problem and application of ad-
vanced solving techniques

• Presentation of a streaming-based out-of-core framework
for large data sets

After formalizing the orientation problem, we analyze how
this problem has been solved traditionally. We use the re-
sults of this analysis to introduce more involved solving
techniques, which can achieve globally optimal orientations.
The major part of this article focuses on our out-of-core
framework, which integrates the presented solvers into a
streaming-based approach. This approach can be easily ap-
plied to large data sets that do not fit in the computer’s main
memory. Such data are usually generated by combining reg-
istered scans into a single one. While the single scans may
contain sparsely-sampled areas, their combination is usu-
ally sampled more densely, which makes normal propaga-
tion easier. Furthermore, the streaming approach can signif-
icantly speed up orientation for medium-sized data sets.

2. Related Work

Most existing normal orientation algorithms can be classi-
fied into propagation-based and volume-based approaches.
The following section gives a short overview of these two

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

The definitive version is available at wileyonlinelibrary.com: http://onlinelibrary.wiley.com/doi/10.1111/cgf.12795/full

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

classes and some other approaches that do not fit in this sys-
tem. For a detailed survey on surface reconstruction from
point clouds, we refer the reader to [BTS∗14]. Addition-
ally, we review a few variants of point cloud streaming - the
method we chose to use for orienting large point clouds.

2.1. Propagation-Based Methods

Propagation-based methods try to deduce the orientation of
a point’s normal from known orientations in its local neigh-
borhood. To accomplish this, a measure must be calculated
that defines for each pair of neighboring vertices the uncer-
tainty with which one orientation can be calculated given the
other. Based on this measure, a spanning tree of the neighbor
graph is calculated that minimizes the overall uncertainty.
Then, starting from one or more vertices with known normal
orientation, the tree is traversed and the known orientations
are propagated across the surface by flipping normals if nec-
essary (according to a flip criterion).

One early approach is that of Hoppe [HDD∗92]. This
method uses the term 1− |hni,n ji| as the uncertainty mea-
sure, where ni, j are the two normals of adjacent points. The
flip decision is based on the dot product’s sign. A single
point with an extremal coordinate along one of the princi-
pal axes is chosen as the starting point of the propagation
because its orientation can be inferred under the assump-
tion that the point cloud represents a closed surface. The ap-
proach works well for smooth and densely sampled surfaces
with low curvature but can fail at sharp edges and creases.

Since then, several improvements have been developed .
Xie et al. [XWH∗03] developed a flip criterion that is able
to orient creases and close surface sheets. Furthermore, they
propose to use several starting points and to propagate only
along reliable edges. The resulting set of oriented patches
is stitched together with a modified flip criterion. König’s
flip criterion [KG09] assumes low curvature by evaluating
the complexity of Hermite splines defined by the point nor-
mals. In [HLZ∗09], the authors propose to run an initial
consolidation step (WLOP), which denoises the point cloud.
The propagation is then done with a modified priority mea-
sure that can handle close-by surface sheets. An orientation-
aware PCA is utilized to iteratively improve normal direc-
tions based on the orientation.

In [SBY11], Seversky et al. showed an approach that
propagates gradients of harmonic functions instead of nor-
mal orientations across an MST to find a globally optimal
orientation.

2.2. Volume-Based Methods

Volume-based methods interpret the input vertices as sam-
ples from the zero-level set of an implicit function (usu-
ally a signed distance function) that differentiates the in-
side from the outside. Consequently, these approaches can

only be used for point clouds that represent manifold sur-
faces with no boundary. Point normals must always point
to the outside, i.e. in a direction where the value of the im-
plicit function increases. The function’s gradient is usually a
good approximation for the normal (both direction and ori-
entation). However, more involved methods can be used to
estimate the normal’s direction more accurately, using the
gradient only for orientation.

While the calculation of an unsigned distance function is
relatively easy, introducing a sign, which defines the orienta-
tion, is quite complicated. Mullen et al. [MDGD∗10] achieve
this by shooting random rays from surface samples and eval-
uating their intersections with the entire point set. Girau-
dot et al. [GCSA13] reformulate the problem as an energy-
minimization task based on a regular grid, which tries to find
the best of a finite number of orientation hypotheses. Gong
et al. [GPS12] use the original unsigned distance function
to calculate a non-zero level set, which represents a band
around the original point set. This level set can be divided
into an inner and outer set (by connected component anal-
ysis). Distances to these bands are then used to reconstruct
the sign of the unsigned distance function.

2.3. Other Orientation Methods

Normals can also be oriented based on visibility. Such meth-
ods have been studied primarily for polygonal meshes by
Borodin et al. [BZK04], but it is possible to apply them
to point clouds, too. The idea is to evaluate the visibility of
faces or points (entities) from different view points and to
maximize the front face visibility, preserving local consis-
tency. Katz et al. [KTB07] propose a visibility algorithm for
point clouds, which makes an adaptation of Borodin’s ap-
proach for this domain imaginable.

The authors of [WYC12] show a variational model that
finds normal directions and orientations in a single step us-
ing an energy minimization approach. The problem is ex-
pressed in matrix form that encodes constraints and penalties
on the result based on the input point cloud and its neighbor-
hood. The problem is then relaxed and an approximate solu-
tion is found via eigen decomposition. A similar variational
framework, which unites normal estimation and orientation,
is proposed in [ACSTD07].

In [LW10], the point cloud is first approximated with a
coarse triangulation, which holds valuable topological infor-
mation. Orientations on this mesh can be found compara-
tively easy and can thus be used to orient the point cloud
normals.

2.4. Point Cloud Streaming

Streaming refers to an out-of-core strategy that can be used
to process large data sets. The basic idea is to arrange the
data points in a sequential stream. This input stream is then

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

used to read little amounts of data into main memory and
process them. As soon as an entity is no longer needed, it is
removed from main memory. During processing, results are
written out to an output stream.

Pajarola [Paj05] proposes to create the stream by sorting
the given points according to their x-coordinate. This results
in a sweeping plane being moved through the data set during
processing. The streaming process can be made more effi-
cient by rotating the data to map its longest principal axis
onto the x-axis before constructing the stream. Points are re-
moved from main memory as soon as the k-neighborhood of
subsequent points is complete.

Isenburg et al. [ILSS06] construct the stream order using
a grid. The input data set is buffered in the grid cell until all
points of the cell have been read. When this is the case, these
points are released to the stream. Due to their application to
Delaunay triangulation, randomly chosen points are moved
to the beginning of the stream to improve the triangulator’s
efficiency. Points are removed from main memory when they
don’t have an impact on future triangulations. This decision
is based on cell-level finalization tags, which are inserted
into the stream to express that no further point will lie in that
cell.

3. Reformulation of the Orientation Problem
Hoppe formulated the orientation problem as a graph op-
timization problem. Keeping the main idea, we will define
it as a maximum-likelihood problem on a Markov Random
Field (MRF), which is a widely used model in e.g. Computer
Vision. The MRF definition requires a graph and an energy
function, which we will introduce in the following.

Given a set P of points with unoriented normals, an undi-
rected neighbor graph G = (P , E ⊆

�P
2
�

) serves as the basis
of the MRF. In practice, the choice of the graph depends
on the specific scenario. In the rest of this paper, we use
a distance-truncated symmetrized k-nearest neighbor graph
unless otherwise stated, i.e. two vertices are connected iff
at least one is in the k-neighborhood of the other and their
distance is at most r (the maximum neighbor search radius).
A point’s position and normal are denoted by pi and ni, re-
spectively. Furthermore, each point is assigned one of two
possible labels from the label set L = {−1,+1}. This la-
bel serves as the point’s normal factor. For a given labeling
L ∈ L|P|, a point’s label is denoted by Li. After the orienta-
tion process is finished, each point’s normal is updated with
ni ← Li ·ni.

We base our energy definition on a flip criterion that
specifies the normal relation of two neighbors. Previous ap-
proaches used criteria that consisted of two parts: a flip de-
cision and an uncertainty measure. In order to integrate this
flip criterion in our optimization framework, we fused both
parts into a single real number. Thus, the flip criterion is a
function φ : E →R. It yields a positive number if the normals

li l j

−1

+1

−1

+1

Ei, j = 0

Ei, j = 0

≥ 0

(a) φ(i, j)≥ 0

li l j

−1

+1

−1

+1

Ei, j ≥ 0

Ei, j ≥ 0

= 0

(b) φ(i, j) < 0

Figure 1: Visualization of (2) for positive and negative flip
criterion output. The boxes represent nodes in the MRF, the
circles in these boxes represent a specific label for the given
MRF node.

are oriented consistently and a negative number otherwise.
The result’s absolute value specifies the certainty of the flip
decision (note the difference to previous approaches, which
used an uncertainty measure). We use certainty because this
measure can be used directly as a weight for the resulting
optimization problem. Hoppe’s flip criterion is simply:

φHoppe(i, j) = hni,n ji (1)

Xie’s and König’s more involved flip criteria can be ex-
pressed similarly. For details, we refer the reader to the sup-
plementary material.

Based on this flip criterion, each edge is assigned a pair-
wise potential Ei, j : L×L→ R, which yields zero for con-
sistently oriented normals and a positive penalty otherwise.
In contrast to Hoppe, we additionally weight the flip crite-
rion’s output based on the neighbors’ distance:

Ei, j(li, l j) =
�

|φ(i, j)| ·ω(pi, p j) φ(i, j)≥ 0⊕ li = l j
0 otherwise

ω(pi, p j) = 1−
kpi − p jk

2

r2 ,
(2)

where ⊕ denotes the XOR operator and ω defines a weight
based on the distance of two points, normalized by the max-
imum search radius. Figure 1 visualizes this potential defini-
tion.

The sum of all pairwise potentials forms the labeling’s en-
ergy. The energy’s minimizer is then the optimal orientation
according to the chosen flip criterion:

E(L) = ∑
{i, j}∈E

Ei, j(Li,L j)

L∗ = argmin
L

E(L)
(3)

For perfectly orientable data sets, the energy’s minimum
is 0 and the labeling that induces this energy is the desired
result. If perfect orientation is not possible, the minimization

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

process tries to find a labeling, such that only edges with
a small certainty are violated. The energy can be seen as
the negative-log space equivalent of a labeling’s probability.
Thus, finding the energy’s minimizer is equivalent to finding
the most likely labeling.

4. Solving the Orientation Problem
In order to find the best orientation for each point normal,
(3) has to be solved. The time complexity of this problem
depends on the energy’s submodularity [KZ04]. For binary
labels, submodularity is defined as follows [KZ04,LRB07]:

submodular ⇐⇒

Ei, j(1,1)+Ei, j(−1,−1)≤ Ei, j(1,−1)+Ei, j(−1,1)
∀{i, j} ∈ E (4)

Comparing with (2) yields submodular ⇐⇒ φ(i, j)≥ 0.
Hence, the orientation problem is only submodular for the
trivial case where all normals are already oriented consis-
tently. In general, the problem is non-submodular, render-
ing it NP-hard [KZ04]. Therefore, most problem sizes make
it infeasible to calculate a globally optimal orientation. In-
stead, approximate solvers can be used to find a good ap-
proximate solution.

Furthermore, due to the energy’s symmetry with respect to
the labeling, each configuration can be flipped entirely with-
out affecting the total energy. Therefore, at least two global
optima exist. This ambiguity does not pose a problem for the
solvers presented in this paper. For others, it may be neces-
sary to introduce a single unary term per connected compo-
nent, which shifts the energy towards one of the two possible
orientations.

4.1. Spanning Tree Solution (MST)
All propagation-based methods (cf. section 2.1) use span-
ning trees to solve (3). They all share the problem that they
ignore edges that are not part of the spanning tree. In the
simple case where all edges are conformant (i.e. there is a la-
beling that results in a zero-energy), these methods will find
the optimal solution. However, they may fail if edges con-
tradict each other. Figure 2 shows a small example where
this is the case. Note that this figure is related to our adapted
flip criterion and thus uses a maximum spanning tree (MST)
with respect to the distance-weighted absolute flip crite-
rion. The MST solver favors more prominent edges (with a
high absolute value) over smaller ones. Consistently orient-
ing a prominent edge may lead to inconsistencies of several
smaller edges. The approach fails to find a global optimum
if the sum of those smaller edges is larger than the single
prominent edge.

The advanced methods we present in this paper do not
come with this limitation because they respect all edges.
However, the MST result provides a good initialization for

some of these methods. Therefore, we developed an algo-
rithmic improvement of the basic implementation. This im-
provement is based on a modification of the Union Find data
structure, which allows to flip entire connected components
in constant time. Through this modification, explicit calcu-
lation of the spanning tree is not necessary anymore, saving
both run time and memory. We call this modified structure
the Signed Union Find, which is about 2.2 times as fast as
the traditional implementation. For details, please refer to
the supplementary material.

An advantage of the MST solver is its quick execution. In
a knn-graph, the time complexity of O(np lognp) (np be-
ing the number of points) is caused by the initial sorting
step. The rest of the algorithm runs in effectively linear time
for an optimized Union-Find data structure. This complexity
makes it suitable even for large point clouds, as long as they
do not exceed the computer’s memory limit. For large data
sets, we present our out-of-core strategy in section 5.

4.2. Advanced Solvers

As mentioned earlier, MRFs like those used to define the
orientation problem (cf. (2)), are widely used in Computer
Vision. As a consequence, a number of solvers for MRF-
based energy minimization problems have been developed
[KAH∗15]. However, many of them focus on submodular
functions or are only feasible for small models. In the fol-
lowing section, we introduce two solvers that do not come
with these limitations, particularly QPBO and LSA-TR, and
apply them to the orientation problem.

4.2.1. Quadratic Pseudo-Boolean Optimization (QPBO)

QPBO (quadratic pseudo-boolean optimization [BHS91]) is
a graph-cut-based minimizer for MRFs with binary label
space (as is the case for the orientation problem). However,
its output labeling is not binary but pseudo-boolean, mean-
ing that it can leave some nodes unlabeled.

For most of our test data sets, QPBO could not label
any point. Therefore, we use the variant QPBO-I [RKLS07],
where the I stands for Improve. For this, we first execute the
MST solver to find an approximate solution. Then, after a
first QPBO pass, all unlabeled nodes are iterated in a random
order. If the iterated node is still unlabeled, this node’s label
is fixed to its MST solution and QPBO is executed again.
This fixing of nodes is achieved by introducing unary terms,
which eventually allows QPBO to compute a complete la-
beling. Since the iteration order is crucial, these steps are
performed several times with different orders and the best
result is returned. QPBO-I ensures that the resulting energy
does not increase compared to the input labeling. We call this
solver MST+QPBO-I. Figure 3 shows how MST+QPBO-I
can improve the orientation quality over the traditional MST
solver for one of our test data sets. A detailed analysis of
results is given in section 6.

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

-1.5

2.0

-1.5

1.21.2

(a) Weighted output of flip criterion

+

--

+

0.0

0.0

0.0

1.21.2

(b) MST solution, E = 2.4

+

--

-

0.0

2.0

0.0

0.00.0

(c) Optimal solution, E = 2.0

Figure 2: Example graph where the MST solver fails. a: Definition of the distance-weighted flip criterion. Red solid edges
visualize positive values (aiming for equal labeling), blue dashed edges visualize negative values (aiming for contrasting
labeling). b: Output labeling of the MST solver. Edges are labeled with the according potentials. Edges not belonging to the
maximum spanning tree are represented as dotted lines. c: Optimal labeling.

4.2.2. Local Submodular Approximation (LSA)

Another way of solving the orientation problem is to approx-
imate the energy with a submodular function, whose global
minimum can be found in polynomial time. LSA-TR (lo-
cal submodular approximation [GBV∗14]) does this with the
help of a Taylor expansion of the energy around a given ini-
tial solution. The approximation is chosen to be valid within
a given distance to the initial labeling, which is referred to as
the trust region (TR). The algorithm iteratively approximates
and minimizes the energy. While iterating, the trust region is
adapted based on the ratio of predicted energy reduction and
actual energy reduction with respect to the previous step’s
solution. This way, a local optimum is found, whose energy
is supposed to be near the global optimum’s energy. Since
the algorithm is designed to solve energies with few super-
modular terms, we use the MST solution to permute the label
semantics in order to turn non-submodular terms into sub-
modular ones (such that +1 means to use the MST solution
and −1 means to use its inverse).

5. Orienting Large Point Clouds

So far, we have presented methods to orient rather small
point clouds. With high-end acquisition hardware, data sets
reach sizes that make them unsuitable for the approaches
presented above, especially when multiple scans are com-
bined. Either because the data set does not fit in the com-
puter’s main memory or because the run time becomes unac-
ceptably high (advanced solvers have beyond-linear polyno-
mial time complexity). We, therefore, present an out-of-core
orientation framework, which can handle nearly arbitrary
point cloud sizes. The algorithm is based on the assump-
tion that point set surfaces comprise patches whose points
can be oriented easily within that patch. Global consistency
must be respected only when stitching patches together. Our
approach makes use of this assumption by executing the fol-
lowing steps:

1. Segment point cloud into orientable patches
2. Build a neighbor graph on these patches (segment graph)
3. Define a reduced MRF on the segment graph
4. Solve the orientation problem on the reduced MRF

Because the MRF must fit into main memory, this represents
an upper bound of the input point cloud complexity. Note
that the MRF size does not correlate directly with the data
set size. For instance, a sphere tessellation of arbitrary reso-
lution results in a single patch and with that in an MRF with
a single node and no edges.

5.1. Segmentation

In this section, we explain the details of our segmentation
method in the context of an in-core approach. Note that our
final algorithm uses a streaming approach. The in-core vari-
ant is only explained for reasons of clarity. The segmenta-
tion step is followed by the orientation optimization, where
the labels of points within a segment can change only if the
labels of all other points within this segment change. This
preserves the energy function but reduces the domain over
which the energy is defined. The segmentation process aims
at reducing the domain as much as possible without remov-
ing the energy’s minimizer from it.

We consider a segment to be a continuous connected set
of points that does not overlap with other segments. Starting
with the bare point cloud, where all points are not assigned
to any segment, the segmentation process is structured as
follows: An arbitrary unassigned point is chosen (preferably
one with neighbors that are already assigned to a segment).
For this point, a list of candidate segments is retrieved from
the neighboring points. The minimizer-preserving property
of these candidates is then validated based on a heuristic.
Afterwards, the best segment is chosen and a preliminary
normal orientation is performed based on the neighbors in
the segment, such that normals are consistent within their
segment. If no valid segment is available, a new segment is
created. This process is repeated until all points are assigned
to a segment.

In this process, we rely on two measures: For any neigh-
bor of the current point, the distance-weighted flip criterion
output φ(i, j) ·ω(pi, p j) specifies the neighbor’s vote for the
current point. The sum of neighbor votes from a specific seg-
ment defines the segment’s vote for the current point. Figure
4 shows this relation.

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

(a) Hoppe, MST
E = 526.1

(b) Hoppe, MST+QPBO-I
E = 380.0

(c) Xie, MST
E = 121.9

(d) Xie, MST+QPBO-I
E = 91.0

Figure 3: Comparison of the MST solver (a, c) and QPBO (b, d) for the two flip criteria. A splatting-based renderer is used to
visualize the point cloud. The backside of splats is rendered dark red. Apparently, Hoppe’s flip criterion is not suited for this
data set. Its ground truth’s energy of 466.4 (calculated from the original mesh) is higher than that of the QPBO result, and thus
does not represent the global minimizer. The number of wrong normals was calculated with respect to the ground truth data set.

Vote for purple segment

Vote for yellow segment

Streaming direction

Figure 4: Visualization of candidate segments for the white
(unsegmented) point. Segments are color-coded (purple and
yellow). Both segments are candidates (represented by two
neighbors each).

(a) Criterion fulfilled (b) Criterion not fulfilled

Figure 5: Example graph for the intra-segment segmenta-
tion criterion for the white node. Red edges visualize posi-
tive edge weights, blue edges visualize negative values. All
nodes belong to the candidate segment.

The segment candidate search is based on the current
point’s neighbors that are already assigned to a segment. The
set of all neighbors’ segments is the preliminary set of can-
didate segments for the current point. This set is reduced fur-
ther to avoid interleaving segments. Only the closest neigh-
bors (empirically, neighbors closer than 130% of the closest
neighbor’s distance yield good results) are considered.

The minimizer-preserving properties of the candidate seg-
ments are then evaluated based on our segmentation heuris-
tic. This heuristic consists of two criteria, which must be ful-
filled by a segment. If a segment does not fulfill both criteria,
it is removed from the candidate list. The heuristic cannot

(a) Criterion fulfilled (b) Criterion not fulfilled

Figure 6: Example graph for the inter-segment segmentation
criterion for the white node and the yellow segment. Nodes
are colored by their segment.

guarantee the preservation of minimizers. However, it can
be evaluated efficiently and yielded good results in our ex-
periments.

The intra-segment criterion constrains neighbor votes
within the candidate segment. The potentials of the accord-
ing edges cannot be changed when the segment is estab-
lished. Consequently, it must be possible to find an orien-
tation for the processed point that yields a zero potential
for all those edges and any segment orientation. This is the
case iff all votes have the same sign. To reduce the number
of segments, we allow contradicting edges as long as their
sum does not exceed θS. Figure 5 shows two examples of
a fulfilled and an unfulfilled intra-segment criterion. Addi-
tionally, the segment vote’s absolute value must be greater
than the threshold θacc. We assume that the local orientation
of the point’s normal cannot be deduced reliably from seg-
ments, where this is not the case. The formal definition of
the criterion can be found in the supplementary material.

The inter-segment criterion constrains neighbor votes
that pass a segment border. In order to preserve the energy’s
minimizer, all edges between two segments should have the
same sign. Therefore, the processed point can only be added
to a segment if its edges to points of the neighboring segment
have the same sign as all other points of the candidate seg-

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

ment, taking into account possible preliminary flips during
the segmentation process (cf. figure 6). We allow contradict-
ing edges whose sum does not exceed θS.

Together with the distance constraint, these criteria de-
fine a segment’s validity. A segment is valid iff it is closer
than 130 % of the closest neighbor’s distance, if it fulfills
the intra-segment criterion, and if it fulfills the inter-segment
criterion. From the set of valid segment candidates, the one
with the greatest absolute vote is chosen as the segment for
the current point because it allows the most certain orienta-
tion. If this vote is negative, the normal is flipped in order to
create consistent patches. If no valid segment exists, a new
segment is created.

5.2. MRF Generation and Global Orientation

Given the segmentation of the input points, the original
neighbor graph is reduced by contracting all nodes of a seg-
ment to a single node. Consequently, edges that do not cross
segment borders will be removed. Multiple edges between
two segments are merged into a single edge whose edge
weight (distance-weighted output of φ) is given by the sum
of contributing edge weights. This results in a segment graph
whose edges describe the orientation relation of two neigh-
boring segments.

The segment graph generated by contracting nodes is not a
k-nearest neighbor graph, but an adjacency graph of patches,
which can be regarded as another form of neighbor graphs.
With the energy definition from (2), this graph can be trans-
formed into an MRF, whose minimizer is the optimal seg-
ment orientation. Because this MRF is also an instance of
the orientation problem, the solvers presented in section 4
are suited equally well for this minimization problem. The
final orientation can be found by multiplying every point’s
normal with their respective segment label.

5.3. Streaming Processing

Additionally to segmentation, we use Pajarola’s out-of-core
streaming approach [Paj05] as explained in section 2.4.
However, instead of the completion of the k-neighborhood,
we employ the maximum neighbor search radius r to de-
termine the points that can be released from main memory
(which are then all points that are farther than r behind the
sweeping plane). In this section, we outline the differences
to the in-core variant explained before.

During the streaming process, every iteration reads a new
chunk of data into main memory. We refer to this piece of
data as the read chunk. This chunk is added to the set of
active data and then processed.

The streaming approach induces a natural order, in which
points are assigned to a segment (according to the stream or-
der). All points with a smaller x-coordinate than the current
point have been processed earlier and thus already have a

(a) (b)

Figure 7: Shaded visualization of the segmentation result
for Xie’s flip criterion. Points of the same segment have the
same color. θS = 0;θacc = 0.5; 34 segments have been cre-
ated. a: Axis-aligned view, streaming direction from left to
right. b: Different view point.

segment. Therefore, the candidate segments are based on the
neighbors with a smaller x-coordinate. These neighbors are
approximated with a knn-search with respect to the current
point. The contraction procedure can be executed on-the-fly
while streaming the point cloud. Therefore, it is necessary to
store the neighbor graph only for points in the read chunk.
Figure 7 visualizes the segmentation result in combination
with the streaming processing.

When points are released from active memory, their posi-
tion, preliminary normal, and segment index are written to a
temporary file. After optimization, the points are re-streamed
from the temporary file and their segment’s sign is applied to
their normals. Additionally, we chose to group data into con-
nected components by writing them to per-component files.
This allows an easy filtering of small components which are
likely to be caused by noise.

Algorithm 1 outlines the major steps of the orientation
process.

5.4. Additional Parameters
The streaming approach requires two additional parameters,
which are used during evaluation of the segmentation crite-
ria: θS and θacc. In this section, we review their significance.

The threshold θS ∈ R≥0 defines the tolerance for con-
tradicting segment votes (either intra-segment or inter-
segment). Contradicting votes with a low certainty are often
generated by noise or shortcomings of the flip criterion. To
prevent this from generating very many small segments, θS
can be increased, which generally results in fewer segments.
This reduces the optimization domain and with that the ex-
ecution time of the optimization. Although this thresholding

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

Algorithm 1 Streaming Normal Orientation
1: function SOLVE(fileIn, fileOut)
2: fileTemp ← temporary file; mrf ← new MRF
3: while readChunk ← read data from fileIn do
4: for all v ∈ readChunk do ⊲ in parallel
5: Nv ← knn(v) ⊲ with a smaller index
6: for all v ∈ readChunk do
7: SEGMENT(v, Nv, fileTemp, mrf)
8: clean active memory
9: L ← solve mrf

10: while readChunk ← read data from fileTemp do
11: for all (v,s) ∈ readChunk do
12: normalv ← normalv ·Ls
13: Write v to fileOutconnected component of v

14: function SEGMENT(v, Nv, fileTemp, mrf)
15: votes ← per-segment votes from Nv
16: bestSeg ←∅
17: for all s ∈ votes do ⊲ iterate segments
18: if s is valid ∧ |votess|> |votesbestSeg| then
19: bestSeg ← s
20: if bestSeg = ∅ then
21: bestSeg ← create new segment in mrf
22: else if votesbestSeg < 0 then
23: flip normal and incident edges
24: for all s ∈ votes\bestSeg do
25: mrf.addEdge(bestSeg,s)
26: write (v, bestSeg) to fileTemp

introduces a bias into the energy, we assume that the mini-
mizers are preserved because the votes have only little im-
pact on the energy due to their small certainty. If, however,
this bias is not desired, θS can be set to 0.

The threshold θacc ∈R≥0 defines a minimum certainty of
segment votes. Increasing θacc generally increases the num-
ber of segments. This can be desirable if the preliminary ori-
entation during segmentation cannot find a reasonable ori-
entation, thus leaving the orientation to global optimization.
Therefore, a moderate choice of θacc helps to preserve the
minimizers.

The range of both thresholds is mainly defined by the
flip criterion. The criteria presented in this paper yield val-
ues in the range [−1,1] for unit normals. Therefore, small
thresholds (usually smaller than 1) are preferable. Figure 8
visualizes how changing the parameters affects the optimiza-
tion result. In these charts, the final energy is calculated on
the original MRF instead of the reduced segment graph. It
can be seen that the energy decreases (i.e. orientation qual-
ity increases) as the number of segments increases, which is
caused by a larger number of degrees of freedom for the op-
timizer. Note how large θacc produces more small segments.
This is even amplified by decreasing θS. The best parameter
configuration depends on the concrete scenario. In general,

(a) Varying θacc and constant θS = 0

(b) Varying θS and constant θacc = 0.5

Figure 8: Impact of segmentation parameters on the num-
ber of segments and the resulting orientation quality for the
dragon data set, Xie’s flip criterion, and the MST+QPBO-I
solver. The energy has been calculated on the unreduced
neighbor graph.

the number of segments should be chosen as small as possi-
ble without having a strong negative impact on the energy.

5.5. Implementation Details

The streaming orientation requires acceleration data struc-
tures that allow fast neighbor queries. Since the active data
set has a very small extent in the x-direction (the maximum
neighbor search radius), it is sufficient to build spatial struc-
tures in the two other dimensions. Additionally, the chosen
structure must support parallel read and write operations of
points.

Our implementation uses a data structure based on a
sparse 2d grid. We found that a cell size equal to the max-
imum neighbor search radius performs best, which is obvi-
ously a good compromise between the number of searched
cells and the number of points within a cell. The cells con-
tain a temporary list for newly added points and a kd-tree,
which accelerates neighbor searches within the cell (a single
cell may contain several thousand points). New points from

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

the read chunk are first inserted into the list, which is signif-
icantly faster than inserting them into the kd-tree. They are
removed from the list and inserted into the kd-tree when their
first neighbor query is executed (the first path taken by the
knn-query is equal to the path taken by insertion). Because
neighbor queries are parallelized, all relevant points must be
inserted into the structure before the query can be executed,
which motivates the usage of a quickly modifiable structure
such as the temporary list. Neighbor queries include both the
kd-tree and the temporary list. They return only neighbors
with a smaller index.

The neighbor search is executed in parallel for all points in
the read chunk. This process is protected by a cell-level lock
strategy that allows multiple concurrent reads from the same
cell. Modifying access of a cell is protected by an exclusive
lock. An exclusive lock is acquired when a point is removed
from the temporary set and is released once it is inserted in
the according kd-tree. This two-level approach allows a high
level of parallelism, especially if the points of the read chunk
lie in separate grid cells.

For numerical optimization of the MRF, we rely on the
implementation provided by OpenGM [ATK12].

Our implementation is available at
http://github.com/NSchertler/
StreamingNormalOrientation.

6. Results

We tested the presented algorithms with both real-world 3D
scans and re-sampled polygonal meshes. Before executing
the orientation algorithm, we randomized each point’s nor-
mal orientation. The following section gives an overview of
the test results. First, the achieved quality of the different
solvers is compared, followed by an analysis of run time and
memory consumption.

6.1. Quality

By construction, the advanced solvers always generate re-
sults that are at least as good as those of the traditional MST
solver (in terms of energy). As shown in figure 9 and ta-
ble 1, using QPBO is especially valuable when the MST
solver fails for isolated parts of the data set due to fine de-
tails, which result in contradicting edges in the neighbor
graph (e.g. parts of the foot in the Ramses data set or the
right elephant’s ear and parts near the left woman’s hand in
the Thai Statue data set). In practice, QPBO-I performs at
least as good as LSA-TR or slightly better for all of our test
data sets (with respect to both run time and quality). There-
fore, QPBO-I seems to be the better choice for the orien-
tation problem. Although combinatorial solvers like Multi-
cut [KSA∗11, KSRS13] can find global optima, their long
run time and high memory consumption make them unsuit-
able for most data sets.

without streaming Dragon Ramses Thai Statue
Flip Criterion Xie Xie Hoppe
Number of points 28,885 60,910 723,583
E. of MST Solution 121.9 79.7 3,296.5
MST + QPBO-I 91.0 30.1 2,689.3
Energy Reduction 25.3 % 62.2 % 18.4 %
Overall Orientation 716 ms 1,020 ms 118.0 s
Neighbor Search 85 ms 214 ms 3.4 s
Solve MST 24 ms 54 ms 0.7 s
Solve QPBO 581 ms 691 ms 113.0 s
Energy (LSA) 94.7 44.9 2729.12
Optimization (LSA) 8.1 s 18.9 s 49.7 min

with streaming Fig. 10a Fig. 10b Fig. 10c
Flip Criterion Hoppe Hoppe Hoppe
Number of points 50.5 M 186,8 M 260.8 M
Generated Segments 52,322 64,628 860,966
Overall Orientation 11.7 min 15.9 min 70.6 min
Neighbor Search 6.2 min 3.6 min 35.6 min
Segmentation 1.0 min 3.3 min 6.1 min
Optimization 1.0 s 0.3 min 0.8 min
Finalization 0.4 min 0.9 min 5.7 min

Table 1: Statistics of the orientation process using a knn
graph. k = 6,θS = 0, θacc = 0.5; r has been chosen manu-
ally based on average point density. Intel Core i7 (3.4 GHz).
Portions of the total time that are not accounted for in any of
the sub steps are I/O and minor management steps.

Like the simple orientation approach, the streaming ver-
sion heavily relies on a valid flip criterion. Once this con-
dition is met, a reliable segmentation can be calculated and
the reduced orientation problem can be solved with similar
quality as the original problem. Due to the approximate na-
ture of the reduced energy, streaming may result in a slightly
worse orientation. E.g. the dragon data set results in an en-
ergy of 92.7 when oriented with the streaming approach (en-
ergy evaluated on the original neighbor graph) with four
points oriented differently than the unstreamed orientation
(E = 91.0). Figure 10 shows the results of streamed orienta-
tion of some large data sets.

6.2. Performance

In order to evaluate the algorithm’s run time, we re-sampled
the dragon data set with different numbers of points. This ap-
proach allows us to compare differently sized data sets with
nearly the same complexity. This generates a similar number
of segments, which is essential for a fair comparison of the
streaming approach.

Figure 11 compares the performance of the direct and the
streaming approach. In the direct approach, most time (be-
yond linear) is consumed by the QPBO-I step. The peak
memory consumption scales linearly and is mainly caused

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

(a) Ramses - MST (b) Ramses - MST + QPBO-I (c) Thai Statue - MST (d) Thai Statue - MST + QPBO-I

Figure 9: Orientation results for two more data sets using the MST solver and MST + QPBO-I

(a) Gomantong side
cave. Streaming di-
rection from left to
right.

(b) St. Matthew. Streaming direction
from bottom to top.

(c) Gomantong caves. Streaming direction from left (foreground) to
right (background). The black areas at the left are the cave’s cor-
rectly oriented inside. The correctness has been validated visually.

Figure 10: Results of streamed orientation of large data sets.

by the QPBO solver. The streaming approach greatly re-
duces the optimization domain. Due to this, the time needed
to solve the MRF is neglectable compared to the other
steps. Another effect of the segmentation is the reduced
peak memory consumption, which stays almost constant and
is only influenced by the number of generated segments.
If data is already available in the streaming format, the
preparation step, which sorts the points along the x-axis,
can be skipped, reducing the total run time even further.
Even if only the fast MST solver is used, the streaming ap-
proach is superior to the direct approach (in terms of perfor-
mance) as soon as the overhead of preparation is overcome
(which is the case at about 130,000 points in this experi-
ment). The MST solver is equivalent to Hoppe’s approach,
which is the fastest of the presented propagation-based meth-
ods [KG09, HLZ∗09, SBY11]. Therefore, our streaming ap-
proach is faster than any of the in-core approaches.

6.3. Limitations

Our method depends strongly on the chosen flip criterion.
Therefore, we can achieve only results as good as the flip
criteria allow. Especially, denser data sets lead to more ro-
bust flip criteria. What flip criterion should be used, depends
on the characteristics of the data set. If there are a lot of
sharp creases, Xie’s criterion should be used. Hoppe’s crite-
rion is preferable for mainly smooth data sets. Furthermore,
Hoppe’s criterion is more robust against noise.

An orientation process that updates normal directions was
presented in [HLZ∗09]. Since our optimization approach re-
lies on fixed edge weights, we cannot update normal direc-
tions easily. However, an alternating approach is imaginable.

The orientation approach itself is not affected by noise (as
long as the neighborhood does not change too much). How-
ever, this may not be true for normal estimation, which in

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

(a) Without streaming (b) With streaming, θS = 0, θacc = 0.5 (c) Relative Run Time Distribution

Figure 11: Comparison of run time and peak memory consumption of the streamed and unstreamed version of the algorithm for
different sizes of the dragon data set and the MST+QPBO-I solver.

turn affects the orientation process. Therefore, our orienta-
tion approach inherits the robustness against noise from the
normal estimation method and the flip criterion. Outliers do
not have a negative impact on normal orientation in general,
as long as the normal estimation of inliers is not affected.
This is due to the flip criterion’s distance-weighting, which
assigns a very small certainty to edges from outliers.

7. Conclusion and Future Work

In this article, we have consolidated existing propagation-
based normal orientation approaches into a single energy
minimization model. Several ways to solve this problem
have been presented, concluding that the traditional MST
approach can be improved with non-greedy state-of-the-art
solvers, which are widely applied in the domain of Com-
puter Vision. Furthermore, we presented a segmentation-
based framework for orienting large data sets, which reduces
the problem and then uses the same model and solvers like
the original approach.

A main problem, which became obvious, is the choice of
a reasonable flip criterion (see Hoppe’s flip criterion for the
dragon data set, figure 3b). Although one of both criteria
works for most data sets, there are point clouds which can-
not be solved with either one (ground truth energy is not
a global minimizer). With the definition of an MRF, it is
possible to define flip criteria not only on a pair-wise ba-
sis but in a larger neighborhood, which can make the flip
criterion more robust. However, solving those higher-order
MRFs is quite difficult and still subject to current research
[AFG08,FGBZ11,OV12,FWZ14].

Although QPBO-I yielded good results in our experi-
ments, other data sets may require different solvers and
possibly solver-specific adaptations of the problem defini-
tion. Most notably, Cut-Glue-Cut [BKK∗14] and CC-Fusion
[BHK15] seem to be viable candidates.

In the supplementary material, we outlined that QPBO-
I needs to fix a subset of orientations in order to calculate

a complete labeling. This suggests a semi-automatic, user-
guided orientation process, where the subset of fixed nodes
is defined by the user. This avoids that nodes with wrong
orientations are fixed, which inevitably leads to a wrong ori-
entation of other nodes.

Some measures to counter data set noise that have been
presented in other papers can be incorporated with our ap-
proach. For example, the flip criteria could be evaluated on
a denoised or smoothed version (cf. [HLZ∗09]).

8. Acknowledgments

We thank the respective authors for providing the Dragon
and Thai Statue data (Stanford 3D Scanning Repository),
the St. Matthew data (Digital Michelangelo Project), the
Pegasus and Ramses model (AIM@SHAPE-VISIONAIR
Shape Repository), and the Gomantong data (3D cave map-
ping group, Institute of Cartography, TU Dresden (Manfred
Buchroithner), International Union of Speleology (Donald
McFarlane)). Data provision is thankfully acknowledged.

This work is partially funded by the European Social
Fund and the Free State of Saxony (ESF project number
100226943, "ADFEX").

References
[ACSTD07] ALLIEZ P., COHEN-STEINER D., TONG Y., DES-

BRUN M.: Voronoi-based variational reconstruction of unori-
ented point sets. In Symposium on Geometry processing (2007),
vol. 7, pp. 39–48. 2

[AFG08] ALI A., FARAG A., GIMEL’FARB G.: Optimiz-
ing binary MRFs with higher order cliques. In Com-
puter Vision, ECCV 2008, Forsyth D., Torr P., Zisser-
man A., (Eds.), vol. 5304 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2008, pp. 98–111.
doi:10.1007/978-3-540-88690-7_8. 11

[ATK12] ANDRES B., T. B., KAPPES J. H.: OpenGM:
A C++ library for discrete graphical models. ArXiv e-
prints (2012). URL: http://arxiv.org/abs/1206.0111,
arXiv:1206.0111. 9

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Towards Globally Optimal Normal Orientations for Large Point Clouds

[BHK15] BEIER T., HAMPRECHT F. A., KAPPES J. H.: Fusion
moves for correlation clustering. In IEEE Conference on Com-
puter Vision an Pattern Recognition (CVPR) (2015). 11

[BHS91] BOROS E., HAMMER P., SUN X.: Network flows and
minimization of quadratic pseudo-boolean functions. Tech. rep.,
Technical Report RRR 17-1991, RUTCOR, 1991. 4

[BKK∗14] BEIER T., KRÖGER T., KAPPES J. H., ET AL.: Cut,
glue & cut: A fast, approximate solver for multicut partitioning.
In CVPR. Proceedings, in press (2014). 11

[BTS∗14] BERGER M., TAGLIASACCHI A., SEVERSKY L. M.,
ET AL.: State of the Art in Surface Reconstruction from Point
Clouds. In Eurographics 2014 - State of the Art Reports (2014),
Lefebvre S., Spagnuolo M., (Eds.), The Eurographics Associa-
tion. doi:10.2312/egst.20141040. 2

[BZK04] BORODIN P., ZACHMANN G., KLEIN R.: Consistent
normal orientation for polygonal meshes. In Computer Graph-
ics International 2004 (CGI 2004) (June 2004), IEEE Computer
Society, pp. 18–25. 2

[FGBZ11] FIX A., GRUBER A., BOROS E., ZABIH R.: A graph
cut algorithm for higher-order Markov random fields. In Com-
puter Vision (ICCV), 2011 IEEE International Conference on
(2011), IEEE, pp. 1020–1027. 11

[FWZ14] FIX A., WANG C., ZABIH R.: A primal-dual algorithm
for higher-order multilabel markov random fields. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on (2014), IEEE, pp. 1138–1145. 11

[GBV∗14] GORELICK L., BOYKOV Y., VEKSLER O., ET AL.:
Submodularization for binary pairwise energies. In Computer Vi-
sion and Pattern Recognition (CVPR), 2014 IEEE Conference on
(June 2014), pp. 1154–1161. doi:10.1109/CVPR.2014.151.
5

[GCSA13] GIRAUDOT S., COHEN-STEINER D., ALLIEZ
P.: Noise-Adaptive Shape Reconstruction from Raw Point
Sets. Computer Graphics Forum 32, 5 (2013), 229–238.
doi:10.1111/cgf.12189. 2

[GPS12] GONG Y., PAUL G., SBALZARINI I.: Cou-
pled signed-distance functions for implicit surface recon-
struction. In Biomedical Imaging (ISBI), 2012 9th IEEE
International Symposium on (May 2012), pp. 1000–1003.
doi:10.1109/ISBI.2012.6235726. 2

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., ET AL.: Sur-
face reconstruction from unorganized points. In Proceedings of
the 19th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1992), SIGGRAPH ’92,
ACM, pp. 71–78. doi:10.1145/133994.134011. 2

[HLZ∗09] HUANG H., LI D., ZHANG H., ET AL.: Con-
solidation of unorganized point clouds for surface reconstruc-
tion. In ACM SIGGRAPH Asia 2009 Papers (New York, NY,
USA, 2009), SIGGRAPH Asia ’09, ACM, pp. 176:1–176:7.
doi:10.1145/1661412.1618522. 2, 10, 11

[ILSS06] ISENBURG M., LIU Y., SHEWCHUK J., SNOEYINK
J.: Streaming computation of delaunay triangulations.
In ACM SIGGRAPH 2006 Papers (New York, NY,
USA, 2006), SIGGRAPH ’06, ACM, pp. 1049–1056.
doi:10.1145/1179352.1141992. 3

[KAH∗15] KAPPES J. H., ANDRES B., HAMPRECHT F. A.,
ET AL.: A comparative study of modern inference tech-
niques for structured discrete energy minimization prob-
lems. International Journal of Computer Vision (2015), 1–30.
doi:10.1007/s11263-015-0809-x. 4

[KG09] KÖNIG S., GUMHOLD S.: Consistent propagation of nor-
mal orientations in point clouds. In VMV (2009), pp. 83–92. 2,
10

[KSA∗11] KAPPES J. H., SPETH M., ANDRES B., ET AL.:
Globally optimal image partitioning by multicuts. In
Energy Minimization Methods in Computer Vision and
Pattern Recognition, Boykov Y., Kahl F., Lempitsky V.,
Schmidt F., (Eds.), vol. 6819 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011, pp. 31–44.
doi:10.1007/978-3-642-23094-3_3. 9

[KSRS13] KAPPES J. H., SPETH M., REINELT G., SCHNÖRR
C.: Higher-order segmentation via multicuts. arXiv:1305.6387
(2013). 9

[KTB07] KATZ S., TAL A., BASRI R.: Direct visi-
bility of point sets. In ACM SIGGRAPH 2007 Pa-
pers (New York, NY, USA, 2007), SIGGRAPH ’07, ACM.
doi:10.1145/1275808.1276407. 2

[KZ04] KOLMOGOROV V., ZABIN R.: What energy functions
can be minimized via graph cuts? Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26, 2 (Feb 2004), 147–159.
doi:10.1109/TPAMI.2004.1262177. 4

[LRB07] LEMPITSKY V., ROTHER C., BLAKE A.: Log-
cut - efficient graph cut optimization for markov random
fields. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on (Oct 2007), pp. 1–8.
doi:10.1109/ICCV.2007.4408907. 4

[LW10] LIU S., WANG C. C.: Orienting unorganized points for
surface reconstruction. Computers & Graphics 34, 3 (2010), 209
– 218. Shape Modelling International (SMI) Conference 2010.
doi:10.1016/j.cag.2010.03.003. 2

[MDGD∗10] MULLEN P., DE GOES F., DESBRUN M., ET AL.:
Signing the unsigned: Robust surface reconstruction from raw
pointsets. Computer Graphics Forum 29, 5 (2010), 1733–1741.
doi:10.1111/j.1467-8659.2010.01782.x. 2

[OV12] OSOKIN A., VETROV D.: Submodular relaxation for
MRFs with high-order potentials. In Computer Vision–ECCV
2012. Workshops and Demonstrations (2012), Springer, pp. 305–
314. 11

[Paj05] PAJAROLA R.: Stream-processing points. In Vi-
sualization, 2005. VIS 05. IEEE (Oct 2005), pp. 239–246.
doi:10.1109/VISUAL.2005.1532801. 3, 7

[Pea01] PEARSON K.: LIII. On lines and planes of closest fit to
systems of points in space. Philosophical Magazine Series 6 2,
11 (1901), 559–572. doi:10.1080/14786440109462720.
1

[RKLS07] ROTHER C., KOLMOGOROV V., LEMPITSKY V.,
SZUMMER M.: Optimizing binary MRFs via extended roof
duality. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on (2007), IEEE, pp. 1–8. 4

[SBY11] SEVERSKY L. M., BERGER M. S., YIN L.: Harmonic
point cloud orientation. Computers & Graphics 35, 3 (2011), 492
– 499. Shape Modeling International (SMI) Conference 2011.
doi:10.1016/j.cag.2011.03.012. 2, 10

[WYC12] WANG J., YANG Z., CHEN F.: A variational model for
normal computation of point clouds. The Visual Computer 28, 2
(2012), 163–174. doi:10.1007/s00371-011-0607-6. 2

[XWH∗03] XIE H., WANG J., HUA J., ET AL.: Piece-
wise c1 continuous surface reconstruction of noisy point
clouds via local implicit quadric regression. In Visu-
alization, 2003. VIS 2003. IEEE (Oct 2003), pp. 91–98.
doi:10.1109/VISUAL.2003.1250359. 2

c
 2015 The Author(s)
Computer Graphics Forum c
 2015 The Eurographics Association and John Wiley & Sons Ltd.

Supplementary Material: Towards Globally Optimal Normal
Orientations for Large Point Clouds

Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold

TU Dresden, Germany

Abstract

This supplementary material gives more information about Xie’s flip criterion and the Signed Union Find data
structure. Additionally the two segmentation criteria are defined formally.

1. Xie’s flip criterion

Xie’s flip criterion can handle sharp creases and close sur-
face sheets by reflecting one normal along the direction vec-
tor between the two points (see figure 1 for details). The cri-
terion can be expressed as:

φXie(i, j) = hn′i ,n ji

n′i = ni −2ehe,nii

e =
pi − p j

kpi − p jk

(1)

2. Signed Union Find for MST Solutions

In our paper, we use the Signed Union Find data structure to
find the Maximum Spanning Tree solution for an orientation
problem. In this section, we explain the details of this data
structure.

Hoppe’s original algorithm [HDD∗92] first calculates the
spanning tree and in a second step performs the propagation.
This requires traversing the graph twice (once completely
and once the spanning tree) as well as storing the spanning

pi

p j

ni

n j

ni

(a) Hoppe’s flip criterion

pi

p j

ni

n j
n′i

e

(b) Xie’s flip criterion

Figure 1: Visualization of Hoppe’s and Xie’s flip criterion.

tree explicitly. Our improved version merges both steps into
a single traversal, calculating the spanning tree on-the-fly
without explicitly storing it.

The basis of this improvement is Kruskal’s minimum
spanning tree algorithm [Kru56], which is usually imple-
mented using a Union-Find data structure [Knu69]. A pos-
sible application of normal orientation using Kruskal’s algo-
rithm can be found in [XD11].

The Union-Find data structure is a forest of rooted trees
where each entry corresponds to a node in the graph. Each
node maintains a pointer to its parent node. The entire struc-
ture is implemented with a list of indices. Initially, each node
is a separate tree. A connected component’s representative
(operation find) can be found by following the path of par-
ent pointers up to the root. Two entries belong two the same
connected component iff they share the same representative.
Merging two connected components (operation union) is
achieved by updating the parent pointer of one component’s
root to point to the other component’s root. Due to some ac-
celeration techniques like path compression, both operations
can be executed in effectively constant time (more precisely,
it grows very slowly in order of the inverse Ackermann func-
tion).

We augment this structure with a sign bit si for each node
(0 ≡ +, 1 ≡ −) and refer to it as Signed Union-Find. The
idea is to enable quick sign flips for entire connected com-
ponents, which is achieved by using the sign bits on the path
from a node to its root as XOR summands of the node’s ac-
tual sign:

sign(i) = ⊕
j∈path from i to root

s j (2)

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Supplementary Material 2

Path compression will ensure that this chained XOR is kept
short, enabling effectively constant time complexity.

If the sign of an entire connected component must
be changed (method flipConnectedComponentSign in algo-
rithm 1), it is sufficient to flip the sign bit of the compo-
nent’s root (also effectively constant time). Since this bit is
included in the sign formulas for every child node, this es-
sentially flips the signs of all nodes within this connected
component.

Care must be taken when uniting two root nodes. Without
loss of generality we assume that node i will be the new root
for node j. Then, in order to preserve the sign in the con-
nected component of node j, the sign bit has to be updated
with s j ← si ⊕ s j . This works because ⊕ is its own inverse
operation.

Path compression has to adapt the sign bits in a simi-
lar way. If node i with path to its root consisting of nodes
j, ...,q,r (node r being the root node) is re-linked to be a di-
rect child of its root r, the sign calculation of node i changes
from si ⊕ s j ⊕ ...⊕ sq ⊕ sr to si ⊕ sr. It is obvious that the
update must be si ← si ⊕ s j ⊕ ...⊕ sq. An entire path can
be compressed (i.e. re-linking all nodes to the root) in O(k)
time, where k denotes the number of nodes on that path.

This Signed Union-Find data structure enables on-the-fly
computation of the spanning tree. Algorithm 1 shows its ap-
plication to solving the orientation problem.

Algorithm 1 MST Solver Using Signed Union-Find
1: function SOLVE(P,E) ⊲ Calculates optimal labeling
2: uf ← init Signed Union-Find with |P| nodes
3: sort edges in descending order with respect to |φ|
4: for {i, j} ∈ E do
5: ri ← uf .find(i)
6: r j ← uf .find(j)
7: if ri 6= r j then
8: diffSigns ← uf .getSign(i) 6= uf .getSign(j)
9: if diffSigns⊕ (φ(i, j)< 0) then

10: uf .flipConnectedComponentSign(i)
11: uf .merge(i, j)
12: return signs of uf

Although this algorithm does not directly propagate ori-
entations along edges, the general idea is the same as be-
fore. One difference though is the absence of a starting point
with known orientation. If desired, the orientation for a sin-
gle point (or more non-contradicting points) can be forced
after the execution of the algorithm by checking the accord-
ing sign and flipping the component if necessary.

Figure 2 compares the performance of the MRF solver
with the Signed Union Find data structure and with our
implementation of the traditional one. Both data structures

Figure 2: Run time comparison of the MST solver with the
traditional Union Find data structure and our Signed Union
Find data structure for different sizes of the dragon data set.

scale nearly linearly, while the Signed Union Find is in aver-
age 2.2 times as fast as the traditional data structure because
it avoids the second traversal.

3. Segmentation Criteria

The segmentation criteria are used to evaluate if a segment
can be assigned to a point. Given the neighbor vote of two
neighboring points vote(p1, p2), we derive the segment vote
of a point p with respect to segment s as

vote(p,s) := ∑
q∈s

vote(p,q), (3)

where vote(p,q) is zero for non-neighboring points. Simi-
larly, the vote between two segments s1 and s2 is

vote(s1,s2) := ∑
p∈s1

∑
q∈s2

vote(p,q) (4)

The intra-segment criterion is defined as follows: The as-
signment of segment s to point p is valid iff, given the set of
considered neighbor points N pt(p,s) of point p from seg-
ment s, i.e. all neighbors that are already assigned to this
segment:

�

∑
n∈N pt (p,s)

vote>0(p,n) ≤ θS ∨

− ∑
n∈N pt (p,s)

vote<0(p,n)≤ θS

�

∧

|vote(p,s)|≥ θacc (5)

The symbols vote>0(p1, p2) and vote<0(p1, p2) denote the
positive and negative part of the scalar neighbor vote be-
tween two neighboring points p1 and p2. I.e.

vote>0(p1, p2) =

�

vote(p1, p2) if vote(p1, p2)> 0
0 otherwise

(6)

Nico Schertler, Bogdan Savchynskyy, Stefan Gumhold / Supplementary Material 3

The inter-segment criterion specifies that a segment is
valid iff

∀t ∈N seg(p)\ s :
(sgn(vote(s, t))= sgn(vote(p, t)) · f lip)∨ |vote(p, t)|< θS,

(7)

where N seg(p) denotes the set of neighbor segments of point
p and f lip is the flip decision = sgn(vote(p,s)).

References
[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., ET AL.: Sur-

face reconstruction from unorganized points. In Proceedings of
the 19th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1992), SIGGRAPH ’92,
ACM, pp. 71–78. doi:10.1145/133994.134011. 1

[Knu69] KNUTH D. E.: The Art of Computer Programming, Vol.
2: Seminumerical Algorithms. Reading, Mass.: Addison-Wesley,
1969. 1

[Kru56] KRUSKAL J. B.: On the shortest spanning subtree of a
graph and the traveling salesman problem. Proceedings of the
American Mathematical society 7, 1 (1956), 48–50. 1

[XD11] XI Y., DUAN Y.: A new integrated depth fusion algo-
rithm for multi-view stereo. Computer Graphics International
(2011). 1

