
0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

c© Copyright notice. 1

Maximum Persistency via Iterative Relaxed
Inference in Graphical Models
Alexander Shekhovtsov, Paul Swoboda, and Bogdan Savchynskyy

Abstract—We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial
time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the
considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem;
(ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the
MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version
of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels,
although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time
comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on
computational benchmarks from machine learning and computer vision.

Index Terms—Persistency, partial optimality, LP relaxation, discrete optimization, WCSP, graphical models, energy minimization

F

1 INTRODUCTION

W E consider the energy minimization or maximum a posteri-
ori (MAP) inference problem for discrete graphical models.

In the most common pairwise case it has the form

min
x∈X

Ef (x) := f∅ +
∑
v∈V

fv(xv) +
∑
uv∈E

fuv(xu, xv) , (1)

where minimization is performed over vectors x, containing the
discrete-valued components xv . Further notation is to be detailed
in § 2. The problem has numerous applications in computer vi-
sion, machine learning, communication theory, signal processing,
information retrieval and statistical physics, see [18, 47, 29] for
an overview of applications. Even in the binary case, when each
coordinate of x can be assigned two values only, the problem is
known to be NP-hard and is also hard to approximate [27].

Hardness of the problem justifies a number of existing approx-
imate methods addressing it [18]. Among them, solvers addressing
its linear programming (LP) relaxations and in particular, the LP
dual [41, 49, 20], count among the most versatile and efficient
ones. However, apart from some notable exceptions (see the
overview of related work below), approximate methods can not
guarantee neither optimality of their solutions as a whole, nor even
optimality of any individual solution coordinates. That is, if x is a
solution returned by an approximate method and x∗ is an optimal
one, there is no guarantee that x∗v = xv for any coordinate v.

In contrast, our method provides such guarantees for some
coordinates. More precisely, for each component xv it eliminates

• Alexander Shekhovtsov is with the Institute for Computer Graphics and
Vision (ICG), Graz University of Technology, Inffeldgasse 16, Graz 8010,
Austria.
E-mail: shekhovtsov@icg.tugraz.at.

• Paul Swoboda is with the Discrete Optimization Group, Institute of Science
and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
E-mail: pswoboda@ist.ac.at.

• Bogdan Savchynskyy is with Computer Vision Lab, Faculty of Computer
Science, Institute for Artificial Intelligence, Dresden University of Tech-
nology, 01062 Dresden, Germany.
E-mail: bogdan.savchynskyy@tu-dresden.de.

those of its values (henceforth called labels), which provably can
not belong to any optimal solution. We call these eliminated
labels persistent non-optimal. Should a single label a remain
non-eliminated, it implies that for all optimal solutions x∗ it
holds x∗v = a and the label a is called persistent optimal. Our
elimination method is polynomial and is applicable with any
(approximate) solver for a dual of a linear programming relaxation
of the problem, employed as a subroutine.

1.1 Related Work
A trivial but essential observation is that any method identifying
persistency has to be based on tractable sufficient conditions in
order to avoid solving the NP-hard problem (1).

Dead-end elimination methods (DEE) [10] verify local
sufficient conditions by inspecting a given node and its immediate
neighbors at a time. When a label in the node can be substituted
with another one such that the energy for all configurations of the
neighbors does not increase, this label can be eliminated without
loss of optimality.

A similar principle for eliminating interchangeable labels was
proposed in constraint programming [11]. It’s generalization to
a related problem of Weighted Constraint Satisfaction (WCS) is
known as dominance rules or soft neighborhood substitutabil-
ity. However, because general WCS considers bounded addition
a ⊕ b = min(k, a+b), instead of ordinary addition, the condition
appears to be intractable and therefore weaker sufficient local
conditions were introduced, e.g., [26, 9]. The way [9] selects a
local substitute label using equivalence preserving transforms is
related to our method, in which we use an approximate solution
based on the dual of the LP relaxation as a tentative substitute (or
test) labeling.

Although the local character of the DEE methods allows for an
efficient implementation, it also significantly limits their quality,
i.e., the number of persistencies found. As shown in [35, 43, 48],
considering more global criteria may significantly increase the
algorithm’s quality.

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

Graph cut - based LP - based
Po

tts
M

od
el

λ
m

in
(1
,|
x
u
−
x
v
|)

Courtesy of Kovtun [24]
93.6% (instance not available)

Instance used by Alahari et al. [4]
Kovtun’s method: 1s, 87.6%

Shekhovtsov [35]
LP-windowing: 1.5h, 94%

Ours: 22s, 96.7%

Tr
un

ca
te

d
M

od
el

w
u
v

m
in

(2
,|
x
u
−
x
v
|) Kovtun’s method: 1s, 0.2% Kohli et al. [19] (MQPBO)

41s, 0.2%
Swoboda et al. [44]
27min, 89.8%

Ours: 16s, 99.94%

Fig. 1: Progress of partial optimality methods. The top row corresponds to a stereo model with Potts interactions and large aggregating
windows for unary costs used in [24, 4] (instance published by [4]). The bottom row is a more refined stereo model with truncated linear
terms [45] (instance from [1]). The hashed red area indicates that the optimal persistent label in the pixel is not found (but some non-optimal
labels might have been eliminated). Solution completeness is given by the percentage of persistent labels. Graph cut based methods are fast
but only efficient for strong unary terms. LP-based methods are able to determine larger persistent assignments but are extremely slow prior to
this work.

The roof dual relaxation in quadratic pseudo-Boolean Opti-
mization (QPBO) [5, 30] (equivalent to pairwise energy minimiza-
tion with binary variables) has the property that all variables that
are integer in the relaxed solution are persistent. Several general-
izations of roof duality to higher-order energies were proposed
(e.g., [2, 21]). The MQPBO method [19] and the generalized
roof duality [50] extend roof duality to the multi-label case by
reducing the problem to binary variables and generalizing the
concept of submodular relaxation [21], respectively. Although
for binary pairwise energies these methods provide a very good
trade-off between computational efficiency and a number of found
persistencies, their efficacy drops as the number of label grows.

Auxiliary submodular problems were proposed in [24, 25]
as a sufficient persistency condition for multilabel energy min-
imization. In the case of Potts model, the method has a very
efficient specialized algorithm [14]. Although these methods have
shown very good efficacy for certain problem classes appearing in
computer vision, the number of persistencies they find drastically
decreases when the energy does not have strong unary terms (see
Fig. 1).

In contrast to the above methods that technically rely either
on local conditions or on computing a maximum flow (min-cut),
the works [42, 43, 44] and [35] proposed persistency approaches
relying on a general linear programming relaxation. Authors
of [42, 43, 44] demonstrated applicability of their approach to
large-scale problems by utilizing existing efficient approximate
MAP-inference algorithms, while in [35] the large-scale problems
are addressed using a windowing technique. Despite the superior
persistency results, the running time of the approximate-LP-based
methods remained prohibitively slow for practical applications as
illustrated by an example in Fig. 1.

Not only LP-based methods can achieve superior results in
practice, but they are even theoretically guaranteed to do so, as
proven for the method [35, 37]. In this method, the problem of
determining the maximum number of persistencies is formulated

as a polynomially solvable linear program. It is guaranteed to find
a provably larger persistency assignment than most of the above
mentioned approaches. However, solving this linear program for
large scale instances is numerically unstable/intractable and apply-
ing it to multiple local windows is prohibitively slow. This poses a
challenge of designing an LP-based method that would be indeed
practical.

1.2 Contribution
In this work we propose a method which solves the same maximum
persistency problem as in [35] and therefore delivers provably
better results than other methods. Similar to [44], our method
requires to iteratively (approximately) solve the linear program-
ming relaxation of (1) as a subroutine. However, our method is
significantly faster than [35, 44] due to a substantial theoretical
and algorithmic elaboration of this subroutine.

We demonstrate the efficiency of our approach on benchmark
problems from machine learning and computer vision. We outper-
form all competing methods in terms of the number of persistent
labels and method [35] in speed and scalability. On randomly
generated small problems, we show that the set of persistent labels
found using approximate LP solver is close to the maximal one as
established by the (costly and not scalable) method [35].

The present paper is a revised version of [39]. Besides re-
worked explanations, shortened and clarified proofs, one new tech-
nical extension is a more general dual algorithm, with termination
guarantees for a larger class of approximate solvers.

2 WORK OVERVIEW

This section serves as an overview of our method, where we give
the most general definitions, formulate the maximum persistency
problem and briefly describe a generic method to solve it. This
description, equipped with references to subsequent sections,
should serve as a road map for the rest of the paper.

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

3

1

2

3

u
N (u)

v0

xu

Fig. 2: Dead end elimination / dominance. Variables are shown as
boxes and their possible labels as circles. Label xu = 1 is substituted
with label xu = 3. If for any configuration of neighbors xN (u) the
energy does not increase (only the terms inside {u}∪N (u) contribute
to the difference), label xu = 1 can be eliminated without loss of
optimality.

pu : Xu ! Xu pv

1

2

3

Fig. 3: Simultaneous substitution of labels in two variables. Xu =
Xv = {1, 2, 3}, labels at arrow tails are substituted with labels at
arrow heads. So the joint configuration (1, 2) (dashed) is substituted
with the configuration (3, 3) (solid).

2.1 Notation
In the MAP-Inference Problem (1) we assume (V, E) to be
a directed graph with the set of nodes V and the set of
edges E ⊆ V × V . Let uv denote an ordered pair (u, v) and
N (u) = {v | uv ∈ E ∨ vu ∈ E} stands for the set of neighbors
of u. Each node v ∈ V is associated with a variable xv taking
its values in a finite set of labels Xv . Cost functions or potentials
fv : Xv → R, fuv : Xu × Xv → R are associated with nodes
and edges respectively. Let f∅ ∈ R be a constant term, which
we introduce for the sake of notation. Finally, X stands for the
Cartesian product

∏
v∈V Xv and its elements x ∈ X are called

labelings.
We represent all potentials of energy (1) by a single cost vector

f ∈ RI , where the set I enumerates all components of all terms:
I = {∅} ∪ {(u, i) | u ∈ V, i ∈ Xu} ∪ {(uv, ij) | uv ∈ E , i ∈
Xu, j ∈ Xv}.

2.2 Improving Substitutions
We formulate our persistency method in the framework of
(strictly) improving substitutions, called improving mappings in
our previous works [35, 37]. It was shown in [35] that most
existing persistency techniques can be expressed as improving
substitutions. A mapping p : X → X is called a substitution,
if it is idempotent, i.e., p(x) = p(p(x)).

Definition 2.1. A substitution p : X → X is called strictly
improving for the cost vector f if

(∀x | p(x) 6= x) Ef (p(x)) < Ef (x). (2)

When a strictly improving substitution is applied to any
labeling x, it is guaranteed that p(x) has equal or better energy.
In particular, strictly improving substitutions generalize the strong

autarky property [5]. When applied to the whole search space X
we obtain its image p(X) – a potentially smaller search space
containing all optimal labelings.

In what follows we will restrict ourselves to node-wise substi-
tutions, i.e., those defined locally for each node: p(x)u = pu(xu),
where pu : Xu → Xu. Indeed, already this class of substitutions
covers most existing persistency methods.

Example 2.1. Let us consider the dead-end elimination
(DEE) [10, 13]. It is a test whether a given label in a single node,
e.g., xu = 1 in Fig. 2 can be substituted with another one, e.g.,
xu = 3 in Fig. 2. The change of the energy under this substitution
depends only on the configuration of neighbors xN (u), and the
value of the change is additive in neighbors, so that it can be
verified for all xN (u) whether the substitution always improves
the energy. If it is so, the label xu = 1 can be eliminated and the
test is repeated for a different label in the reduced problem.

A general substitution we consider is applied to labels in all
nodes simultaneously, as illustrated in Fig. 3 for two variables. We
obtain the following principle for identifying persistencies.

Proposition 2.2. If p is a strictly improving substitution, then any
optimal solution x∗ of (1) must satisfy (∀v ∈ V) pv(x

∗
v) = x∗v .

Indeed, otherwise Ef (p(x∗)) < Ef (x∗), which is a contra-
diction. If pv(i) 6= i, then idempotency implies that label (v, i) is
non-optimal persistent and can be excluded from consideration.

2.3 Verification Problem
Verifying whether a given substitution is strictly improving is an
NP hard decision problem [35]. In order to obtain a polynomial
sufficient condition we will first rewrite (2) as an energy mini-
mization problem and then relax it. To this end we reformulate
Definition 2.1 in an optimization form:

Proposition 2.3. Substitution p is strictly improving iff

min
x∈X

(
Ef (x)− Ef (p(x))

)
≥ 0, (3a)

p(x) = x for all minimizers. (3b)

Proof. Indeed, condition (3a) is equivalent to (∀x) Ef (x) ≥
Ef (p(x)). Sufficiency: if x 6= p(x), then x is not a minimizer
and Ef (x) > Ef (p(x)). Necessity: for x = p(x) we have that
Ef (x) = Ef (p(x)), therefore from Definition 2.1 it follows that
condition (3a) holds and any x = p(x) is a minimizer, moreover,
for any minimizer x it must be Ef (x)−Ef (p(x)) = 0 and from
Definition 2.1 it follows x = p(x).

In § 3 we will show that the difference of the energies in (3a)
can be represented as a pairwise energy with an appropriately
constructed cost vector g so that there holds

Ef (x)− Ef (p(x)) = Eg(x). (4)

Therefore, according to Proposition 2.3 the verification of the
strictly improving property reduces to minimizing the energy (4)
and checking that (3b) is fulfilled. To make the verification
problem tractable, we relax it as

min
µ∈Λ

Eg(µ) ≥ 0, (5a)

p(µ) = µ for all minimizers, (5b)

where Λ is a tractable polytope such that its integer vertices
correspond to labelings (the standard LP relaxation that we use

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

4

will be defined in § 5), µ is a relaxed labeling and Eg(µ) and
p(µ) are appropriately defined extensions of discrete functions
Eg(x) and p(x), defined in § 3. By construction, the objective
value (5) matches exactly to that of (2) for all integer labelings
µ ∈ Λ∩{0, 1}I , which is sufficient for (2) to hold. The sufficient
condition (5) (made precise in Definition 3.2) means that p strictly
improves not only integer labelings but also all relaxed labelings
and therefore such substitutions will be called strictly relaxed-
improving for a cost vector f . Assuming Λ is fixed by the context,
let Sf denotes the set of all substitutions p satisfying (5).

2.4 Maximum Persistency and Subset-to-One Substitu-
tions
The maximum persistency approach [35] consists of finding a
relaxed-improving substitution p ∈ Sf that eliminates the maximal
number of labels:

max
p∈P

∑
v∈V

∣∣{i ∈ Xv | p(i) 6= i}
∣∣, s.t. p ∈ Sf , (6)

where P is a class of substitutions.
While maximizing over all substitutions is not tractable, max-

imizing over the following restricted class is [35]. Assume we are
given a test labeling y, which in our case will be an approximate
solution of the MAP inference (1). We then consider substituting
in each node v a subset of labels with yv .

Definition 2.4 ([35]). A substitution p is in the class of subset-
to-one substitutions P2,y , where y ∈ X , if there exist subsets
Yv ⊆ Xv\{yv} for all v such that

pv(i) =

{
yv, if i ∈ Yv;
i, if i /∈ Yv.

(7)

See Figs. 3 and 4 for examples. Note, this class is rather large:
there are 2|Xv|−1 possible choices for pv and most of the existing
methods for partial optimality still can be represented using it [35]
(in particular, methods [25, 14] can be represented using a constant
test labeling, yv = α for all v).

The restriction to the class P2,y allows to represent the search
of the substitution that eliminates the maximum number of labels
as the one with the largest (by inclusion) sets Yv of substituted
labels. This allows to propose a relatively simple algorithm.

2.5 Cutting Plane Algorithm
The algorithm is a cutting plane method in a general sense: we
maintain a substitution pt which is in all iterations better or
equal than the solution to (6) and achieve feasibility by iteratively
constraining it.

Initialization: Define the substitution p0 by the sets Y0
v =

Xv\{yv}. It substitutes everything with y and clearly maxi-
mizes the objective (6).

Verification: Check whether current pt is strictly relaxed-
improving for f by solving relaxed problem (5). If yes,
return pt. If not, the optimal relaxed solution µ∗ corresponds
to the most violated constraint.

Cutting plane: Assign pt+1 to the substitution defined by the
largest sets Yt+1

v such that Yt+1
v ⊆ Ytv and the constraints

Eg(µ
∗) ≥ 0, p(µ∗) = µ∗, are satisfied. Repeat the verifica-

tion step.
The steps of this meta-algorithm are illustrated in Fig. 4. It is

clear that when the algorithm stops the substitution pt is strictly
improving, although it could be the identity map that does not

y

y

0.5

0.5

1µ⇤

y

(a)

(b)

(c)

Fig. 4: Steps of the discrete cutting-plane algorithm. (a) Starting from
substitution that maps everything to the test labeling y (red), crossed
labels would be eliminated if p passes the sufficient condition. (b) A
relaxed solution µ∗ violating the sufficient condition is found (black).
(c) Substitution p is pruned.

eliminate any labels. The exact specification of the cutting plane
step will be derived in § 4 and it will be shown that this algorithm
solves the maximum persistency problem (6) over P2,y optimally.

2.6 Work Outline
In § 3 we give a precise formulation of the relaxed condition (5)
and its components. In § 4 we specify details of the algorithm and
prove its optimality. These results hold for a general relaxation
Λ ⊇M but require to solve linear programs (5a) precisely.

The rest of the paper is devoted to an approximate solution
of the problem (6), i.e. finding a relaxed improving mapping,
which is almost maximum. We consider specifically the standard
LP relaxation and reformulate the algorithm to use a dual solver
for the problem (5a), § 5. We then gradually relax requirements on
the optimality of the dual solver while keeping persistency guar-
antees, §§ 5 to 7, and propose several theoretical and algorithmic
tools to solve the series of verification problems incrementally and
overall efficiently, § 8. Finally, we provide an exhaustive experi-
mental evaluation in § 9, which clearly demonstrates efficacy of
the developed method.

3 RELAXED-IMPROVING SUBSTITUTIONS

3.1 Overcomplete Representation
In this section we formally derive the strictly relaxed-improving
sufficient condition (5). To obtain the relaxation we use the stan-
dard lifting approach (a.k.a. overcomplete representation [47]), in
which a labeling is represented using the 1-hot encoding. This
lifting allows to linearize the energy function, the substitution and
consequently both the non-relaxed (3) and relaxed (5) improving
substitution criteria.

The lifting is defined by the mapping δ : X → RI :

δ(x)∅ = 1, (8a)

δ(x)u(i) = [[xu=i]], (8b)

δ(x)uv(i, j) = [[xu=i]][[xv=j]], (8c)

where [[·]] is the Iverson bracket, i.e., [[A]] equals 1 if A is
true and 0 otherwise. Using this lifting, we can linearize unary

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5

terms as fv(xv) =
∑
k fv(k)[[xv=k]] =

∑
k fv(k)δ(x)v(k) and

similarly for the pairwise terms. This allows to linearize the energy
function Ef and write it as a scalar product Ef (x) = 〈f, δ(x)〉
in RI . The energy minimization problem (1) can then be written
as

min
x∈X

Ef (x) = min
x∈X
〈f, δ(x)〉 = min

µ ∈M
〈f, µ〉 , (9)

whereM = conv δ(X) is the convex hull of all labelings in the
lifted space, also known as marginal polytope [47]. The last equal-
ity in (9) uses the fact that the minimum of a linear function on a
finite set equals the minimum on its convex hull. Expression (9) is
an equivalent reformulation of the energy minimization problem
as a linear program, however over a generally intractable polytope
M.

3.2 Lifting of Substitutions
Next we show how a substitution p : X → X can be represented
as a linear map in the lifted space RI . This will allow to express
the term Ef (p(x)) as a linear function of δ(x) and hence also to
represent the non-relaxed criterion (3).

Proposition 3.1. Given a substitution p, let PT : RI → RI be
defined by its action on a cost vector f ∈ RI as follows:

(PTf)∅ = f∅, (10a)

(PTf)u(i) = fu(pu(i)), (10b)

(PTf)uv(i, j) = fuv(pu(i), pv(j)) (10c)

∀ u ∈ V , uv ∈ E , ij ∈ Xuv . Then P satisfies

(∀x ∈ X) δ(p(x)) = Pδ(x). (11)

Proof. Let x ∈ X . From (10) it follows that EPTf (x) =
Ef (p(x)), which can be expressed as a scalar product

〈PTf, δ(x)〉 = 〈f, Pδ(x)〉 = 〈f, δ(p(x))〉.

Since this equality holds for all f ∈ RI it follows that Pδ(x) =
δ(p(x)).

The expression (11) allows to write the energy of the substi-
tuted labeling p(x) as

Ef (p(x)) = 〈f, δ(p(x))〉 = 〈f, Pδ(x)〉 = EPTf (x). (12)

For this reason, the mapping P is called the linear extension of p
and will be denoted with the symbol [p]. The following example
illustrates how [p] looks in coordinates.

Example 3.1. Consider the substitution p depicted in Fig. 3 and
defined by pu : 1, 2, 3 7→ 3, 3, 3; pv : 1, 2, 3 7→ 1, 3, 3. The
relaxed labeling µ ∈ RI has the structure (µ∅, µu, µv, µuv). The
linear extension [p] : RI → RI can be written as a block-diagonal
matrix(

1
Pu

Pv
Puv

)
,where Pu =

(
0 0 0
0 0 0
1 1 1

)
, Pv =

(
1 0 0
0 0 0
0 1 1

)
(13)

and Puv is defined by Puvµuv = PuµuvPv , where µuv is shaped
as a 3× 3 matrix. The action of the block Pu expresses as

Pu

(
µu(1)
µu(2)
µu(3)

)
=
(

0
0
1

)
, (14)

i.e. all relaxed labels are mapped to the indicator of the label
xu = 3. And the adjoint operator PT acts as follows (cf. (10b)):

P>u (fu(1) fu(2) fu(3))> = (fu(3) fu(3) fu(3))>, (15)

P>v (fu(1) fu(2) fu(3))> = (fu(1) fu(3) fu(3))> . (16)

Similarly, due to (10c) we have, e.g., (P>uvfuv)(1, 2) = fuv(3, 3),
(P>uvfuv)(1, 1) = fuv(3, 1) and so on.

3.3 Strictly improving substitutions
Let I denote the identity mapping RI → RI . Using Proposi-
tion 2.3 and the linear extension [p], we obtain that substitution p
is strictly improving iff the value of

min
x∈X
〈f, δ(x)− δ(p(x))〉 = min

x∈X
〈f, (I − [p])δ(x)〉

= min
x∈X
〈(I − [p])>f, δ(x)〉 = min

µ∈M
〈(I − [p])>f, µ〉 (17)

is zero and [p]µ = µ for all minimizers. Note that problem (17)
is of the same form as the energy minimization (9) with the cost
vector g = (I − [p]T)f , as introduced in (4).

The sufficient condition for persistency (5) is obtained by
relaxing the intractable marginal polytopeM in (17) to a tractable
outer approximation Λ ⊇M.

Definition 3.2 ([35]). Substitution p is strictly Λ-improving for
the cost vector f ∈ RI (shortly, strictly relaxed-improving, or
p ∈ Sf) if

minµ∈Λ〈(I − [p])>f, µ〉 = 0, (18a)

[p]µ∗ = µ∗ for all minimizers. (18b)

In § 5, Λ will be defined as the polytope of the standard LP
relaxation but until then the arguments are general and require
only that Λ ⊇ M. Since Λ includes all integer labelings, it
is a sufficient condition for improving substitution and hence
persistency.

Corollary 3.3. If substitution p is strictly Λ-improving for f
and Λ ⊇M, then p is strictly improving for f .

The problem (18a) will be called the verification LP and the
decision problem to test for p ∈ Sf , i.e. to verify conditions (18),
will be called the verification problem.

4 GENERIC PERSISTENCE ALGORITHM

4.1 Structure of P 2,y

In [35] it was shown that the maximum persistency problem (6)
over the class of substitutions P2,y can be formulated as a
single linear program, where the substitution is represented using
auxiliary (continuous) variables. Here we take a different approach
based on observing a lattice-like structure of improving substitu-
tions.

Throughout this section we will assume that the test labeling
y ∈ X is fixed. Let us compare two substitutions p and q by
the sets of the labels they eliminate. A substitution p ∈ P2,y

eliminates all labels in Yv , or equivalently all labels not in pv(Xv).

Definition 4.1. A substitution p ∈ P2,y is better equal than a
substitution q ∈ P2,y , denoted by p ≥ q, if (∀v ∈ V) it holds
pv(Xv) ⊆ qv(Xv).

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

6

Proposition 4.2. Let the partially ordered set (Sf ∩ P2,y,≥)
of subset-to-one strictly relaxed-improving substitutions has the
maximum and let it be denoted r. Then r is the unique solution
of (6) with P = P2,y .

Proof. Since r is the maximum, it holds r ≥ q for all q. From
Definition 4.1 we have rv(Xv) ⊆ qv(Xv) for all v and thus∑
v |rv(Xv)| ≤

∑
v |qv(Xv)|. Therefore r is optimal to (6).

Additionally, if r 6= q, then it holds
∑
v |rv(Xv)| <

∑
v |qv(Xv)|

and therefore r is the unique solution to (6).
The existence of the maximum will formally follow from the

correctness proof of the algorithm, Theorem 4.6. A stronger claim,
which is not necessary for our analysis, but which may provide a
better insight is that (Sf ∩ P2,y,≥) is a lattice isomorphic to
the lattice of sets with union and intersection operations. This is
seen as follows. If both p and q are strictly-improving then so is
their composition r(x) = p(q(x)), as can be verified by chaining
inequalities (2). In P2,y the composition satisfies the property
ru(Xu) = pu(Xu) ∩ qu(Xu), and can be identified with the join
of p and q (the least r such that r ≥ p and r ≥ q). This can be
shown to hold also for Sf ∩P2,y . It is this structure that allows to
find the maximum in Sf ∩ P2,y by a relatively simple algorithm.

4.2 Generic Algorithm
Our generic primal algorithm, displayed in Algorithm 1, represents
a substitution p ∈ P2,y by the sets Yv of labels to be substituted
with y, via (7). Line 1 initializes these sets to all labels but
y. Line 3 constructs the cost vector of the verification LP in
condition (18). Lines 4 and 6 solve the verification LP and test
whether sufficient conditions (18) are satisfied via the following
reformulation.

Proposition 4.3. For a given substitution p, let O∗ ⊆ Λ denote
the set of minimizers of the verification LP (18) and

O∗v := {i ∈ Xv | (∃µ ∈ O∗) µv(i) > 0}, (19)

which is the support set of all optimal solutions in node v. Then
p ∈ Sf iff (∀v ∈ V ∀i ∈ O∗v) pv(i) = i. Proof in § A.

Corollary 4.4. For substitution p ∈ P2,y defined by (7) it holds
p ∈ Sf iff (∀v ∈ V) O∗v ∩ Yv = ∅.

In the remainder of the paper we will relate the notation
O∗v to O∗ as in (19). The set of optimal solutions O∗ can, in
general, be a d-dimensional face of Λ. We need to determine
in (19) whether an optimal solution µ ∈ O∗ exists such that
the coordinate µv(i) is strictly positive. From the theory of linear
programming [46], it is known that if one takes an optimal solution
µ in the relative interior of O∗ (i.e., if O∗ is a 2D face the relative
interior excludes vertices and edges of O∗) then its support set
{i | µv(i) > 0} is the same for all such points and it matches
O∗v (19). Therefore, it is practically feasible to find the support sets
O∗v by using a single solution found by an interior point/barrier
method (which are known to converge to a “central” point of the
optimal face) or methods based on smoothing [31, 32]. Obtaining
an exact solution by these methods may become computationally
expensive as the size of the inference problem (1) grows. Despite
that, Algorithm 1 is implementable and defines the baseline for its
practically efficient variants solving (6) approximately. These are
developed further in the paper.

Since Line 6 of Algorithm 1 verifies precisely the condition of
Corollary 4.4, the algorithm terminates as soon as p ∈ Sf and

Algorithm 1: Iterative Pruning LP-Primal

Input: Cost vector f ∈ RI , test labeling y ∈ X ;
Output: Maximum strictly improving substitution p;

1 (∀v ∈ V) Yv := Xv\{yv};
2 while true
3 Construct the verification problem potentials

g := (I − [p])>f with p defined by (7);
4 O∗ = argminµ∈Λ〈g, µ〉;
5 (∀v ∈ V) O∗v = {i ∈ Xv | (∃µ ∈ O∗) µv(i) > 0};
6 if (∀v ∈ V) O∗v ∩ Yv = ∅ then return p;
7 for v ∈ V do
8 Pruning of substitutions: Yv := Yv\O∗v ;

hence p is strictly improving. In the opposite case, Line 8 prunes
the sets Yv by removing labels corresponding to the support set
O∗v of all optimal solutions of the verification LP, which have
been identified now to violate the sufficient condition. These labels
may be a part of some optimal solution to (1) and will not be
eliminated.

To complete the analysis of Algorithm 1 it remains to answer
two questions: i) does it terminate and ii) is it optimal for the
maximum persistency problem (6)?

Proposition 4.5. Algorithm 1 runs in polynomial time and returns
a substitution p ∈ Sf ∩ P2,y .

Proof. As we discussed above, sets O∗v in Line 5 can be found
in polynomial time. At every iteration, if the algorithm has
not terminated yet, at least one of the sets Yv strictly shrinks,
as can be seen by comparing termination condition in Line 6
with pruning in Line 8. Therefore the algorithm terminates in
at most

∑
v(|Xv| − 1) iterations. On termination, p ∈ Sf by

Corollary 4.4.

Theorem 4.6. Substitution p returned by Algorithm 1 is the
maximum of Sf ∩ P2,y and thus it solves (6). Proof in § A.

It is noteworthy that Algorithm 1 can be used to solve prob-
lem (6) with any polytope Λ satisfying M ⊆ Λ, i.e., with
any LP relaxation of (1) that can be expressed in the lifted
space RI . Moreover, in order to use the algorithm with higher
order models one needs merely to (straightforwardly) generalize
the linear extension (10) as done in [37].

The test labeling y can itself be chosen using the approximate
solution of the LP-relaxation, e.g., via the zeroth iteration of the
algorithm with g = f and picking yv from O∗v . This choice is
motivated by the fact that a strict relaxed-improving substitution
cannot eliminate the labels from the support set of optimal solu-
tions of the LP relaxation [35], and thus these labels may not be
substituted with anything else.

4.3 Comparison to Previous Work
Substitutions in P2,y are related to the expansion move algo-
rithm [6] in the following sense. While [6] seeks to improve a
single current labeling x by calculating an optimized crossover
(fusion) with a candidate labeling y, we seek which labels can
be moved with a guaranteed improvement to y for all possible
labelings x.

Algorithm 1 is similar in structure to [43]. The later finds
an improving substitution in a small class P1,y by incremen-
tally shrinking the set of potentially persistent variables. More

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

7

specifically, given a test labeling y ∈ X , the all-to-one class of
substitutions P1,y contains substitutions p, which in every node
v either replace all labels with yv or leaves all labels unchanged.
There are only two possible choices for pv: either i 7→ yv for
all i ∈ Xv or the identity i 7→ i. Methods [24, 42, 43] can be
explained as finding an improving mapping in this class [35]. We
generalize the method [43] to substitutions in P2,y . The original
sufficient condition for persistency in [43] does not extend to
such substitutions. Even for substitutions in P1,y it is generally
weaker than condition (18) unless a special reparametrization is
applied [44]. Criterion (18) extends to general substitutions and
does not depend on reparametrization. Similarly to [43], we will
use approximate dual solvers in this more general setting.

In [35, (ε-L1)] problem (6) is formulated as one big linear pro-
gram. We solve problem (6), and hence also the LP problem [35]
in a more combinatorial fashion w.r.t. to the variables defining the
substitution.

It may seem that solving a series of linear programs rather
than a single one is a disadvantage of the proposed approach.
However, as we show further, the proposed iterative algorithm
can be implemented using a dual, possibly suboptimal, solver for
the relaxed verification problem (18). This turns out to be much
more beneficitial in practice since the verification problems can be
incrementally updated from iteration to iteration and solved overall
very efficiently. This approach achieves scalability by exploiting
available specialized approximate solvers for the relaxed MAP
inference. Essentially, any dual (approximate) solver can be used
as a black box in our method.

5 PERSISTENCY WITH DUAL SOLVERS

Though Algorithm 1 is quite general, its practical use is limited
by the strict requirements on the solver, which must be able to
determine the exact support set of all optimal solutions. However,
finding even a single solution of the relaxed problem with standard
methods like simplex or interior point can be practically infeasible
and one has to switch to specialized solvers developed for this
problem. Although there are scalable algorithms based on smooth-
ing techniques [31, 32], which converge to an optimal solution,
waiting until convergence in each iteration of Algorithm 1 can
make the whole procedure impractical. In general, we would like
to avoid restricting ourselves to certain selected solvers to be
able to choose the most efficient one for a given problem. In the
standard LP relaxation (introduced below in (20)), the number of
primal variables grows quadratically with the number of labels,
while the number of dual variables grows only linearly. It is
therefore desirable to use solvers working in the dual domain,
including suboptimal ones, (e.g. [20, 32, 12, 33], performing
block-coordinate descent) as they offer the most performance for
a limited time budget. Furthermore, fast parallel versions of such
methods have been developed to run on GPU/FPGA [38, 7, 16],
making the LP approach feasible for more vision applications.

We will switch to the dual verification LP and gradually relax
our requirements on the solution returned by a dual solver. This is
done in the following steps:

1. an optimal dual solution;
2. an arc consistent dual point;
3. any dual point.

Our main objective is to ensure in each of these cases that the
found substitution p is strictly improving, while possibly compro-
mising its maximality. The final practical algorithm operating in

the mode 3 relies on the persistency problem reduction introduced
in § 6. Intermediate steps 1 and 2 are considered right after
defining the standard LP relaxation and its dual.

5.1 LP Relaxation
We consider the standard local polytope relaxation [41, 49, 47]
of the energy minimization problem (1) given by the following
primal-dual pair:

(primal) (dual)
min〈f, µ〉 = max fϕ∅∑
j µuv(i, j) = µu(i), ϕuv(i) ∈ R,∑
i µuv(i, j) = µv(j), ϕvu(j) ∈ R,∑
i µu(i) = µ∅, ϕu ∈ R,

µu(i) ≥ 0, fϕu (i) ≥ 0,
µuv(i, j) ≥ 0, fϕuv(i, j) ≥ 0,
µ∅ = 1

(20)

where fϕ abbreviates

fϕu (i) = fu(i) +
∑
v∈N (u) ϕuv(i)− ϕu, (21a)

fϕuv(i, j) = fuv(i, j)− ϕuv(i)− ϕvu(j), (21b)

fϕ∅ = f∅ +
∑
u ϕu. (21c)

The constraints of the primal problem (20) define the local
polytope Λ. The cost vector fϕ is called a reparametrization of
f . There holds cost equivalence: 〈fϕ, µ〉 = 〈f, µ〉 for all µ ∈ Λ
(as well as Ef = Efϕ), see [49]. Using the reparametrization, the
dual problem (20) can be briefly expressed as

max
ϕ

fϕ∅ s.t. (∀ω ∈ V ∪ E) fϕω ≥ 0. (22)

Note that for a feasible ϕ the value fϕ∅ is a lower bound on the
primal problem (20). In what follows we will assume that ϕ in (22)
additionally satisfies the following normalization: mini f

ϕ
u (i) =

0 and minij f
ϕ
uv(i, j) = 0 for all u, v, which is automatically

satisfied for any optimal solution.

5.2 Expressing O∗v in the Dual Domain
Let (µ, ϕ) be a pair of primal and dual optimal solutions to (20).
From complementary slackness we know that if µv(i) > 0 then
the respective dual constraint holds with equality:

µv(i) > 0⇒ fϕv (i) = 0, (23)

in this case we say that fϕv (i) is active. The set of such active
dual constraints matches the sets of local minimizers of the
reparametrized problem,

Ov(ϕ) :=
{
i ∈ Xv | fϕv (i) = 0

}
= argmin

i
fϕv (i). (24)

From complementary slackness (23) we obtain that

O∗v ⊆ Ov(ϕ). (25)

This inclusion is insufficient for an exact reformulation of Algo-
rithm 1, however it is sufficient for correctness if we make sure
that Yv ∩ Ov(ϕ) = ∅ on termination, i.e., that the substitution p
does not displace labels inOv(ϕ). Then, by Corollary 4.4, p ∈ Sf
follows.

There always exists an optimal primal solution µ and dual ϕ
satisfying strict complementarity [46], in which case relation (23)
becomes an equivalence:

µv(i) > 0⇔ fϕv (i) = 0. (26)

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

Algorithm 2: Iterative Pruning Arc Consistency

Input: Cost vector f ∈ RI , test labeling y ∈ X ;
Output: Strictly improving substitution p;

1 (∀v ∈ V) Yv := Xv\{yv};
2 while true
3 Construct verification problem g := (I − [p])>f with p

defined by (7);
4 Use dual solver to find ϕ such that gϕ is arc consistent;
5 Ov(ϕ) := {i ∈ Xv | gϕv (i) = 0};
6 if (∀v ∈ V) Ov(ϕ) ∩ Yv = ∅ then return p;
7 for v ∈ V do
8 Pruning of substitutions: Yv := Yv\Ov(ϕ);

It is the case when both µ and ϕ are relative interior points of
the optimal primal, resp. optimal dual, faces [46]. For a relative
interior optimal ϕ, the set of constraints that are satisfied as
equalities fϕ(i) = 0 is the smallest and does not depend on
the specific choice of such ϕ. Under strict complementarity, (25)
turns into equality O∗v = Ov(ϕ), which allows to compute
the exact maximum persistency using a dual algorithm without
reconstructing a primal solution. However finding such ϕ appears
more difficult: e.g. the most efficient dual block-coordinate as-
cent solvers [20, 12, 8, 33] only have convergence guarantees
(see [20, 33]) allowing to find a sub-optimal solution, satisfying
arc consistency.

Definition 5.1 ([49]). A reparametrized problem fϕ is called arc
consistent if: (i) for all uv ∈ E from fϕuv(i, j) being active follows
that fϕu (i) and fϕv (j) are active; (ii) for all u ∈ V from fϕu (i)
active follows that for all v ∈ N (u) there exists a j ∈ Xv such
that fϕuv(i, j) is active.

An optimal dual solution need not be arc consistent, but
it can be reparametrized without loss of optimality to enforce
arc consistency [49]. Labels that become inactive during this
procedure are not in the support set of primal solutions. In general
the following holds.

Proposition 5.2. Arc consistency is a necessary condition for
relative interior optimality: if Ov(ϕ) = O∗v for all v ∈ V then
fϕ is arc consistent. Proof in § A.

This property is in our favor, since we are ideally interested
in the equality Ov(ϕ) = O∗v . Next, we propose an algorithm
utilizing an arc consistent solver and prove that it is guaranteed to
output p ∈ Sf .

5.3 Persistency with an Arc Consistency Solver
We propose Algorithm 2 which is based on a dual solver attaining
the arc consistency condition (differences to Algorithm 1 under-
lined). If the dual solver (in line 4) finds a relative interior optimal
solution, Algorithm 2 solves (6) exactly. Otherwise it is suboptimal
and we need to reestablish its correctness and termination.

Lemma 5.3 (Termination of Algorithm 2). Algorithm 2 termi-
nates in at most

∑
v(|Xv| − 1) iterations.

Proof. In case the return condition in line 6 is not satisfied, Ov ∩
Yv 6= ∅ for some v and the pruning in line 8 excludes at least one
label from Yv .

u v
)i, j(uvg

u\Yu∈Xj) = mini(uv∆

i

j

j

u\YuX

v\YvX

u\YuX

v\YvX

u v

i

j

j
i

)i(uv∆
)j(vu∆

})j(vu) + ∆i(uv∆,)i, j(uvg{min

(a) (b)

Fig. 5: Illustration for the reduction. Labels Xu\Yu are not displaced
by p hence their associated unary and pairwise costs are zero in g =
(I − [p]T)f . In case (a) the indicated pairwise costs are replaced with
their minimum. In case (b) the value of guv(i, j) can be decreased,
assuming all reductions of type (a) and their symmetric counterparts
are already performed. The amount of decrease matches the value
of the mixed derivative (non-submodularity) associated to i, i′ paired
with j, j′.

Lemma 5.4 (Correctness of Algorithm 2). If (∀v ∈ V) Ov(ϕ)∩
Yv = ∅ holds for an arc consistent dual vector ϕ, then ϕ is
optimal. Proof in § A.

It follows that when Algorithm 2 terminates, the found arc
consistent solution ϕ is optimal, in which case inclusion (25) is
satisfied and the found substitution p is guaranteed to be in Sf .

5.4 Solvers Converging to Arc Consistency
One can see that arc consistency is only required on termination of
Algorithm 2. In the intermediate iterations we may as well perform
the pruning step, line 8, without waiting for the solver to converge.
This motivates the following practical strategy:
• Perform a number of iteration towards finding an arc-
consistent dual point ϕ;
• Check whether there are some labels to prune, i.e.,
(∃u)Ou(ϕ) ∩ Yu 6= ∅;
• Terminate if ϕ is arc consistent and there is nothing to
prune; otherwise, perform more iterations towards arc con-
sistency.

If the solver is guaranteed to eventually find an arc consistent
solution, the overall algorithm will either terminate with an arc
consistent and (by Lemma 5.4) optimal ϕ or there will be some
labels to prune. However, we have to face the question what
happens if the dual solver does not find an arc consistent solution
in finite time. In this case the algorithm can be iterating infinitely
with no pruning available. At the same time there is no guarantee
that a pruning step will not occur at some point and thus if we
simply terminate the algorithm we get no persistency guarantees.
Even if the dual solver was guaranteed to converge in a finite
number of iterations, it is in principle possible that the time needed
for a pruning to succeed would be proportional to the time of
convergence, making the whole algorithm very slow. Instead, it is
desirable to guarantee a valid result while allowing only a fixed
time budget for the dual solver. We will overcome this difficulty
with the help of the reduced verification LP presented next.

6 VERIFICATION PROBLEM REDUCTION

Algorithms 1 and 2 iteratively solve verification problems. We can
replace the verification LP solved in step 4 by a simpler, reduced
one, without loss of optimality of the algorithms.

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

Definition 6.1. Let g := (I − [p])>f be the cost vector of the
verification LP. The reduced cost vector ḡ is defined as

ḡv(i) := gv(i), v ∈ V; ḡ∅ = 0; (27a)

guv(i, j) := (27b)
0, i /∈ Yu, j /∈ Yv ,
∆vu(j) := mini′ /∈Yu

guv(i
′, j), i /∈ Yu, j ∈ Yv ,

∆uv(i) := minj′ /∈Yv
guv(i, j

′), i ∈ Yu, j /∈ Yv ,
min{∆vu(j) + ∆uv(i), guv(i, j)}, i ∈ Yu, j ∈ Yv .

The reduction is illustrated in Fig. 5. Taking into account that
guv(i

′, j′) = 0 for i′ ∈ Xu\Yu, j′ ∈ Xv\Yv , the reduction can
be interpreted as forcing the inequality

guv(i, j
′) + guv(i

′, j)− guv(i, j)− guv(i′, j′) ≥ 0, (28)

i.e., the non-negativity of mixed discrete derivatives, for all four-
tuples i ∈ Yu, j ∈ Yv , i′ /∈ Yv , j′ /∈ Yu. The cost vector ḡ is
therefore a partial submodular truncation of g.

Recall that Algorithm 1 on each iterations prunes all substitu-
tions q ≤ p that do not belong to Sf based on the solutions of the
verification LP. The following theorem reestablishes optimality of
this step with the above reduction.

Theorem 6.2 (Reduction). Let p ∈ P2,y and ḡ be the corre-
sponding reduced cost vector constructed as in Def. 6.1. Let also
q ∈ P2,y , q ≤ p. Then q ∈ Sf iff q ∈ Sḡ . Proof in § A.

From Theorem 6.2 and Corollary 4.4 it follows that q ∈ Sf iff
qu(O∗u) = O∗u, whereO∗u are the support sets of optimal solutions
to the reduced verification LP,

argminµ∈Λ〈ḡ, µ〉. (29)

Therefore it is valid for algorithms 1 and 2 to consider this
reduced LP and prune all substitutions q that do not satisfy
the property qv(O∗v) = O∗v . The optimal relaxed solutions and
their support sets can in general differ from those of the original
verification LP, however for the purpose of the algorithm it is
an equivalent replacement potentially affecting only the order in
which substitutions are pruned.

The reduction has the following advantages:
• subsets of labels Xv\Yv can be contracted to a single rep-

resentative label yv , because associated unary and pairwise
costs are equal;
• It will allow (see § 7) to relax the requirements on ap-

proximate dual solvers needed to establish termination and
correctness of the algorithm.
• It is useful for the speed up heuristics (§ 8). In particular,
it is easier to find a labeling with a negative cost since we
have decreased many edge costs. It will be shown that such a
labeling allows for an early stopping of the dual solver and a
pruning of substitution without loss of maximality.

7 PERSISTENCY WITH A FINITE NUMBER OF DUAL
UPDATES

We assume that a suboptimal dual solver is iterative and can be
represented by a procedure dual_update, which given a current
dual point ϕmakes a step resulting in a new dual point and a guess
of a primal integer solution x.

In this setting we propose Algorithm 4. In its inner loop, the
algorithm calls dual_update (line 7) checks whether a speed-
up shortcut is available (line 8) and verifies whether it can already

Procedure 3: dual correct(ϕ,ḡ)

1 for uv ∈ E do
2 (∀i ∈ Xu) ϕuv(i) := ϕuv(i) + minij ḡ

ϕ
uv(i, j);

3 (∀i ∈ Xu) ϕuv(i) := ϕuv(i) + minj ḡ
ϕ
uv(i, j);

4 (∀j ∈ Xv) ϕvu(j) := ϕvu(j) + mini ḡ
ϕ
uv(i, j);

5 (∀u ∈ V) ϕu := ϕu + mini g
ϕ
u (i); /* Normalize */

6 return ϕ;

terminate (lines 11-13). If neither occurs in a certain number of
iterations (stopping condition in line 14), the pruning based on
the currently active labels is executed (line 15). After that the cost
vector ḡ is rebuilt, but the dual solver continues from the last found
dual point (warm start).

The speed-ups will be explained in the next section, they
are not critical for the overall correctness. Now we focus on
the new termination conditions (lines 11-13). A correction step
(line 11) is introduced whose purpose is to move the slacks from
pairwise terms to unary terms so that active labels become more
decisive. This procedure is defined in Procedure 3. The correction
is not intermixed with dual updates but serves as a proxy between
the solver and the termination conditions. It has the following
property.

Lemma 7.1. Output ϕ of Procedure 3 is feasible and satisfies

(∀u ∈ V) min
i∈Xu

gϕu (i) = 0, (30)

(∀uv ∈ E , ij ∈ Xuv) min
i′∈Xu

ḡϕuv(i
′, j) = min

j′∈Xv

ḡϕuv(i, j
′)= 0. (31)

Moreover, if the input ϕ is feasible, the lower bound fϕ∅ does not
decrease.

Proof. Line 2 of Procedure 3 moves a constant from an edge
to node. This turns the minimum of terms gϕuv(i, j) to zero.
Lines 3 and 4 turn to zero the minimal pairwise value attached
to each label, which provides (31). Line 5 provides (30). In case
of feasibility of the initial ϕ, which implies gϕ ≥ 0, all values of ϕ
can only increase during steps 2-4 and hence the unary potentials
gϕu remain non-negative. Therefore step 5 can not decrease the
lower bound value fϕ∅ .

According to Lemma 7.1 Procedure 3 can not worsen the lower
bound attained by a dual solver. The following theorem guarantees
that when no further pruning is possible, the corrected dual point
constitutes an optimal solution, ensuring persistency.

Theorem 7.2. Let ϕ be a dual point for reduced problem ḡ
satisfying (30)-(31). Then either

1. gϕ∅ = 0, ϕ is dual optimal and δ(y) is primal optimal, or
2. (∃u ∈ V) Ou(ϕ) ∩ Yu 6= ∅.

Proof. Assume (b) does not hold: (∀u ∈ V) Ou(ϕ) ⊆ Xu\Yu.
Let us pick in each node u a label zu ∈ Ou(ϕ). As ensured
by (31), for each edge uv there is a label j ∈ Xv such that
ḡϕuv(zu, j) = 0 and similarly, there exists i ∈ Xu such that
ḡϕuv(i, zv) = 0. By partial submodularity of ḡ, we have

ḡϕuv(zu, zv) + ḡϕuv(i, j) ≤ ḡϕuv(zu, j) + ḡϕuv(i, zv) = 0. (32)

Therefore, ḡϕuv(zu, zv) ≤ −ḡϕuv(i, j) ≤ 0. Hence ḡϕuv(zu, zv) =
0 and it is active. Therefore δ(z) and dual point ϕ satisfy
complementarity slackness conditions and hence they are primal-
dual optimal and gϕ∅ = Eḡ(z) = 0 = Eḡ(y).

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

10

Algorithm 4: Efficient Iterative Pruning

Input: Problem f ∈ RI , test labeling y ∈ X ;
Output: Improving substitution p ∈ P2,y ∩ Sf ;

1 (∀u ∈ V) Yu := Xu\{yu};
2 Set ϕ to the initial dual solution if available;
3 while true
4 Apply single node pruning ; /* speed-up */
5 Construct reduced verification LP ḡ from f and current

sets Yu, according to Definition 6.1;
6 repeat
7 (ϕ, x) := dual_update(ḡ, ϕ);
8 if Eḡ(x) < 0 then /* speed-up */
9 Apply pruning cut with x;

10 goto step 4 to rebuild ḡ;

/* Verification of Optimality */
11 ϕ′ := dual_correct(ḡ, ϕ);
12 Ou := {i | ḡϕ′

u (i) = 0};
13 if (∀u ∈ V) Ou ∩ Yu = ∅ then return p by (7);
14 until any stopping condition (e.g., iteration limit);
15 Prune: (∀u ∈ V) Yu := Yu\Ou;

16 Procedure dual_update (ḡ,ϕ)
Input: Cost vector ḡ, dual point ϕ;
Output: New dual point ϕ, approximate primal integer

solution x;

Theorem 7.3 (Termination and Correctness of Algorithm 4). For
any stopping condition in line 14, Algorithm 4 terminates in at
most

∑
v(|Xv| − 1) outer iterations and returns p ∈ Sf .

Proof. When the algorithm has not yet terminated some further
pruning is guaranteed to be possible (compare conditions in
lines 13 and 15). The iteration limit follows. When Algorithm 4
terminates, from Theorem 7.2 it follows that ϕ′ is dual optimal
and hence Ou(ϕ′) ⊇ O∗u. Therefore, (∀u ∈ V) O∗u ∩ Yu = ∅,
which is sufficient for p to be strictly Λ-improving according to
Corollary 4.4.

In [40] we prove that a similar result holds for a TRW-
S iteration without correction by arguing on complete chain
subproblems instead of individual nodes. The correction might be
needed in case the algorithm does not keep slacks on the nodes,
e.g. for SRMP [22].

The stopping condition in line 14 of Algorithm 4 controls the
aggressiveness of pruning. Performing fewer iterations may result
only in the found p not being the maximum, but in any case it
is guaranteed that the Algorithm 4 does not stall and identifies
a correct persistency. In the case when the solver does have
convergence and optimality guarantees, the time budget controls
the degree of approximation to the maximum persistency.

8 SPEED-UPS

8.1 Inference Termination Without Loss of Maximality
Next, we propose several sufficient conditions to quickly prune
some substitutions without worsening the final solution found
by the algorithm. As follows from Definition 3.2, existence of
a labeling x such that

〈
(I − [p])>f, δ(x)

〉
≤ 0 and x 6= p(x) is

sufficient to prove that substitution p is not strictly Λ-improving.
Hence one could consider updating the current substituttion p
without waiting for an exact solution of the inference problem in
line 4. The tricky part is to find labels that can be pruned without

loss of optimality of the algorithm. Lemma 8.1 below suggests
to solve a simpler verification LP, minµ∈Λ′〈ḡ, µ〉 over a subset
Λ′ of Λ. This does not guarantee to remove all non-improving
substitutions (which implies one has to switch to Λ afterwards),
but can be much more efficient than the optimization over Λ. After
the lemma we provide two examples of such efficient procedures.

Lemma 8.1. Let p ∈ P2,y and ḡ be defined by (27) (depends on
p). Let q ∈ Sf ∩P2,y , q ≤ p, Q = [q]. Let Λ′ ⊆ Λ, Q(Λ′) ⊆ Λ′

and O∗ = argminµ∈Λ′〈ḡ, µ〉. Then (∀v ∈ V) qv(O∗v) = O∗v .
Proof in § A.

Note, while Theorem 6.2 is necessary and sufficient for prun-
ing, Lemma 8.1 is only sufficient.

8.2 Pruning of Negative Labelings
Assume we found an integer labeling x such that Eḡ(x) ≤ 0 and
p(x) 6= x. Lemma 8.1 gives an answer, for which nodes v the
label xv can be pruned from the set Yv without loss of optimality.
Define the following restriction of the polytope Λ:

Λx = {µ ∈ Λ | (∀v ∈ V) µ(yv) + µ(xv) = 1} ⊆ Λ. (33)

Polytope Λx corresponds to the restriction of Λ to the label set
{yv, xv} in each node v ∈ V . According to Lemma 8.1 we need
to solve the problem

O∗ := argminµ∈Λx
〈ḡ, µ〉 (34)

and exclude xv from Yv if xv ∈ O∗v . Due to the partial submod-
ularity of ḡ the problem (34) is submodular and can be solved by
min-cut/max-flow algorithms [23]. Because x was found to have
non-positive energy, it is necessarily that for some nodes v there
will hold xv ∈ O∗v ∩ Yv and therefore some pruning will take
place.

8.3 Single Node Pruning
Let us consider “a single node” polytope Λu,i := {µ ∈ Λ |
µu(yu) + µu(i) = 1; (∀v 6= u) µv(yv) = 1}. It is a special
case of Λx when y and x differ in a single node u only and
xu = i. In this case problem (34) amounts to calculating ḡu(xu)+∑
v∈N (u) ḡuv(xu, yv) . If this value is non-positive, xu must be

excluded from Yu. The single node pruning can be applied to all
pairs (u, i) exhaustively, but it is more efficient to keep track of
the nodes for which sets Yv have changed (either due to a negative
labeling pruning, active labels pruning in line 15 or the single node
pruning itself) and check their neighbors.

8.4 Efficient Message Passing
The main computational element in dual coordinate ascent solvers
like TRWS or MPLP is passing a message, i.e., an update of
the form mini∈Xu

(fuv(i, j) + a(i)). In many practical cases the
message passing for f can be computed in time linear in the
number of labels [15, 28, 3]. This is the case when fuv is a
convex function of i−j (e.g., |i−j|, (i−j)2) or a minimum of
few such functions (e.g. Potts model is min(1, |i−j|)). However,
in Algorithm 1 we need to solve the problem with the cost vector
g = (I − PT)f , resp. ḡ (27) if we apply the reduction. It turns
out that whenever there is a fast message passing method for f ,
the same holds for ḡ.

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

11

Our-CPLEX Our Algorithm 1 (Iterative Relaxed Inference) us-
ing CPLEX [17].

Our-TRWS Our Algorithm 4 using TRW-S [20]. Initial solu-
tion uses at most 1000 iterations (or the method
has converged). All speedups.

[43]-CPLEX Method [43] with CLPEX.
[43]-TRWS Method [43] with TRW-S.
[44]-TRWS Improved version of the above with optimal

reparametrization [44].
ε-L1[35] Single LP formulation of the maximum strong

persistency [35] solved with CPLEX.
Kovtun[24] One-against-all method of Kovtun [25].

MQPBO Multilabel QPBO [19].
MQPBO-10 MQPBO with 10 random permutations, accumu-

lating persistency.

TABLE 1: List of Evaluated Methods

Theorem 8.2 (Fast message passing). Message passing for an
edge term ḡuv (27) can be reduced to that for fuv in timeO(|Yu|+
|Yv|). Proof in § A.

This complexity is proportional to the size of the sets Yu. The
more labels are pruned from sets Yu in the course of the algorithm,
the less work is required.

Note, that contrary to limiting the number of iterations of
a dual solver, described in § 7, the speedups presented in this
section do not sacrifice the persistence maximality (6). In our
experiments for some instances, Algorithm 4 finished before ever
reaching step 15. In such cases the found substitution p ∈ Sf is
the maximum.

9 EXPERIMENTAL EVALUATION1

In the experiments we study how well we approximate the
maximum persistency [35], Table 2; illustrate the contribution of
different speedups, Table 4; give an overall performance compar-
ison to a larger set of relevant methods, Table 3; and provide
a more detailed direct comparison to the most relevant scalable
method [43] using exact and approximate LP solvers, Table 5. As a
measure of persistency we use the percentage of labels eliminated
by the improving substitution p:∑

v∈V |Xv\pv(Xv)|∑
v∈V(|Xv|−1) =

∑
v∈V |Yv|∑

v∈V(|Xv|−1) . (35)

9.1 Random Instances
Table 2 gives comparison to [43] and [35] on random instances
generated as in [35] (small problems on 4-connected grid with
uniformly distributed integer potentials for “full” model and of
the Potts type for “Potts” model, all not LP-tight). It can be
seen that our exact Algorithm 1 performs identically to the ε-L1
formulation [35]. Although it solves a series of LPs, as opposed
to a single LP solved by ε-L1, it scales better to larger instances.
Instances of size 20x20 in the ε-L1 formulation are already too
difficult for CPLEX: it takes excessive time and sometimes returns
a computational error. The performance of the dual Algorithm 4
confirms that we loose very little in terms of persistency but gain
significantly in speed.

1The implementation of our method is available at http://cmp.felk.cvut.cz/
∼shekhovt/persistency

9.2 Benchmark Problems
Table 3 summarizes average performance on the OpenGM MRF
benchmark [18]. The datasets include previous benchmark in-
stances from computer vision [45] and protein structure predic-
tion [29, 51] as well as other models from the literature. Results
per instance are given in § B.

9.3 Speedups
In this experiment we report how much speed improvement was
achieved with each subsequent technique of § 8. The evaluation
in Table 4 starts with a basic implementation (using only a warm
start). The solver is allowed to run at most 50 iterations in the
partial optimality phase until pruning is attempted. We expect that
on most datasets the percentage of persistent labels improves when
we apply the speedups (since they are without loss of maximality).

9.4 Discussion
Tables 2 and 5 demonstrate that Our-TRWS, which is using
a suboptimal dual solver, closely approximates the maximum
persistency [35]. Our method is also significantly faster and scales
much better. The method [43] is the closest contender to ours in
terms of algorithm design. Tables 2, 3 and 5 clearly show that
our method determines a larger set of persistent variables. This
holds true with exact (CPLEX) as well as approximate (TRWS)
solvers. There are two reasons for that as discusssed in § 4.3.
First, we optimize over a larger set of substitutions than [43],
i.e., we identify per-label persistencies while [43] is limited to
the whole-variable persistencies. Second, even in the case of the
whole-variable persistencies the criterion in [43] is in general
weaker than (18) and depends on the initial reparametrization
of the problem. This later difference does not matter for Potts
models [44], the examples Figs. 6 and 8, but does matter, e.g., in
Fig. 9. Although our method searches over a significantly larger
space of possible substitutions, it needs fewer TRW-S iterations
due to speedup techniques. Details on iteration counts can be
found in § B. In the comparison of running time it should be
taken into account that different methods are optimized to a
different degree. Nevertheless, it is clear that the algorithmic
speedups were crucial in making the proposed method much more
practical than [43] and [35] while maintaining high persistency
recall quality.

To provide more insights to the numbers reported, we illustrate
in Figs. 1 and 6 to 9 some interesting cases. Fig. 6 shows “the
hardest” instance of color-seg-n4 family. Identified persis-
tencies allow to fix a single label in most of the pixels, but for
some pixels more than one possible label remains. The remainder
of the problem has the reduced search space p(X), which can be
passed to further solvers. The tsukuba image Fig. 1 is interesting
because it has appeared in many previous works. The performance
of graph-cut based persistency methods relies very much on strong
unary costs, while the proposed method is more robust. Fig. 7
shows an easy example from object-seg, where LP relaxation
is tight, the dual solver finds the optimal labeling y and our
verification LP confirms that this solution is unique. In Fig. 8
we show a hard instance of mrf-stereo. Partial reason for its
hardness is integer costs, leading to non-uniqueness of the optimal
solution. In Fig. 9, photomontage/pano instance, we report
79% solution completeness, but most of these 79% correspond to
trivial forbidden labels in the problem (very big unary costs). At
the same time other methods perform even worse. This problem

http://cmp.felk.cvut.cz/~shekhovt/persistency
http://cmp.felk.cvut.cz/~shekhovt/persistency

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

12

Problem family [43]-CPLEX [43]-TRWS ε-L1[35] Our-CPLEX Our-TRWS
10x10 Potts-3 0.18s 58.46% 0.05s 58.38% 0.05s 72.27% 0.18s 72.27% 0.04s 72.21%
10x10 full-3 0.24s 2.64% 0.09s 1.22% 0.06s 62.90% 0.24s 62.90% 0.05s 62.57%
20x20 Potts-3 3.25s 73.95% 0.21s 68.49% 0.87s 87.38% 2.43s 87.38% 0.06s 87.38%
20x20 full-3 2.81s 0.83% 0.37s 0.83% 0.95s 72.66% 3.03s 72.66% 0.07s 72.31%
20x20 Potts-4 12.45s 23.62% 0.39s 18.43% 19.40s 74.28% 8.56s 74.28% 0.08s 73.63%
20x20 full-4 3.96s 0.01% 0.39s 0.01% 21.08s 6.58% 12.41s 6.58% 0.08s 6.58%

TABLE 2: Performance evaluation on random instances of [35]. For each problem family (size, type of potentials and number of labels)
average performance over 100 samples is given. To allow for precise comparison all methods are initialized with the same test labeling y found
by LP relaxation. Our-TRWS closely approximates Our-CPLEX, which matches ε-L1[35], and scales much better.

Problem family #I #L #V MQPBO MQPBO-10 Kovtun[24] [43]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † 1.0s 0.23% 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7 ≤ 514080 93s 22% 866s 16% 0.4s 15.94% 3.7h 16% 483s 41.98%
color-seg 3 3-4 ≤ 424720 22s 11% 87s 16% 0.3s 98% 1.3h 99.88% 61.8s 99.95%
color-seg-n4 9 3-12 ≤ 86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21 ≤ 483 ≤ 1972 685s 2% 2705s 2% 0.02s 4.56% 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

TABLE 3: Performance on OpenGM benchmarks. Columns #I,#L,#V denote the number of instances, labels and variables respectively. For
each method an average over all instances in a family is reported. † – result is not available (memory / implementation limitation).

Instance Initialization Extra time for persistency
(1000 it.) no speedups +reduction +node pruning +labeling pruning +fast msgs

Protein folding 1CKK 8.5s 268s (26.53%) 168s (26.53%) 2.0s (26.53%) 2.0s (26.53%) 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%) 230s (93.41%) 85s (93.41%) 76s (93.41%) 19s (93.41%)

TABLE 4: Evaluation of speedups on selected examples: computational time drops, as from left to right we add techniques described in § 6.
1CKK: an example when the final time for persistency is only a fraction of the initialization time. pfau-small: an example when times for
initialization and persistency are comparable; speedups also help to improve the persistency as they are based on exact criteria.

Instance #L #V [43]-CPLEX [43]-TRWS Our-CPLEX Our-TRWS
1CKK ≤ 445 38 2503s 0% 46s 0% 2758s 27% 8.5+2s 26.53%
1CM1 ≤ 350 37 2388s 0% 51s 0% 4070s 34% 9+3.9s 29.97%
1SY9 ≤ 425 37 1067s 0% 67s 0% 2629s 51% 11+4.2s 57.98%
2BBN ≤ 404 37 9777s 0% 5421s 0% 9677s 9% 16+4.3s 14.17%
PDB1B25 ≤ 81 1972 325s 22% 120s 22% 1599s 84% 4.3+7.3s 87.84%
PDB1D2E ≤ 81 1328 483s 59% 83s 59% 154s 98% 1.6+1.8s 98.25%

TABLE 5: Comparison to [43] using exact and approximate LP solvers. Examples of hard ProteinFolding instances [29, 51]. For
Our-TRWS the initialization + persistency time is given. An occasionally better persistency of Our-TRWS vs. Our-CPLEX is explained
by different test labelings produced by the CPLEX and TRW-S solvers (unlike in Table 2). The results of ε-L1[35] wold be identical to
Our-CPLEX, as has been proven and verified on random instances. Unfortunately the existing implementation of ε-L1 cannot actually run on
these instances to compare the timing (it assumes the same number of labels in all variables, letting 81 labels in each variable of the smallest
PDB1D2E problem, the implementation did not terminate in 6 hours).

has hard interaction constraints. It seems that hard constraints
and ambiguous solutions pose difficulties to all methods including
ours.

10 CONCLUSIONS AND OUTLOOK

We presented an approach to find persistencies for an exp-APX-
complete problem employing only solvers for a convex relax-
ation. Using a suboptimal solver for the relaxed problem, we
still correctly identify persistencies while the whole approach
becomes scalable. Our method with an exact solver matches
the maximum persistency [35] and with a suboptimal solver
closely approximates it, outperforming state of the art persistency
techniques [43, 19, 25]. The speedups we have developed allow to
achieve this at a reasonable computational cost making the method
much more practical than the works [35, 43] we build on. In fact,
our approach takes an approximate solver, like TRW-S, and turns
it into a method with partial optimality guarantees at a reasonable
computational overhead.

We believe that many of the presented results can be extended
to higher order graphical models and tighter relaxations. Practical
applicability with other approximate solvers can be explored. A
further research direction that seems promising is mixing different
optimization strategies such as persistency and cutting plane
methods.

ACKNOWLEGEMENT
Alexander Shekhovtsov was supported by the Austrian Science Fund
(FWF) under the START project BIVISION, No. Y729. Paul Swoboda
and Bogdan Savchynskyy were supported by the German Research
Foundation (DFG) within the program “Spatio-/Temporal Graphical
Models and Applications in Image Analysis”, grant GRK 1653.
Bogdan Savchynskyy was also supported by European Research
Council (ERC) under the European Unions Horizon 2020 research
and innovation program (grant agreement No 647769).

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

13

Kovtun[24]: 1s, 5.6% [43]-TRWS: 13 min 10.43%

Ours: 10+12s, 93.4%

0

1

2

3

4

5

6

7

8

9

10

11

12

Ours, remainder

Fig. 6: Performance on a hard segmentation problem. The remainder
of the problem visualizes |pu(Xu)| for all pixels. The result of the
improved method [44]-TRWS is the same as [43]-TRWS, because
this is a Potts model.

object-seg Kovtun[24]:
0.2s, 80.5%

Ours: 1.4s, 100%
(LP-tight)

Fig. 7: Examples of an easy problem, object-seg. TRWS finds
the optimal solution (zero integrality gap) and therefore our method
as well as [43]-TRWS, [44]-TRWS report 100%.

Kovtun[24]: 2.5s, 0.42% [43]-TRWS: 1h, 38%

Ours: 62+180s, 75% Ours, remainder

Fig. 8: Examples of a hard stereo problem, ted-gm. The result
[44]-TRWS is the same as [43]-TRWS, because this is a Potts
model too.

REFERENCES
[1] OpenGM benchmark. http://hci.iwr.uni-heidelberg.de/opengm2/

?l0=benchmark.
[2] Adams, W. P., Lassiter, J. B., and Sherali, H. D. (1998). Persis-

tency in 0-1 polynomial programming. Mathematics of Operations
Research, 23(2):359–389.

[3] Aggarwal, A., Klawe, M. M., Moran, S., Shor, P., and Wilber, R.
(1987). Geometric applications of a matrix-searching algorithm.
Algorithmica, 2(1):195–208.

[4] Alahari, K., Kohli, P., and Torr, P. H. S. (2008). Reduce, reuse
& recycle: Efficiently solving multi-label MRFs. In CVPR, pages
1–8.

[5] Boros, E. and Hammer, P. L. (2002). Pseudo-Boolean optimiza-
tion. Discrete Applied Mathematics, 123(1):155 – 225.

[6] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate
energy minimization via graph cuts. PAMI, 23(11):1222–1239.

[7] Choi, J. and Rutenbar, R. A. (2012). Hardware implementation
of MRF MAP inference on an FPGA platform. In Field Pro-
grammable Logic, pages 209–216.

[8] Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.,
and Werner, T. (2010). Soft arc consistency revisited. Artificial
Intelligence, 174(78):449 – 478.

[9] de Givry, S., Prestwich, S. D., and O’Sullivan, B. (2013). Dead-
end elimination for weighted CSP. In Constraint Programming,
volume 8124, pages 263–272.

[10] Desmet, J., Maeyer, M. D., Hazes, B., and Lasters, I. (1992).
The dead-end elimination theorem and its use in protein side-chain
positioning. Nature, 356:539–542.

[11] Freuder, E. C. (1991). Eliminating interchangeable values
in constraint satisfaction problems. In National Conference on
Artificial Intelligence, pages 227–233.

[12] Globerson, A. and Jaakkola, T. (2007). Fixing max-product:
Convergent message passing algorithms for MAP LP-relaxations.
In NIPS.

[13] Goldstein, R. F. (1994). Efficient rotamer elimination applied to
protein side-chains and related spin glasses. Biophysical Journal,
66(5):1335–1340.

[14] Gridchyn, I. and Kolmogorov, V. (2013). Potts model, parametric
maxflow and k-submodular functions. In ICCV, pages 2320–2327.

[15] Hirata, T. (1996). A unified linear-time algorithm for computing
distance maps. Information Processing Letters, 58(3):129 – 133.

[16] Hurkat, S., Choi, J., Nurvitadhi, E., Martnez, J. F., and Rutenbar,
R. A. (2015). Fast hierarchical implementation of sequential tree-
reweighted belief propagation for probabilistic inference. In Field
Programmable Logic, pages 1–8.

[17] ILOG, Inc. ILOG CPLEX: High-performance software for
mathematical programming and optimization. See http://www.ilog.
com/products/cplex/.

[18] Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C.,
Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T.,
Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.
(2015). A comparative study of modern inference techniques for
structured discrete energy minimization problems. International
Journal of Computer Vision, pages 1–30.

[19] Kohli, P., Shekhovtsov, A., Rother, C., Kolmogorov, V., and Torr,
P. (2008). On partial optimality in multi-label MRFs. In ICML,
pages 480–487.

[20] Kolmogorov, V. (2006). Convergent tree-reweighted message
passing for energy minimization. PAMI, 28(10):1568–1583.

[21] Kolmogorov, V. (2012). Generalized roof duality and bisubmod-
ular functions. Discrete Applied Mathematics, 160(4-5):416–426.

[22] Kolmogorov, V. (2015). A new look at reweighted message
passing. PAMI, 37(5):919–930.

[23] Kolmogorov, V. and Zabin, R. (2004). What energy functions
can be minimized via graph cuts? PAMI, 26(2):147–159.

[24] Kovtun, I. (2003). Partial optimal labeling search for a NP-hard
subclass of (max, +) problems. In DAGM-Symposium, pages 402–
409.

[25] Kovtun, I. (2011). Sufficient condition for partial optimality for
(max, +) labeling problems and its usage. Control Systems and
Computers, 2:35–42. Special issue.

[26] Lecoutre, C., Roussel, O., and Dehani, D. E. (2012). WCSP
integration of soft neighborhood substitutability. In Milano, M.,
editor, CP, volume 7514 of Lecture Notes in Computer Science,
pages 406–421.

[27] Li, M., Shekhovtsov, A., and Huber, D. (2016). Complexity of
discrete energy minimization problems. In ECCV, pages 834–852.

[28] Meijster, A., Roerdink, J. B. T. M., and Hesselink, W. H. (2000).
A General Algorithm for Computing Distance Transforms in Linear

http://hci.iwr.uni-heidelberg.de/opengm2/?l0=benchmark
http://hci.iwr.uni-heidelberg.de/opengm2/?l0=benchmark
http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/

0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2730884, IEEE
Transactions on Pattern Analysis and Machine Intelligence

14

mrf-photomontage
Kovtun[24]: 0.5s, 27.5% [44]-TRWS: 3h, 37.75%

0

1

2

3

4

5

6

7

Ours, remainder: 130+390s, 79.2%

Fig. 9: Example of a very hard instance, photomontage. The number of views covering a pixel is usually smaller than the total number of
views = number of labels. The 79% by our method mostly originate from the elimination of these redundant labels. The result of [43]-TRWS
gives 27.55% (visually same as Kovtun [24]) in 3.9h. [44]-TRWS improves on this due to choosing the optimal reparametrization [44]. Note
that our partial labeling (the part with one label remaining) is larger.

Time, pages 331–340.
[29] PIC2011. The probabilistic inference challenge (PIC2011). http:

//www.cs.huji.ac.il/project/PASCAL/.
[30] Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M.

(2007). Optimizing binary MRFs via extended roof duality. In
CVPR, pages 1–8.

[31] Savchynskyy, B., Kappes, J. H., Schmidt, S., and Schnörr, C.
(2011). A study of Nesterov’s scheme for Lagrangian decomposi-
tion and MAP labeling. In CVPR, pages 1817–1823.

[32] Savchynskyy, B., Schmidt, S., Kappes, J., and Schnörr, C.
(2012). Efficient MRF energy minimization via adaptive diminish-
ing smoothing. Uncertainty in Artificial Intelligence, pages 746–
755.

[33] Schlesinger, M. I. and Antoniuk, K. V. (2011). Diffusion
algorithms and structural recognition optimization problems. Cy-
bernetics and Sys. Anal., 47(2):175–192.

[34] Shekhovtsov, A. (2013). Exact and Partial Energy Minimization
in Computer Vision. PhD Thesis CTU–CMP–2013–24, CMP,
Czech Technical University in Prague.

[35] Shekhovtsov, A. (2014a). Maximum persistency in energy
minimization. In CVPR, pages 1162–1169.

[36] Shekhovtsov, A. (2014b). Maximum persistency in energy
minimization. CoRR, abs/1404.3653.

[37] Shekhovtsov, A. (2016). Higher order maximum persistency and
comparison theorems. CVIU, 143(C):54–79.

[38] Shekhovtsov, A., Reinbacher, C., Graber, G., and Pock, T.
(2016). Solving dense image matching in real-time using discrete-
continuous optimization. In Computer Vision Winter Workshop,
pages 1–13.

[39] Shekhovtsov, A., Swoboda, P., and Savchynskyy, B. (2015a).
Maximum persistency via iterative relaxed inference with graphical
models. In CVPR, pages 521–529.

[40] Shekhovtsov, A., Swoboda, P., and Savchynskyy, B. (2015b).
Maximum persistency via iterative relaxed inference with graphical
models. CoRR, abs/1508.07902.

[41] Shlezinger, M. (1976). Syntactic analysis of two-dimensional
visual signals in the presence of noise. Cybernetics and Systems
Analysis, 4:113–130. See review [49].

[42] Swoboda, P., Savchynskyy, B., Kappes, J., and Schnörr, C.
(2013). Partial optimality via iterative pruning for the Potts model.
In SSVM, pages 477–488.

[43] Swoboda, P., Savchynskyy, B., Kappes, J. H., and Schnrr, C.
(2014). Partial optimality by pruning for MAP-inference with
general graphical models. In CVPR, pages 1170–1177.

[44] Swoboda, P., Shekhovtsov, A., Kappes, J. H., Schnorr, C., and
Savchynskyy, B. (2016). Partial optimality by pruning for MAP-
inference with general graphical models. PAMI, 38(7):1370–1382.

[45] Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov,
V., Agarwala, A., Tappen, M., and Rother, C. (2008). A compar-
ative study of energy minimization methods for Markov random
fields with smoothness-based priors. PAMI, 30(6):1068–1080.

[46] Vanderbei, R. J. (2001). Linear Programming: Foundations and
Extensions. Department of operations and research and financial
engineering, Princeton university.

[47] Wainwright, M. J. and Jordan, M. I. (2008). Graphical models,
exponential families, and variational inference. Found. Trends

Mach. Learn., 1(1-2):1–305.
[48] Wang, C. and Zabih, R. (2016). Relaxation-based preprocessing

techniques for Markov random field inference. In CVPR, pages
5830–5838.

[49] Werner, T. (2007). A linear programming approach to max-sum
problem: A review. PAMI, 29(7):1165–1179.

[50] Windheuser, T., Ishikawa, H., and Cremers, D. (2012). Gener-
alized Roof Duality for Multi-Label Optimization: Optimal Lower
Bounds and Persistency, pages 400–413.

[51] Yanover, C., Schueler-Furman, O., and Weiss, Y. (2008). Min-
imizing and learning energy functions for side-chain prediction.
Jour. of Comp. Biol., 15(7):899–911.

[52] Zach, C. (2014). A principled approach for coarse-to-fine MAP
inference. In CVPR, pages 1330–1337.

Alexander Shekhovtsov graduated in applied
mathematics from the National Technical Uni-
versity of Ukraine “Kiev Polytechnic Institute”.
From 2001 to 2005 worked in Kiev under super-
vision of Schlesinger, M.I. From 2005 to 2013
researcher and PhD student at Czech Techni-
cal University in Prague. In 2014 defended PhD
thesis “exact and partial energy minimization in
computer vision”, supervised by Hlaváč, V. Since
2014 postdoc at Graz University of Technology.

Paul Swoboda graduated and obtained a PhD
in mathematics from Heidelberg University in
2011 and 2016 respectively. Since then, he is
postdoc at IST Austria. His main interests are
optimization problems for image analysis, in par-
ticular combinatorial methods.

Bogdan Savchynskyy graduated from the Na-
tional Technical University of Ukraine “Kiev Poly-
technic Institute” in 2002. In 2007 he defended
his PhD Thesis at the National Academy of Sci-
ences of Ukraine. During 2009-2014 he worked
at Heidelberg University and since 2015 at Dres-
den University of Technology. His main interests
are optimization problems for image and video
analysis, in particular inference and learning with
Markov random fields.

http://www.cs.huji.ac.il/project/PASCAL/
http://www.cs.huji.ac.il/project/PASCAL/

