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Abstract

We consider the NP-hard problem of MAP-inference for
graphical models. We propose a polynomial time practi-
cally efficient algorithm for finding a part of its optimal
solution. Specifically, our algorithm marks each label in
each node of the considered graphical model either as (i)
optimal, meaning that it belongs to all optimal solutions of
the inference problem; (ii) non-optimal if it provably does
not belong to any solution; or (iii) undefined, which means
our algorithm can not make a decision regarding the label.
Moreover, we prove optimality of our approach: it delivers
in a certain sense the largest total number of labels marked
as optimal or non-optimal. We demonstrate superiority of
our approach on problems from machine learning and com-
puter vision benchmarks.

1. Introduction
We consider the energy minimization problem, known

also as inference of maximum a posteriori (MAP) or max-
imum likelihood estimate (MLE) for graphical models. In
the most common pairwise case this problem reads1

min
x∈X

Ef (x) := f0 +
∑
v∈V

fv(xv) +
∑
uv∈E

fuv(xu, xv) . (1)

The problem has numerous applications in computer
vision, machine learning, communication theory, signal
processing, information retrieval and statistical physics,
see [10, 9, 33, 16] for an overview of applications. Prob-
lem (1) can be represented as an integer linear program and
is known to be NP-hard in general. Approximative algo-
rithms do not guarantee optimality of the found solution
and moreover, apart from the roof dual relaxation [3, 17],
they do not guarantee optimality of any part of the found
solution. In this paper we show how some of these ap-
proximative methods (addressing convex relaxations of the
problem (1)) can be used to identify a part of a provably
optimal solution or to decrease the state space of variables.
Such a reduction of the original problem is often sufficient

∗Work mostly done when author was with Heidelberg University
1We introduce all notations in §2.
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TRW-S [12] solution,
670 iterations (10s).

Proofs of optimality (99.93%),
75 additional iterations (6s).

Figure 1. Given an approximate solution to a graphical model in
(a), our method provides proofs of optimality and uniqueness for a
part of the solution (a) shown in (b) and constructs the reminder of
the optimization problem consisting of red pixels with a reduced
number of labels. The result (b) approximates well the maximum
persistency of [25] and is computed in a comparable time (often a
small fraction) of the initial solution in (a). The graphical model
is from OpenGM benchmark [10, 9]. It is more difficult than the
model studied in [2, 7] for the same imagery. In particular, method
of Kovtun [15] performing well there determines only 0.26% of
the optimal solution for our model.

to make it solvable exactly by (non-polynomial) combina-
torial solvers.

States of variables, e.g. xv = i, are called labels. Labels
identified as provably belonging (resp. not belonging) to
some (resp. any) optimal solution are called persistent opti-
mal (resp. non-optimal) or shortly persistencies. We show
that in a certain class of methods our algorithm identifies
the largest total number of persistent labels.

Related Work. All existing methods identifying persis-
tency are based on tractable sufficient conditions in order
to avoid solving the NP-hard problem (1). Dead-end elimi-
nation methods (DEE) [4] verify local sufficient conditions
by inspecting a given node and its immediate neighbors
at a time. The roof dual relaxation in quadratic pseudo-
Boolean Optimization (QPBO, see [3, 17] and references
therein) has the property that all variables that are integer
in the relaxed solution are persistent. Several generaliza-
tions of roof duality to higher-order models were proposed
(e.g., [1, 13]). The MQPBO method [11] and generalized
roof duality [35] extend roof duality to the multi-label case
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by reducing the problem to binary variables and generaliz-
ing the concept of submodular relaxation [13], respectively.
Kovtun [15] proposed a sufficient condition to identify per-
sistencies based on specially constructed auxiliary submod-
ular problems. A persistency approach utilizing standard
scalable (approximate) MAP-inference algorithms has been
developed recently by [28] for Potts models and in [29] for
general MRFs. It uses the local polytope relaxation and has
shown superior results on several datasets.

The recent work by Shekhovtsov [25] explains all men-
tioned methods addressing pairwise models in a common
framework. He proposes a formulation of the problem
of determining the maximum number of persistencies as a
polynomially solvable linear program. It guarantees to find
a provably larger persistency assignment than most of the
mentioned approaches. Unfortunately, there are no effi-
cient specialized solvers available for this linear program
and therefore it is not practical in large scale applications.

Contribution. Based on works [29] and [25] we propose a
novel method for computing persistency. Similarly to [29]
we initialize our algorithm with an approximate solution of
the MAP-inference problem (1) and iteratively increase the
set of labels that can potentially belong to some optimal so-
lution of the original problem. Upon termination, all op-
timal solutions are guaranteed to be covered by the built
set and hence the remaining labels can be excluded from
consideration as provably non-optimal. Our algorithm pos-
sesses advantages of both methods [25] and [29] and is free
from their drawbacks:
• Like [29] it is efficient and well-scalable, because it

requires only to solve the standard local polytope re-
laxation of the MAP-inference problems (1) as a sub-
routine. Approximate solvers for the relaxed inference
problem can be used as well.
• It has a better theoretical guarantee than [29] and

matches the maximum persistency of [25] in the case
when the exact LP solver is used.
• We show experimentally that when using TRW-S as an

approximate LP solver the persistency found is close to
the maximum one.

We demonstrate efficiency of our approach on bench-
mark problems from machine learning and computer vision.
It outperforms all competing methods in terms of the num-
ber of persistent labels and method [25] in terms of running
time. Though we present our method for pairwise models
(c.f ., equation (1)), it can be generalized to higher order.

Paper Organization. In §2 we give basic definitions and
introduce an alternative formulation of the maximum per-
sistency problem [25]. In §3 we propose a novel generic
polynomial algorithm for this problem. In §4 we discuss
practical aspects of the method, including its use with ap-
proximate solvers for the local polytope relaxation of (1).

In §5 we propose several speed-ups of the method. In §6
we provide experimental evaluation and in §7 we give our
conclusions and discuss future work.

For reader’s convenience, the proofs of all mathematical
statements are deferred to the appendix. Our implemen-
tation is available at http://www.icg.tugraz.at/
Members/shekhovtsov/persistency/.

2. Preliminaries
Let (V, E) be a graph with the set of nodes V and the

set of edges E ⊆ V × V; uv denotes an ordered pair
(u, v). In equation (1) each variable xv belong to the fi-
nite set of labels Xv for v ∈ V; potentials fv : Xv → R,
fuv : Xu × Xv → R are associated with nodes and edges
respectively; f0 ∈ R is a constant term and X denotes the
Cartesian product

∏
v∈V Xv .

We represent all potentials of energy (1) by a single cost
vector f ∈ RI , where the set I enumerates all components
of all terms f·(·): I = {0} ∪ {(u, i) | u ∈ V, i ∈ Xu} ∪
{(uv, ij) | uv ∈ E , i ∈ Xu, j ∈ Xv}. Energy function
Ef can be written as a scalar product Ef (x) = 〈f, δ(x)〉,
where δ(x) ∈ RI is the suitably selected binary vector in an
overcomplete representation [33]: δ(x)0 = 1, δ(x)u(i) =
[[xu=i]], δ(x)uv(i, j) = [[xu=i]][[xv=j]], where [[·]] is the
Iverson bracket. The convex hull of vectors δ(x) for x ∈ X
forms the marginal polytopeM = conv δ(X ) = conv{µ ∈
{0, 1}I | (∃x ∈ X )µ = δ(x)}. The energy minimization
problem (1) can be written usingM as

min
x∈X

Ef (x) = min
x∈X
〈f, δ(x)〉 = min

µ∈M
〈f, µ〉 , (2)

i.e., it is reformulated in the vector space RI .

Maximum Persistency. We formulate our persistency al-
gorithm in the framework of improving mappings [25]
briefly summarized next. A persistent subset of variable
states (labels) is represented in the framework by a mapping
p : X → X as follows:

Definition 2.1 ([25]). A mapping p : X → X is called
strictly improving for the cost vector f if for all x ∈ X
such that p(x) 6= x there holds 〈f, δ(p(x))〉 < 〈f, δ(x)〉.

We restrict ourselves to node-wise idempotent mappings
of the form p(x)v = pv(xv), where pv : Xv → Xv are
idempotent: pv(pv(i)) = pv(i) for all i. Indeed they are
sufficient to explain most existing techniques for persis-
tency [25]. A strictly improving mapping defines persis-
tency due to the following proposition:

Proposition 2.2 ([25]). If p is a strictly improving map-
ping, then any optimal solution x∗ of (1) must satisfy (∀v ∈
V) pv(x

∗
v) = x∗v .

In other words, Proposition 2.2 states that if pv(i) 6= i,
then label (v, i) is non-optimal persistent and can be ex-
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cluded from consideration. Excluding all labels but one in
a given node allows to find the optimal label in this node.

Verifying whether a given map is strictly improving is an
NP hard decision problem [25]. A tractable sufficient con-
dition for persistency is obtained in [25] by representing the
mapping p in the space RI and applying the LP relaxation
technique.

Definition 2.3 ([25]). A linear mapping P : RI → RI is
called a linear extension of mapping p : X → X if it satis-
fies (∀x ∈ X ) δ(p(x)) = Pδ(x).

For a node-wise mapping p we construct the following
linear extension, denoted [p]. For each pv : Xv → Xv define
the matrix Pv ∈ RXv×Xv by Pv,ii′ = Jpv(i′)=iK. Let µ ∈
RI . The linear extension P = [p] is given by relations

(Pµ)0 = µ0; (Pµ)v = Pvµv =
∑

i′∈Xv
Pv,ii′µv(i

′);

(Pµ)uv = PuµuvP
>
v . (3)

By substitution, one can verify that [p] satisfies Defini-
tion 2.3 (see [25]).

Example 1. Consider a problem with a singe variable v
and 3 labels: Xv = {1, 2, 3}. Two examples of mappings
pv : Xv → Xv and their corresponding matrices Pv are:

pv : 1, 2, 3 7→ 1, 1, 1; pv : 1, 2, 3 7→ 3, 2, 3;

Pv =
(

1 1 1
0 0 0
0 0 0

)
; Pv =

(
0 0 0
0 1 0
1 0 1

)
. (4)

In the first case, for example, mapping Pv sends all relaxed
labelings µ ∈M to the vector (1 0 0)T which is the indica-
tor δ(x)v of the assignment xv = 1.

Let I denote the identity matrix. From Definition 2.1
follows that p is strictly improving iff the value of

min
x∈X
〈f, δ(x)− δ(p(x))〉 = min

x∈X
〈f, (I − [p])δ(x)〉

= min
x∈X

〈
(I − [p])>f, δ(x)

〉
= min
µ∈M

〈
(I − [p])>f, µ

〉
(5)

is zero and [p]µ = µ for all minimizers.
Problem (5) is of the same form as the energy minimiza-

tion (2) and is therefore as difficult. A sufficient condi-
tion for persistency [25] is obtained by applying a linear
programming relaxation to (5). The complicated marginal
polytope M is replaced with a tractable outer approxima-
tion Λ ⊇ M (defined by polynomially many inequalities).
Later on, Λ will denote the standard local polytope but for
now we are going to use only that Λ ⊇M. This relaxation
of (5) gives

Definition 2.4 ([25]). Mapping p : X → X is strictly Λ-
improving for cost vector f ∈ RI if

min
µ∈Λ

〈
(I − [p])>f, µ

〉
= 0 (6)

and [p]µ = µ for all minimizers.

It is a sufficient condition for improving mapping and
hence persistency:

Proposition 2.5 ([25]). If mapping p is strictly Λ-
improving then it is strictly improving.

The set of all discrete mappings p satisfying Defini-
tion 2.4 will be denoted by Sf . Problem (6) is called the
verification LP and the decision problem to test p ∈ Sf
is called the verification problem. For node-wise maps the
verification problem can be simplified as follows.

Proposition 2.6. LetO∗ denote the set of all minimizers of
the verification LP (6) and let

O∗v = {i ∈ Xv | (∃µ ∈ O∗) µv(i) > 0}, (7)

which is the support set of all optimal solutions in node v.
Then p ∈ Sf iff (∀v ∈ V ∀i ∈ O∗v) pv(i) = i. Proof in §A.

In what follows, we will relate notation O∗v to O∗ as
in (7). The maximum persistency approach [25] consists of
finding a mapping that delivers the maximal number of per-
sistent labels in a certain class of mappings. We consider the
subset-to-one class of maps P2,y , for which maximum per-
sistency was shown tractable [25]. A mapping p : X → X
in this class has the following form. In a node v ∈ V a sub-
set of labels Yv ⊆ Xv is mapped to a fixed label yv and all
other labels Xv\Yv are mapped to themselves. The map-
ping p is thus defined by:

pv(i) =

{
yv, if i ∈ Yv;
i, if i /∈ Yv.

(8)

For disambiguation, we assume that Yv does not include yv
itself. It is clear that finding the best mapping in this class
can be expressed as finding the defining subsets Yv . The
test labeling y is fixed and can be chosen as an approximate
solution to the energy minimization problem (1).

The following proposition simplifies the verification
problem for mappings from P2,y:

Proposition 2.7. A mapping p ∈ P2,y is strictly Λ-
improving for the cost vector f ∈ RI iff there holds
(∀v ∈ V) O∗v ∩ Yv = ∅. Proof in §A.

A strictly improving map p ∈ P2,y identifies as non-
optimal persistent all labels in Yv , or equivalently all labels
not in pv(Xv). It is natural to compare two maps p and q by
the sets of the labels they retain.

Definition 2.8. For p, q ∈ P2,y , map p is better equal than
q, denoted by p ≥ q, if (∀v ∈ V) pv(Xv) ⊆ qv(Xv).

The maximum persistency problem can be formulated as
finding the best mapping in Sf ∩ P2,y in the sence of Def-
inition 2.8. In order for this formulation to be well-defined
there must exist the unique maximal element under partial
ordering ≥ (hence, the maximum). This property will be
shown as a part of the correctness proof for the proposed
algorithm (proof of Theorem 3.2 in §A).



Our formulation of the maximum persistency is equiv-
alent to that of [25] in the case of mappings P2,y . In-
deed, [25] proposes to minimize the total number of non-
persistent labels:

min
p∈P2,y

∑
v∈V
|pv(Xv)|, s.t. p ∈ Sf . (MAX-SI)

It can be seen from Definition 2.8 that q ≥ p iff |qv(Xv)| ≤
|pv(Xv)|, which proves the equivalence.

In what follows we propose a practical algorithm for
solving the MAX-SI problem, contrary to [25], which trans-
forms it into a general large-scale LP making its solution
practically out of reach for general solvers.

3. Primal Algorithm for Maximum Persistency
We propose Algorithm 1 (its dual variant, Algorithm 2,

will be considered in §4) to find the maximum strictly Λ-
improving mapping in P2,y . The algorithm can be inter-
preted as a discrete cutting plane method (cutting plane in a
general sense). It starts with a feasible set equal to P2,y . In
each iteration it computes the maximum map p in the cur-
rent feasible set and verifies whether p ∈ Sf . If it is so,
then this map is the solution. Otherwise, the feasible set is
refined such that it still contains all maps in Sf ∩ P2,y but
does not contain the previous maximum p.

Algorithm 1 uses a test labeling y as input. It consti-
tutes an approximate solution of the energy minimization
problem (1) and can be obtained by e.g., rounding of the
solution of the relaxed inference problem minµ∈Λ 〈f, µ〉.

The current feasible set of improving mappings is de-
fined by the collection of sets (Yv | v ∈ V). The best map-
ping pwithin this set is defined in line 3 according to (8). On
each iteration in lines 5-7 the algorithm verifies whether the
current map p already satisfies p ∈ Sf by Proposition 2.7
and if not, it prunes (line 9) the sets Yv by removing labels
corresponding to the support setO∗v of all optimal solutions
of the verification LP. These sets can be determined from a
strictly complementary pair of primal-dual solutions as dis-
cussed in §4. Note that set O∗ appearing in line 5, which
is the facet of all optimal solutions, need not be computed
explicitly. Our final goal is a practically efficient method
solving (MAX-SI) approximately. At the same time, Algo-
rithm 1 is implementable as well and defines the baseline
for the approximation. Let us now establish properties of
Algorithm 1 formally.

Proposition 3.1. Algorithm 1 runs in polynomial time and
returns a mapping p ∈ Sf ∩ P2,y . Proof in §A.

Theorem 3.2. Mapping p returned by Algorithm 1 is the
maximum of Sf ∩ P2,y and thus it solves (MAX-SI). Proof
in §A.
Comparison to [29]. Algorithm 1 is similar to the algo-
rithm in [29] in that it iteratively solves the LP relaxation

of an auxiliary problem in order to find persistent labels.
However, the method [29] (i) does not identify non-optimal
labels (which corresponds to a smaller class of mappings
than P2,y) and (ii) solves different auxiliary problem corre-
sponding to a weaker persistency criterion (c.f . [25, 24])2.
Algorithm 1 thus generalizes the method [29] and is guar-
anteed to find the same or a larger persistent set of labels.
The generalization is not incremental, since it is based on a
different formalism [25]. Its practical superiority is clearly
demonstrated in §6. Similarly to [29], Algorithm 1 can use
approximate dual solvers, as discussed in the next section.

Comparison to [25]. In [25] the problem (MAX-SI) is
formulated as a general linear program [25, (ε-L1)] of
size comparable to the size of the relaxed MAP-inference
problem. Algorithm 1 is a new method to solve the same
problem in a more combinatorial fashion w.r.t. to the vari-
ables defining the mapping. In the formulation of [25],
big instances (typical for applications in machine learning
or computer vision) can not be addressed by out-of-the-
shelf LP solvers, as, e.g., popular interior point and sim-
plex methods have quadratic space complexity. In contrast,
Algorithm 1 requires to solve repeatedly only standard re-
laxed MAP-inference problems (line 5), for which special-
ized well-scalable solvers are available (linear space com-
plexity and faster in practice than general first-order meth-
ods). As a result, Algorithm 1 can solve the same problem
as [25, (ε-L1)] in a more efficient way, as we demonstrate
experimentally in §6.

Generality of the Algorithm. Proofs of all the above state-
ments require only thatM ⊆ Λ. This means Algorithm 1
can be used with any polytope Λ satisfying this property,
i.e., with an arbitrary LP relaxation of problem (1). More-
over, in order to use the algorithm with higher order models
one needs merely to (straightforwardly) generalize Defini-
tion 2.3 as done in [24].

4. Persistency with (Approximate) Dual
Solvers

Though Algorithm 1 is quite general, to use it in prac-
tice one has to address several important issues. In line 5
the relaxed energy minimization problem has to be solved
and in line 6 support sets of all its primal solutions have
to be identified. However, finding even a single solution
of the relaxed problem with standard methods like simplex
or interior point can be practically infeasible and one has
to switch to specialized solvers developed for this problem.
The required support set of all optimal solution can be in
principle found with algorithms based on smoothing tech-
nique [18, 20], but waiting until such solvers converge in

2The recent modification of method [29] proposed in [30] uses a per-
sistency criterion almost equivalent to ours, but still applied to a smaller
class of mappings than P2,y .



Algorithm 1: Iterative Pruning LP-Primal

Input: Potentials f ∈ RI , test labeling y ∈ X ;
Output: Map p that solves (MAX-SI);

1 (∀v ∈ V) Yv := Xv\{yv};
2 repeat
3 (∀u ∈ V) pv(i) :=

{
yv, if i ∈ Yv
i, if i /∈ Yv

;

4 g := (I − [p])>f ;
5 O∗ = argminµ∈Λ〈g, µ〉;
6 O∗v = {i ∈ Xv | (∃µ ∈ O∗) µv(i) > 0};
7 if (∀v ∈ V) O∗v ∩ Yv = ∅ then return p;
8 for v ∈ V do /* pruning */
9 Yv := Yv\O∗v ;

Algorithm 2: Iterative Pruning LP-Dual

Input: Potentials f ∈ RI , test labeling y ∈ X ;
Output: Map p that solves (MAX-SI);

1 (∀v ∈ V) Yv := Xv\{yv};
2 repeat
3 (∀u ∈ V) pv(i) :=

{
yv, if i ∈ Yv
i, if i /∈ Yv

;

4 g := (I − [p])>f ;
5 ϕ ∈ arg maxϕ{g

ϕ
0 | (∀ω ∈V ∪E) gϕω ≥ 0, gϕ is AC};

6 Ov(ϕ) := {i ∈ Xv | gϕv (i) = 0};
7 if (∀v ∈ V) Ov(ϕ) ∩ Yv = ∅ then return p;
8 for v ∈ V do
9 Yv := Yv\Ov(ϕ);

each iteration of Algorithm 1 can make the whole proce-
dure quite impractical. In general, we would like to avoid
restricting ourselves to certain selected solvers to be able
to chose the most efficient one for a given problem. More-
over, it is desirable to use solvers working in the dual do-
main (e.g. [12, 20, 6]) as they are the most efficient ones.
In this section we propose a modification of Algorithm 1,
allowing to (i) stop the solver for the LP relaxation in line 5
before it converges; (ii) use any dual solver, including those,
which do not converge to the optimum of the relaxed prob-
lem in general, but satisfy certain weaker conditions (e.g.
TRW-S [12]); (iii) formulate the stopping condition (line 7)
in the dual domain and provide an efficient way of estimat-
ing a superset of the set of optimal solutions O∗ without
reconstructing primal solutions, as the latter can constitute
a difficult problem [19].

Given the abovementioned practical improvements we
will still be able to guarantee as an output a strictly Λ-
improving mapping p, but possibly non-maximal with re-
spect to the problem (MAX-SI) (experiments in §6 suggest
that we lose only slightly in maximality but gain signifi-
cantly in speed).

LP Relaxation. We consider the standard local polytope
relaxation [27, 34] of the energy minimization problem (1):

min〈f, µ〉 = max fϕ0∑
j µuv(i, j) = µu(i), ϕuv(i) ∈ R,∑
i µuv(i, j) = µv(j), ϕvu(j) ∈ R,∑
i µu(i) = µ0, ϕu ∈ R,

µu(i) ≥ 0, fϕu (i) ≥ 0,
µuv(i, j) ≥ 0, fϕuv(i, j) ≥ 0.
µ0 = 1

(LP)

Here the constraints of the primal (minimization) problem
define the local polytope Λ. Given a dual vector ϕ, the
reparametrization fϕ (see, e.g., [34]) is defined as

fϕu (i) = fu(i) +
∑
v∈nb(u) ϕuv(i)− ϕu, (9a)

fϕuv(i, j) = fuv(i, j)− ϕuv(i)− ϕvu(j), (9b)
fϕ0 = f0 +

∑
u ϕu, (9c)

where nb(u) = {v | (u, v) ∈ E ∨ (v, u) ∈ E}. There holds
〈fϕ, µ〉 = 〈f, µ〉 for all µ ∈ Λ (as well as Ef = Efϕ ).
Using the reparametrization, the dual problem can be briefly
expressed as

max
ϕ

fϕ0 s.t. (∀ω ∈ V ∪ E) fϕω ≥ 0. (10)

Expressing O∗v in the Dual Domain. Let µ and ϕ be a
primal and a dual (non-unique) optimal solutions to (LP).
From complementary slackness we know that if µv(i) > 0
then the respective dual constraint fϕv (i) ≥ 0 holds with
equality. However, the reverse implication is only true if µ
andϕ are strictly complementary [32]. In this case the node-
wise support sets O∗v of all optimal primal solutions equal
the sets Ov(ϕ) of active constraints of the dual, defined as

Ov(ϕ) =
{
i ∈ Xv | fϕv (i) = 0

}
= argmin

i
fϕv (i) (11)

(the sets of local minimizers of the reparametrized prob-
lem). However, for a general optimal solution ϕ only the
inclusion O∗v ⊆ Ov(ϕ) holds and the latter set can be al-
most arbitrary large.

If we prune maps based on Ov(ϕ) instead of O∗v , we
loose maximality of the resulting improving mapping. Un-
fortunately, most of the popular well-scalable solvers do not
guarantee strict complementarity. However, there is a prop-
erty, which (i) gives Ov(ϕ) ≈ O∗v in practical applications;
(ii) is satisfied in the limit by most of the solvers (including
approximative ones like TRW-S and MPLP [6]) or can be
enforced by a simple post-processing algorithm.

Definition 4.1 ([34]). Reparametrized problem fϕ is called
arc consistent (AC) if: (i) for all uv ∈ E from fϕuv(i, j) = 0
follows that fϕu (i) = 0 and fϕv (j) = 0 ; (ii) for all u ∈ V
from fϕu (i) = 0 follows that for all v ∈ nb(u) such j ∈ Xv
exists that fϕuv(i, j) = 0.



Proposition 4.2. Arc consistency is a necessary condition
for strict complementarity: if Ov(ϕ) = O∗v for all v ∈ V
then fϕ is AC. Proof in §A.

Obtaining Improving Mappings with Dual Solvers. We
propose Algorithm 2 which is based on a dual solver
achieving the arc consistency condition. The algorithm
solves (MAX-SI) when the dual solver (in line 4) performs
well, i.e., provides a solution ϕ that satisfies strict com-
plementarity. Otherwise it is suboptimal and we need to
reestablish correctness and termination.

Proposition 4.3. Algorithm 2 terminates in a finite number
of iterations and delivers a mapping p ∈ Sf ∩ P2,y . Proof
in §A.

The following lemma provides a basis to prove correct-
ness of Algorithm 2 when using an approximate dual solver
achieving at least arc consistency.

Lemma 4.4. If (∀v ∈ V) Ov(ϕ)∩Yv = ∅ hold for an AC
dual vector ϕ, then ϕ is dual optimal. Proof in §C.

Practical Computational Strategy. Lemma 4.4 proves
that virtually any algorithm converging to arc consistency
either finds such a dual vector ϕ that Ov(ϕ) ∩ Yv 6= ∅
for some v or returns a dual optimal AC ϕ. This justifies
the following practical strategy: we stop the dual inference
solver (line 5 of Algorithm 2) when either 1) after a cer-
tain number of iterations there are some labels to prune, i.e.,
(∃v)Ov(ϕ)∩Yv 6= ∅ or 2) an AC (and hence optimal dual)
solution ϕ is found.

Indeed, such a practical strategy (which still guarantees
that the found mapping p is strictly improving) is not only
much faster than the theoretically optimal Algorithm 1, but
also delivers nearly maximal persistency, as we show in §6.

5. Speeding-Up Persistency Algorithms
Let us get back to Algorithm 1. Recall that it consid-

ers the current maximum map p and (implicitly) all q ∈
Sf ∪P2,y that have to be retained. We can replace the veri-
fication LP in step 5 by a simpler (reduced) verification LP
as suggested by the following theorem.

Theorem 5.1 (Reduction). Let p, q ∈ P2,y , q ≤ p. Let

O∗ = argminµ∈Λ〈ḡ, µ〉, (12)

where the reduced cost vector ḡ is defined as:

g := (I − [p])>f ; ḡv(i) = gv(i), v ∈ V; (13a)

guv(i, j) = (13b)
0, i /∈ Yu, j /∈ Yv ,
∆vu(j) := mini′ /∈Yu guv(i

′, j), i /∈ Yu, j ∈ Yv ,
∆uv(i) := minj′ /∈Yv guv(i, j

′), i ∈ Yu, j /∈ Yv ,
min{∆vu(j) + ∆uv(i), guv(i, j)}, i ∈ Yu, j ∈ Yv .

Then q ∈ Sf if and only if q(O∗v) = O∗v . Proof in§B.
The reduced verification LP, given by (12), has in gen-

eral a different set of optimal solutions, however the theo-
rem asserts that it induces the same set of strictly improv-
ing maps, which makes it an equivalent replacement for
line (5) in Algorithm 1/2. The reduction has the follow-
ing advantages: (i) subsets of labels Xv\Yv can be con-
tracted to a single representative label yv , because associ-
ated unary and pairwise costs are equal; (ii) costs ḡ sat-
isfy partial submodularity: ḡuv(xu, xv) + ḡuv(yu, yv) ≤
ḡuv(xu, yv) + ḡuv(yu, xv) for all xu, xv , which we will use
later.

Next, we propose several sufficient conditions to quickly
prune some non-optimal labels without affecting the final
solution found by the algorithm. Lemma 5.2 below sug-
gests to solve a yet simpler verification LP, minµ∈Λ′〈ḡ, µ〉
over a subset Λ′ of Λ. This does not guarantee to remove
all non-optimal labels (which implies one has to switch to
Λ afterwards), but can be much more efficient then the opti-
mization over Λ. After the lemma we provide two examples
of such efficient procedures.

Lemma 5.2. Let q ∈ Sf ∩ P2,y , q ≤ p, Q = [q]. Let Λ′ ⊆
Λ and Q(Λ′) ⊆ Λ′. Let ḡ be defined by (13) (depends on p)
and letO∗ = argminµ∈Λ′〈ḡ, µ〉. Then (∀v ∈ V) qv(O∗v) =
O∗v . Proof in §B.

While Theorem 5.1 is necessary and sufficient for prun-
ing, Lemma 5.2 is only sufficient.

Pruning of Negative Labelings. As follows from Def-
inition 2.4, an existence of a labeling x such that〈
(I − [p])>f, δ(x)

〉
≤ 0 and x 6= p(x) is sufficient to

prove that the mapping p is not strictly Λ-improving. Hence
one could consider updating the current mapping p without
waiting for an exact solution of the inference problem in
line 5. Lemma 5.2 gives an answer, for which nodes v the
label xv can be pruned from the set Yv without loss of opti-
mality. We need to solve the auxiliary cut problem

O∗ := argminµ∈Λx〈ḡ, µ〉 (14)

and exclude xv from Yv if xv ∈ O∗v . Here, the feasible set
Λx = {µ ∈ Λ | (∀v ∈ V) µ(yv) + µ(xv) = 1} ⊆ Λ corre-
sponds to the binary problem with the label set {yv, xv}
in each node v ∈ V . Due to the partial submodularity of ḡ
the problem (14) is submodular and can be solved by min-
cut/max-flow algorithms [14].

Single Node Pruning. Let us consider ”a single node“
polytope Λu,i := {µ ∈ Λ | µu(yu) + µu(i) = 1; (∀v 6=
u) µv(yv) = 1}. It is a special case of Λx when y and x
differ in a single node u only. In this case problem (14)
amounts to calculating ḡu(xu) +

∑
v∈nb(u) ḡuv(xu, yv) . If

the value is non-positive, xu must be excluded from Yu.

Efficient Message Passing. In many practical cases mes-
sage passing for f can be computed in time linear in the



Problem family [29]-CPLEX [29]-TRWS ε-L1[25] Our-CPLEX Our-TRWS
10x10 Potts-3 0.18s 58.46% 0.05s 58.38% 0.05s 72.27% 0.18s 72.27% 0.04s 72.21%
10x10 full-3 0.24s 2.64% 0.09s 1.22% 0.06s 62.90% 0.24s 62.90% 0.05s 62.57%
20x20 Potts-3 3.25s 73.95% 0.21s 68.49% 0.87s 87.38% 2.43s 87.38% 0.06s 87.38%
20x20 full-3 2.81s 0.83% 0.37s 0.83% 0.95s 72.66% 3.03s 72.66% 0.07s 72.31%
20x20 Potts-4 12.45s 23.62% 0.39s 18.43% 19.40s 74.28% 8.56s 74.28% 0.08s 73.63%
20x20 full-4 3.96s 0.01% 0.39s 0.01% 21.08s 6.28% 12.41s 6.58% 0.08s 6.58%

Table 1. Performance evaluation on random instances of [25]. For each problem family (size, type of potentials and number of labels)
average performance over 100 samples is given. To allow for precise comparison all methods are initialized with the same test labeling y
found by LP relaxation. Our-TRWS closely approximates Our-CPLEX, which matches ε-L1[25], and scales much better.

Problem family #I #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † † 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7 ≤ 514080 93s 22% 866s 16% † 3.7h 16% 483s 41.98%
color-seg 3 3-4 ≤ 424720 22s 11% 87s 16% 0.3s 98% 1.3h >99% 61.8s 99.95%
color-seg-n4 9 3-12 ≤ 86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21 ≤ 483 ≤ 1972 685s 2% 2705s 2% † 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

Table 2. Average performance on OpenGM benchmarks. Columns #I,#L,#V denote the number of instances, labels and variables respec-
tively. † – result is not available (memory / implementation / other reason).

Our-CPLEX Our Algorithm 1 (Iterative Relaxed Infer-
ence) using CPLEX [8].

Our-TRWS Our Algorithm 2 using TRW-S [12]. Initial
solution uses at most 1000 iterations (or the
method has converged). All speedups.

[29]-CPLEX Method of Swoboda et al. [29, 30] with
CLPEX.

[29]-TRWS Method [29, 30] with TRW-S.
ε-L1[25] Single LP formulation of the maximum

strong persistency [25] solved with CPLEX.
Kovtun One-against-all method of Kovtun [15].
MQPBO Multilabel QPBO [11].

MQPBO-10 MQPBO with 10 random permutations, ac-
cumulating persistency.

Table 3. List of Evaluated Methods

number of labels [5]. Is this advantage preserved if we con-
sider the cost vector g = (I−P )Tf or even ḡ (13)? It turns
out that the answer in both cases is positive, we give details
in §D.3.

Summary of Speedups. We apply the techniques described
in this section in the loop of Algorithm 2 as follows.
Attempt a single node pruning for all nodes u ∈ V and
all labels i ∈ Yv . Run the dual solver (line 4) on the re-
duced problem ḡ (13) using warm start from the current
reparametrization ϕ until either of the following:

1. it has found a primal solution x such that: 〈ḡ, δ(x)〉 ≤
0 and p(x) 6= x;

2. iteration limit was exceeded or the solver has con-
verged.

In the first case, apply the pruning negative labeling tech-
nique to x. Otherwise, perform step 7. If the dual solver

has converged, Lemma 4.4 guarantees either correct termi-
nation or that further pruning is possible. At the same time,
warm start allows the solver to converge eventually despite
the iteration limit. Details of implementation and a proof of
finite termination with TRW-S specifically are given in §D.

6. Experimental Evaluation
In the experiments we study how well we approximate

the maximum persistency [25], give a direct comparison to
the most relevant scalable method [29]3, illustrate the con-
tribution of different speedups and give an overall perfor-
mance comparison to a larger set of relevant methods. As
a measure of persistency we use the percentage of labels
eliminated by the improving mapping p∑

v∈V |Xv\pv(Xv)|∑
v∈V(|Xv|−1) 100%. (15)

Random Instances. Table 1 gives comparison to [29] and
[25] on random instances generated as in [25] (small prob-
lems on 4-connected grid with uniformly distributed inte-
ger potentials for “full” model and of the Potts type for
“Potts” model, all not LP-tight). It can be seen that our
exact Algorithm 1 performs identically to the ε-L1 formu-
lation [25]. Although it solves a series of LPs, as opposed
to a single LP solved by ε-L1, it scales better to larger in-
stances. Instances of size 20x20 in the ε-L1 formulation are
already too difficult for CPLEX: it takes excessive time and
sometimes returns a computational error. The performance
of the dual Algorithm 2 confirms that we loose very little in
terms of persistency but gain significantly in speed.

3Note, [30] points out that numerical results published in [29] were
incorrect due to an implementation error, the results that we report are
consistent with [30].



Instance Initialization Extra time for persistency
(1000 it.) no speedups +reduction +node pruning +labeling pruning +fast msgs

Protein folding 1CKK 8.5s 268s (26.53%) 168s (26.53%) 2.0s (26.53%) 2.0s (26.53%) 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%) 230s (93.41%) 85s (93.41%) 76s (93.41%) 19s (93.41%)

Table 4. Exemplary evaluation of speedups: from left to right we add techniques described in §5. 1CKK: an example when the final time
for persistency is only a fraction of the initialization time. pfau-small: an example when times for initialization and persistency are
comparable; speedups also help to improve the persistency as they are based on exact criteria.

Instance #L #V [29]-CPLEX [29]-TRWS Our-CPLEX Our-TRWS
1CKK ≤ 445 38 2503s 0% 46s 0% 2758s 27% 8.5+2s 26.53%
1CM1 ≤ 350 37 2388s 0% 51s 0% 4070s 34% 9+3.9s 29.97%
1SY9 ≤ 425 37 1067s 0% 67s 0% 2629s 51% 11+4.2s 57.98%
2BBN ≤ 404 37 9777s 0% 5421s 0% 9677s 9% 16+4.3s 14.17%
PDB1B25 ≤ 81 1972 325s 22% 120s 22% 1599s 84% 4.3+7.3s 87.84%
PDB1D2E ≤ 81 1328 483s 59% 83s 59% 154s 98% 1.6+1.8s 98.25%

Table 5. Comparison to [29] using exact and approximate LP solvers. Examples of hard ProteinFolding instances [16, 36]. For
Our-TRWS the initialization + persistency time is given. Better persistency by Our-TRWS vs. Our-CPLEX in some cases can be explained
by selecting the test labeling y in Our-TRWS using the (sequential) rounding scheme [12] (unlike in Table 1).

Benchmark Problems. Table 2 summarizes average per-
formance on the OpenGM MRF benchmark [10, 9]. The
dataset include previous benchmark instances from com-
puter vision [31] and protein structure prediction [16, 36]
as well as other models from the literature. Details per in-
stance are given in the supplementary §E.

Speedups. In this experiment we report how much speed
improvement was achieved with each subsequent technique
of §5. The evaluation in Table 4 starts with a basic imple-
mentation using a warm start (a comparison to the cold start
is indeed pointless). The solver is allowed to run at most
50 iterations in the partial optimality phase until pruning is
attempted. We expect that on most datasets the percentage
of persistent labels improves when we apply the speedups
(since they preserve maximality, unlike the general pruning
based on approximate solvers).

Discussion. Tables 1 and 5 demonstrate that Our-TRWS,
which is using a suboptimal dual solver, closely approxi-
mates maximum persistency [25]. The proposed method is
significantly faster and scales much better. The method of
Swoboda et al. [29] is the closest contender to our method
in terms of algorithm design. Tables 1, 2 and 5 clearly
show that our method determines a larger set of persistent
variables. This holds true with exact (CPLEX) as well as
approximate (TRWS) solvers. We believe that both the
stronger persistency criterion and the possibility to elimi-
nate individual labels contribute to this result. Although our
method searches over a significantly larger space of possi-
ble eliminations (which would normally require more outer
iterations), it finishes significantly faster due to speedups.
The reported runtimes must be taken with some caution: all
evaluated methods including ours admit some further opti-
mization. Nevertheless, it is clear that the proposed method
is much more practical than [29] and [25] and gives signifi-

cantly better results than other techniques.

7. Conclusions and Outlook
We presented an approach to find persistencies for a cer-

tain class of NP-hard problems employing only a solver
for a convex relaxation. Using a suboptimal solver for
the relaxed problem, we still correctly identify persisten-
cies while the whole approach becomes scalable. Our
method with an exact solver matches the maximum per-
sistency [25] and with a suboptimal solver closely approx-
imates it, outperforming state of the art persistency tech-
niques [29, 11, 15]. The speedups we have developed allow
to achieve this at a reasonable computational cost making
the method much more practical than the works [25, 29] we
build on. In fact, our approach takes an approximate solver,
like TRW-S, and turns it into a method with partial optimal-
ity guarantees at a reasonable computation overhead.

We believe that many of the presented results can be
extended to higher order graphical models and tighter re-
laxations. Practical applicability with other approximate
solvers can be explored. A further research direction that
seems promising is mixing different optimization strategies
such as persistency and cutting plane methods.
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A. Proofs of the Generic Algorithms
Proposition 2.2 ”Let p be a strictly improving mapping.

Then any optimal solution x∗ of (1) must satisfy pv(x∗v) =
x∗v , v ∈ V“.

Proof. Let p be a strictly improving mapping and x∗ ∈
arg minx∈X 〈f, δ(x)〉 such that p(x) 6= x. Then from Def-
inition 2.1 follows 〈f, δ(p(x∗))〉 < 〈f, δ(x∗)〉, which con-
tradicts optimality of x∗.

Proposition 2.5 ”If mapping p is strictly Λ-improving
then it is strictly improving.“

Proof. From Definition 2.4 follows that for all µ ∈ Λ such
that [p]µ 6= µ there holds 〈f, [p]µ〉 < 〈f, µ〉. Since Λ ⊇M
it holds also for µ = δ(x) for all x ∈ X , which proves the
proposition.

Proposition 2.6: ”p ∈ Sf iff (∀v ∈ V ∀i ∈
O∗v) pv(i) = i”.

Proof. Let p ∈ Sf . Assume for contradiction that (∃v ∈
V ∃i ∈ O∗v) pv(i) 6= i. Since i ∈ O∗v there exists µ ∈ O∗
such that µv(i) > 0. It’s image µ′ = [p]µ has µv(i) =
0 due to pv(i) 6= i by evaluating the extension (3). This
contradicts to [p]µ = µ.

Now let (∀v ∈ V ∀i ∈ O∗v) pv(i) = i. Clearly, [p]µ = µ
holds for all µ on the support set given by (O∗v | v ∈ V),
hence forO∗. It remains to show that the value of minimum
in (6) is zero. For µ ∈ O∗ we have [p]µ = µ and the
objective in (6), 〈(I − [p])Tf, µ〉 = 〈f, µ− [p]µ〉 vanishes.

Proposition 2.7: ”Mapping p ∈ P2,y is strictly Λ-
improving for the cost vector f ∈ RI iff there holds
(∀v ∈ V) O∗v ∩ Yv = ∅”.

Proof. Follows by Definition 2.4 and Proposition 2.6.
Proposition 3.1: ”Algorithm 1 is polynomial and returns

a strictly Λ-improving mapping p ∈ Sf ∩ P2,y”.

Proof. Solving the verification LP in every iteration as well
as finding the support sets of all optimal solutions O∗v is
polynomial. These sets equal to the support set of any strict
relative interior optimal solution, i.e., a solution found by
an interior point method, see, e.g., [32].

At every iteration, if the algorithm has not terminated
yet, at least one of the sets Yv strictly shrinks in line 9.
Therefore the algorithm terminates in at most

∑
v(|Xv|−1)

iterations. On termination p ∈ Sf by Proposition (2.7).
Theorem 3.2: ”Mapping p returned by Algorithm 1 is

the maximum of Sf ∩ P2,y”.

Proof. Two following lemmas form a basis for the proof.

Lemma A.1 (special case of [26], Theorem 3(b)). Let q ∈
Sf ; p ≥ q and O∗ is the set of optimal relaxed labelings,
argminµ∈Λ〈(I−[p])>f, µ〉, i.e., as in line 5 of Algorithm 1.
Then (∀µ ∈ O∗) q(µ) = µ.

Additionally, if q ∈ P2,y and O∗v = {i ∈ Xv | (∃µ ∈
O∗) µv(i) > 0} then

(∀v ∈ V,∀i ∈ O∗v) qv(i) = i. (16)

Proof. We prove the additional part. It follows similarly
to Proposition 2.7. Assume for contradiction that (∃v ∈
V ∃i ∈ O∗v) qv(i) 6= i. Since i ∈ O∗v there exists µ ∈ O∗
such that µv(i) > 0. It’s image µ′ = [q]µ has µv(i) = 0
due to qv(i) 6= i by evaluating the extension (3). This con-
tradicts to [q]µ = µ, the direct statement of [26, Theorem
3(b)].

Lemma A.2. Algorithm 1 maintains invariant that (∀q ∈
Sf ∩ P2,y) p ≥ q.

Proof. We prove by induction. The statement holds trivially
for the first iteration. Assume it is true for the current it-
eration t. Let pt denote the mapping p computed in line 3
on iteration t. Then for any q ∈ Sf ∩ P2,y holds pt ≥ q
and therefore Lemma A.1 applies. We show that line 9 only
prunes maps that are not in P2,y ∩ Sf as follows.

Let pt+1 be the mapping on the next iteration, i.e. com-
puted by line 3 after pruning line 9.

Assume for contradiction that ∃q ∈ P2,y ∩ Sf such that
pt+1 6≥ q. By negating the definition and expanding,

(∃v ∈ V) pt+1
v (Xv) 6= qv(Xv), (17a)

(∃v ∈ V ∃i ∈ Xv) i ∈ pt+1
v (Xv) ∧ i 6∈ qv(Xv), (17b)

(∃v ∈ V ∃i ∈ Xv) pt+1
v (i) = i ∧ qv(i) 6= i. (17c)

If i was pruned in line 9, i ∈ O∗v , then it must be that
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qv(i) = i, which contradicts to (17c). Therefore

(∃v ∈ V ∃i ∈ Xv\O∗v) pt+1
v (i) = i ∧ qv(i) 6= i. (18)

However, in this case pt+1
v (i) = ptv(i) = i and pt ≥ q fails

to hold, which contradicts to the assumption of induction.
Therefore pt+1 ≥ q holds by induction on every iteration.

By Proposition 3.1 the algorithm terminates and returns
a map in Sf ∩ P2,y . By Lemma A.2 the returned map p
satisfies p ≥ q for all q ∈ Sf ∩ P2,y . Therefore q is the
element of Sf ∩ P2,y which is larger or equal to any other
element of this set. It is the maximum.

Proposition 4.2: ”Let Ov(ϕ) = O∗v for all v ∈ V . Then
fϕ is arc consistent”.

Proof. ConditionOv(ϕ) = O∗v implies that ϕ satisfies strict
complementarity with some primal optimal solution µ. The
strict complementarity implies that (∀i ∈ Xv) (fϕu (i) =
0 ⇒ µu(i) > 0). By feasibility of µ, there must hold
(∀v ∈ nb(u)) (∃j ∈ Xv) µuv(i, j) > 0. And by using com-
plementary slackness again, it must be that fϕuv(i, j) = 0.
Similarly, the second condition of arc consistency is veri-
fied. It follows that fϕ is arc consistent.

Proposition 4.3: ”Algorithm 2 terminates in a finite
number of iterations and delivers a strictly Λ-improving
mapping p ∈ Sf ∩ P2,y”.

Proof. Since O∗v ⊆ Ov(ϕ), Algorithm 2 prunes a super-
set of maps pruned by Algorithm 1. Algorithm 2 is finite,
because in case the termination condition in line 5 is not
satisfied at least one of the sets Yv shrinks in line (9).
Since O∗v ⊆ Ov(ϕ) from the stopping condition (∀v ∈
V) Ov(ϕ) ∩ Yv = ∅ follows (∀v ∈ V) O∗v ∩ Yv = ∅,
which is sufficient for p to be strictly Λ-improving accord-
ing to Proposition 2.7.

B. Proofs of the Reduction
In this section we prove the reduction Theorem 5.1 and

the correctness of heuristics (pruning of negative label-
ings and individual nodes) that are based on Lemma 5.2.
These theorems revisit the key elements on which Algo-
rithm 1 builds: the verification LP (2.7), Proposition 2.6 and
Lemma A.1, which either certifies p ∈ Sf or allows to make
pruning. A correct pruning can be done when we have a
guarantee to preserve all strictly improving maps q, assum-
ing q ≤ p. Therefore theorems in this section are formu-
lated for such pairs.

The proof chain considers adjustments to the cost vector
that preserve the set of mappings that are strictly improving
for the cost vector. These adjustments do not in general pre-
serve optimal solutions to the associated LP relaxation. In
that the reduction is different from an equivalent transfor-
mation.

Theorem B.1. Let q ≤ p. Then q ∈ Sf iff q ∈ Sg for
g = (I − [p])Tf .

Proof. Let Q = [q], P = [p]. Because q ≤ p there holds
PQ = P . It implies (I−P )(I−Q) = (I−Q). Therefore,

〈g, (I −Q)µ〉 = 〈(I − P )Tf, (I −Q)µ〉 (19)
= 〈f, (I − P )(I −Q)µ〉 = 〈f, (I −Q)µ〉. (20)

Assume µ ∈ Λ is such that Qµ 6= µ. Then equality (19)
ensures that 〈g, (I −Q)µ〉 > 0 iff 〈f, (I −Q)µ〉 > 0. The
theorem follows from definition of Sf , Sg .

The reduction that we further build is based on the fol-
lowing result.

Theorem B.2 (Characterization [26]). Let P = [p], p
idempotent component-wise. Then

(∀µ ∈ Λ) 〈f, Pµ〉 ≤ 〈f, µ〉 (21)

iff exists reparametrization ϕ such that

PTfϕ ≤ fϕ. (22)

The reduction in Theorem 5.1 is proven in several steps.
The following theorem assumes arbitrary mapping q, not
necessarily in P2,y and take as input sets Uu that are subsets
of immovable labels. In the context of Theorem 5.1, we will
use Uu = Xu\Yu.

Theorem B.3 (Reduction 1). Let q : X → X component-
wise idempotent. Let Uu ⊆ {i ∈ Xu | qu(i) = i} for
u ∈ V . Let guv(i, j) = 0 for (i, j) ∈ Uu × Uv . Let ḡ be
defined by

ḡv = gv, v ∈ V; (23a)

guv(i, j) =


min
i′∈Uu

guv(i
′, j), i ∈ Uu, j /∈ Uv ,

min
j′∈Uv

guv(i, j
′), i /∈ Uu, j ∈ Uv ,

guv(i, j), otherwise.

(23b)

Then q ∈ Sg iff q ∈ Sḡ .

Proof. Note, unary components of g and ḡ are equal. We
will prove by separate pairwise components.

Direction⇐. Let us prove the following inequality:

(∀ij ∈ Xuv) guv(qu(i), qv(j))− ḡuv(qu(i), qv(j))

≤ guv(i, j)− ḡuv(i, j). (24)

We need to consider only cases where ḡuv(i, j) 6= guv(i, j).
Let i ∈ Uu and j /∈ Uv (the remaining case is symmetric).
In this case qu(i) = i. Substituting ḡ we have to prove

guv(i, qv(j))− min
i′∈Uu

guv(i
′, qv(j)) (25)

≤guv(i, j)− min
i′∈Uu

guv(i
′, j).
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Clearly, LHS is zero by assumption about g. At the same
time RHS is non-negative since i ∈ Us. The inequality
holds. Inequality (24) implies (by multiplication of pairwise
inequalities and unary inequalities with respective compo-
nents of µ and summing) that

(∀µ ∈ Λ) 〈g,Qµ〉 − 〈ḡ, Qµ〉 ≤ 〈g, µ〉 − 〈ḡ, µ〉. (26)

Inequality (26) is equivalent to

〈ḡ, (I −Q)µ〉 ≤ 〈g, (I −Q)µ〉. (27)

Whenever the LHS of (27) is strictly positive then so is the
RHS and therefore from q ∈ Sḡ follows q ∈ Sg .

Direction ⇒. Assume q ∈ Sg . By Theorem B.2, there
exist dual multipliers ϕ such that for g′ := g − ATϕ the
following component-wise inequalities hold:

(∀u ∈ V, ∀i ∈ Xu) g′u(qu(i)) ≤ g′u(i); (28)
(∀uv ∈ E , ∀ij ∈ Xuv) g′uv(qu(i), qv(j)) ≤ g′uv(i, j).

Let us expand the pairwise inequality in the case i ∈ Uu,
j /∈ Uv . Let qv(j) = j∗. Using qu(i) = i we obtain

guv(i, j
∗)− ϕuv(i)− ϕvu(j∗) (29)

≤guv(i, j)− ϕuv(i)− ϕvu(j).

Terms ϕuv(i) cancel:

guv(i, j
∗)− ϕvu(j∗) ≤ guv(i, j)− ϕvu(j). (30)

We take min over i ∈ Uu of both sides:

min
i∈ Uu

guv(i, j
∗)− ϕvu(j∗) ≤ min

i∈ Uu
guv(i, j)− ϕvu(j).

(31)

Finnaly we can subtract ϕuv(i) from both sides to obtain

ḡϕuv(i, j
∗) ≤ ḡϕuv(i, j). (32)

The case when i /∈ Uu, j ∈ Uv is symmetric. In the re-
maining cases, ḡϕuv(i, j) = ḡ(i, j) − ϕuv(i) − ϕvu(j) =
g(i, j)−ϕuv(i)−ϕvu(j) = gϕ(i, j). In total, ḡϕ satisfies all
component-wise inequalities as g′ in (28). By Theorem B.2,

(∀µ ∈ Λ) 〈ḡ, Qµ〉 ≤ 〈ḡ, µ〉. (33)

We have shown that 〈ḡ, (I −Q)µ〉 ≥ 0. It remains to prove
that the inequality holds strictly when Qµ 6= µ. It can be
shownthat for q ∈ Sg at least one of unary inequalities (28)
from the support of µ holds strictly and therefore inequal-
ity (33) is also strict.

Theorem B.4 (Reduction 2). Let q : X → X component-
wise idempotent. Let ḡ = g −∆+ and ∆+ ∈ RI has zero
unary components and pairwise components as follows:

∆+
uv(i, j) = max

{
0, guv(i, j) + guv(qu(i), qv(j)) (34)

− guv(i, qv(j))− guv(qu(i), j)
}
.

Then q ∈ Sg iff q ∈ Sḡ .

Proof. Note, unary components of g and ḡ are equal. We
will prove by separate pairwise components.

Direction ⇐. Let us prove the inequality (24). It is
equivalent to

∆+
uv(qu(i), qv(j)) ≤ ∆+

uv(i, j). (35)

Consider the following cases:
• qu(i) = i or qv(j) = j: In this case ∆+

uv(i, j) = 0 =
∆+
uv(qu(i), qv(j)) by substitution.

• qu(i) 6= i, qv(j) 6= j: By idempotency, it must be
that qu(qu(i)) = qu(i) and qv(qv(j)) = qv(j). It fol-
lows that ∆+

uv(qu(i), qv(j)) = 0 and ∆+
uv(i, j) ≥ 0 by

definition.
Inequality (24) implies (by multiplication of pairwise in-
equalities and unary inequalities with respective compo-
nents of µ and summing) that

(∀µ ∈ Λ) 〈g,Qµ〉 − 〈ḡ, Qµ〉 ≤ 〈g, µ〉 − 〈ḡ, µ〉. (36)

Note, cost vector ḡ satisfying (36) is called auxiliary for g
in [15, 23]. Inequality (36) is equivalent to

〈ḡ, (I −Q)µ〉 ≤ 〈g, (I −Q)µ〉. (37)

Whenever the LHS of (37) is strictly positive then so is the
RHS and therefore from q ∈ Sḡ follows q ∈ Sg .

Direction ⇒. Assume q ∈ Sg . By Theorem B.2, there
exist dual multipliers ϕ such that for g′ := g − ATϕ the
following component-wise inequalities hold:

(∀u ∈ V, ∀i ∈ Xu) g′u(qu(i)) ≤ g′u(i); (38)
(∀uv ∈ E , ∀ij ∈ Xuv) g′uv(qu(i), qv(j)) ≤ g′uv(i, j).

Let ḡ′ := ḡ−ATϕ = g−∆+−ATϕ = g′−∆+. Let us show
that component-wise inequalities (38) hold for ḡ′. Clearly
they hold for unary components and for pairwise compo-
nents where ∆+

uv(i, j) = 0. Let uv ∈ E and ∆+
uv(i, j) > 0.

Let i′ = qu(i) and j′ = qu(j). It must be that i′ 6= i
and j′ 6= j. Let us denote a = g′uv(i

′, j′), b = g′uv(i
′, j),

c = g′uv(i, j
′) and d = g′uv(i

′, j). By idempotency of q,
there holds 0 = ∆+

uv(i
′, j) = ∆+

uv(i, j
′) = ∆+

uv(i
′, j′). Let

d̄ := g′uv(i, j)−∆+
uv(i, j) = d−(a+d−b−c) = b+c−a.

From (38) we have that a ≤ b, c, d. It follows that 2a ≤ b+c
or a ≤ b+ c− a = d̄. We proved that ḡ′uv(qu(i), qv(j)) ≤
ḡ′uv(i, j). In total, ḡ′ satisfies all component-wise inequali-
ties, same as g′ in (28). By Theorem B.2,

(∀µ ∈ Λ) 〈ḡ, Qµ〉 ≤ 〈ḡ, µ〉. (39)

We have shown that 〈ḡ, (I − Q)µ〉 ≥ 0. The inequality
holds strictly when Qµ 6= µ. In this case for q ∈ Sg at least
one of unary inequalities (38) from the support of µ holds
strictly and therefore inequality (39) is also strict.
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Remark. Note, taking into account that gvu(i′, j′) = 0 for
i′ ∈ Xv\Yv , j′ ∈ Xu\Yu, the reduction that we obtained
in all cases can be interpreted as forcing the mixed discrete
derivative

gvu(i, j′) + gvu(i′, j)− gvu(i, j)− gvu(i′, j′) (40)

to be non-negative. The cost vector ḡ is therefore a (par-
tial) submodular truncation of g. One can notice certain
similarity with construction of auxiliary problems by Kov-
tun [15], where full submodularity is enforced. We essen-
tially proved that a part of Kovtun’s construction of con-
structing an auxiliary problem is optimal.

Theorem B.5. Let q, p ∈ P2,y , q ≤ p. Let ḡ be defined
by (13). Then q ∈ Sf iff q ∈ Sḡ .

Proof. Let g = (I − P )Tf . By Theorem B.1, q ∈ Sf iff
q ∈ Sg . We need to consider only pairwise terms. Let uv ∈
E . Since q ≤ p, if pu(i) = i then necessarily qu(i) = i.
Let p be defined using sets Yu as in (8). The reduction ḡ
in (13) will be composed of reductions by Theorem B.3 and
Theorem B.4.

From g = (I − P )Tf we have that for i ∈ Xu\Yu and
j ∈ Xv\Yv guv(i, j) = 0. Conditions of Theorem B.3 are
satisfied with Us = Xu\Yu. We obtain part of the reduc-
tion (13) for cases when i /∈ Yu or j /∈ Yv . Let us denote the
reduced vector ḡ′. Applying Theorem B.4 to it, we obtain ḡ
as defined in (13).

We are ready to show the statements claimed in §5.
Theorem 5.1 (Reduction). The theorem formulated in §5
states that mapping q ≤ p is in Sf iff q(O∗v) = O∗v .

Proof. By Theorem B.5, q ∈ Sf iff q ∈ Sḡ , where ḡ is
defined by (13). There holds characterization q ∈ Sḡ iff
qu(O∗u) = O∗u, where O∗u is defined by (12).
Lemma 5.2: “ Let q ∈ Sf ∩P2,y , q ≤ p, Q = [q]. Let Λ′ ⊆
Λ and Q(Λ′) ⊆ Λ′. Let ḡ be defined by (13) (depends on p)
and letO∗ = argminµ∈Λ′〈ḡ, µ〉. Then (∀v ∈ V) qv(O∗v) =
O∗v . ”

Proof. Note, unlike Theorem 5.1, this lemma states a neces-
sary condition only. Let µ ∈ O∗. Assume for contradiction
that Qµ 6= µ. In this case, by Theorem 5.1, we have that
〈ḡ, Qµ〉 < 〈ḡ, µ〉. Since µ ∈ Λ′ and Q(Λ′) ⊆ Λ there
holds Qµ ∈ Λ′. It follows that Qµ is a feasible solution
of a better cost than µ which contradicts optimality of µ. It
must be therefore that Qµ = µ. The claim q(O∗v) = O∗v
follows.

We have achieved the following. Suppose that we solve
the verification LP with the reduced cost vector ḡ. If there
holds pv(O∗v) = O∗v for all v, then p ∈ Sf by Theo-
rem 5.1. In the opposite case, Theorem 5.1 asserts that for
all strictly relaxed-improving mappings q ≤ p there must
hold qv(O∗v) = O∗v . Therefore the reduced verification LP
is valid to be used in the step 5 of Algorithm 1.

A practical aspect of the reduction is that, e.g., TRW-S
is able to find a labeling with a negative cost much faster
since we have decreased many edge costs. Additionally,
minimization over polytope Λx with reduced g is a purely
submodular problem (recall that yv ∈ Xv\Yv). We thus can
solve it with a regular minimum cut and not QPBO mini-
mum cut.

C. Termination with AC Solvers
For completeness, we give two theorems when the solver

is applied to the verification problem with and without re-
duction. Both results apply when the solver has found an
arc consistent solution. The theorem with reduction allows
to obtain somewhat stronger guarantees. The guarantees are
necessary in order to show that our Algorithm 2 terminates.
In the next section we prove guarantees for TRW-S also in
the case when it has not converged yet.

Theorem C.1. Consider the verification LP defined by g =
(I − PT)f . Let gϕ be an arc-consistent reparametrization.
Then at least one of the two conditions is satisfied:

(a) LB(ϕ)
def
= g0 +

∑
u ϕu = 0 and ϕ is dual optimal;

(b) (∃u ∈ V) Ou(ϕ) ∩ Yu 6= ∅.

Proof. Assume (b) does not hold: (∀u ∈ V) Ou(ϕ)∩Yu =
∅. Then for each node u there is a label zu ∈ Ou(ϕ)\Yu.
By arc consistency, for each edge uv there is a label j ∈
Ou(ϕ) ⊆ Xu\Yu such that gϕuv(zu, j) = 0 and similarly,
there exists i ∈ Ou(ϕ) ⊆ Xu\Yu such that gϕuv(i, zv) = 0.

By construction, guv(i, j) = 0 for all ij ∈ Xuv\Yuv and
therefore the following modularity equality holds:

gϕuv(zu, zv) + gϕuv(i, j) = gϕuv(zu, j) + gϕuv(i, zv). (41)

From local minimality of (zu, j) we have

gϕuv(zu, j) ≤ gϕuv(i, j). (42)

By adding (41) and (42) we obtain

gϕuv(zu, zv) ≤ gϕuv(i, zv) (43)

and hence (zu, zv) is locally minimial too: gϕuv(zu, zv) = 0.
Therefore δ(z) and dual point ϕ satisfy complementar-
ity slackness and hence they are primal-dual optimal and
LB(ϕ) = Eg(z) = 0.

We can now show the result needed to establish termi-
nation of Algorithm 2 based on a solver delivering arc con-
sistency, but not necessarily solving the LP relaxation in all
cases.
Lemma 4.4: ”Let (∀v ∈ V) Ov(ϕ) ∩ Yv = ∅ hold for an
arc consistent dual vector ϕ. Then ϕ is dual optimal”.

Proof. Corollary from Theorem C.1.
For the reduced problem ḡ, a stronger condition is satis-

fied.
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Theorem C.2. Consider the reduced problem ḡ defined in
Theorem 5.1. Let ḡϕ be an arc-consistent reparametrization.
Then at least one of the two conditions is satisfied:

(a) LB(ϕ) = 0 and ϕ is optimal;
(b) (∃u ∈ V) Ou(ḡϕ) ⊆ Yu.

Proof. Since for problem ḡ all labels in Xu\Yu are equiva-
lent w.r.t. unary and pairwise costs, we can contract these
sets and w.l.o.g. assume that Xu\Yu = {yu}.

Assume (b) does not hold. Then for each node u label
yu is locally minimal: ḡϕ(yu) = mini ḡ

ϕ
u (i). By arc consis-

tency, for each edge uv there is a label j ∈ Xv such that pair
(yu, j) is locally minimal and similarly there exists i ∈ Xv
such that pair (i, yv) is locally minimal. From partial sub-
modularity, inequality (40), follows that the pair (yu, yv) is
locally minimal as well. Therefore, integer labeling y and
dual point ϕ satisfy complementarity slackness and hence
they are primal-dual optimal andLB(ϕ) = Eḡ(y) = 0.

Both proofs above are analogues to how fixed points of
TRW-S or max-sum diffusion are shown to correspond to
exact solutions for submodular problems [22], i.e., we use
the same argument to construct an integer feasible solution
that satisfy complementary slackness.

D. Implementation with TRW-S
When we consider specifically TRW-S there are several

questions regarding correctness and efficiency:
• TRW-S may not achieve arc consistency in finite time.

Can we stop it earlier? Will there be some progress
possible in terms of sets Yu?
• Can we exploit efficient distance transforms on the re-

duced problem?
In this section we answer all the above questions positively.

D.1. Algorithm Details

The algorithm will make use of the reduction, pruning
cuts and the warm start. The warm start is motivated by that
every next outer iteration of Algorithm 1 may result in just
a small adjustment to the problem ḡ and therefore it is de-
sirable to reuse the messages (reparametrization) in TRW-S
from the previous outer iteration. We first give a full spec-
ification in Algorithm 3 and state formal properties of the
algorithm. Then we prove the claims by deriving some new
properties of TRW-S.

Theorem D.1 (Correctness of Algorithm 3). For any stop-
ping condition in line 4, the algorithm terminates in at most∑
v(|Xv| − 1) outer iterations and outputs p ∈ Sf .

Theorem D.2. Message passing in TRW-S for reduced
edge term ḡuv can be computed in O(|Yu| + |Yv|) extra
time compared to the message passing for the original term
fuv .

Algorithm 3: Efficient Iterative Pruning with TRW-S

Input: Problem f ∈ RI , test labeling y ∈ X ;
Output: Improving map q ∈ P2,y ∩ Sf ;

1 (∀s ∈ V) Yu := Xs\{ys};
2 Set ϕ to the initial reparametrization / messages if

available;
3 repeat
4 Construct reduced characterization problem ḡ for

problem f and sets (Yu | u ∈ V) according to
Table 6;

5 repeat
6 Run 10 TRW-S iterations with problem ḡ and

reparametrization ϕ. Provides LBT, ϕ, Ou
and best x;

7 if (∀s ∈ V) Ou ∩ Yu = ∅ then return q;
8 if Eḡ(x) < 0 then
9 Apply pruning cut with x;

10 Apply single node pruning;
11 goto step 4 to rebuild ḡ;

12 until any stopping condition (e.g., iteration limit);
13 Mark immovable: (∀u ∈ V) Yu := Yu\Ou;
14 Apply single node pruning;

Proof (of Theorem D.1). Using Margin Theorem D.3 below,
either current mapping q is returned or whenever we decide
to stop TRW-S iterations, the set of minimal labels Ou for
some s contains a new label to be marked as immovable.
It follows that Algorithm 3 terminates. The convergence of
TRW-S does not affect correctness of our algorithm, only a
possibly non-maximal map q is found due to non-optimal
dual point used in step 13. The termination condition in
step 7 indicates that y is an optimal primal solution and in
this case it must be that LB = 0, therefore current ϕ is an
optimal dual point. In this case O∗u ⊆ Ou, where set O∗u
is the support set of all primal optimal solutions (see Algo-
rithm 1). We therefore have O∗u ⊆ Ou ⊆ Xu\Yu for all u.
It follows that stopping condition of generic Algorithm 1 is
satisfied as well and hence q ∈ Sf .

Note, whenever the algorithm found a pruning cut or
used local pruning conditions, no loss of maximality oc-
curs. In our experiments for some instances, the algorithm
finished before ever reaching the step 13. In such cases the
reduction q ∈ Sf is the maximum.

D.2. Properties of TRW-S

In this section we give several theoretical guarantees for
TRW-S when it is applied to solve the verification problem
(I − [p]T)f or to its reduced version.

TRW-S algorithm, though observed to always converge
in practice to a fixed point, has very weak theoretical con-
vergence guarantees. It is know that there is a convergent
subsequence who’s limit satisifies Week Tree Agreement
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(WTA) [12]. A finite iteration epsilon variant of this state-
ment exists [21]. In either case we have no guarantee to
obtain an arc consistent solution required to prove Proposi-
tion 4.3. The major obstacles are: (i) WTA is achieved only
in the limit and (ii) there is no guarantee that the set of la-
bels which are in WTA (let alone its AC subset) converges
as well.

Fortunately, TRW-S enjoys very useful for us proper-
ties especially when it is applied to the reduced verification
problem. We first give a short specification of TRW-S. In
our notation, the order of TRW-S updates is fully specified
by orientations of edges in E . For a serial implementation,
this order can be completed to a total order on V by defin-
ing u < v iff uv ∈ E . We specify only the forward pass of
TRW-S as Algorithm 4 and note that the backward pass is
obtained by reversing all edges. In Algorithm 4, nu is the

Algorithm 4: TRW-S Forward Iteration,
c.f . [12, Fig. 3]

Input: Problem f ∈ RI , reparametrization ϕ;
Output: Updated reparametrization ϕ, LBT , best

labeling x, locally optimal labels Ou(ϕ);
1 for u ∈ V do
2 for v ∈ nb(u) | uv ∈ E do
3 ϕvu(j) :=

min
i

[
1
nu
fϕu (i)− ϕuv(i) + fuv(i, j)

]
;

4 Ou(ϕ) := argmini f
ϕ
u (i); xu ∈ Ou(ϕ);

5 LBT(ϕ) :=
∑
u∈V

nterm(u)
nu

min
i
fϕu (i);

number of chains that meet in node u and nterm(u) is the
number of chains that terminate in u.

Viewed as computing the division of costs between the
chains, TRW-S has the following properties. To a chain τ
there is associated its oriented graph (Vτ , Eτ ) and its share
of the unary terms in the decomposition, fτ . We assume
thet each pairwise term fuv is associated to exactly one
chain passing through edge uv.

After the first backward pass, the algorithm maintains the
following invariants. Consider the step of processing vertex
u∗ ∈ V . For a chain τ which passes through edge uv ∈ E
there holds:
• If u∗ < u, message ϕuv(i) is equal to the right min-
marginals of the chain:

ϕuv(i) = min
(xw|w>v)
xu=i

(
∑
u∈Vτ
w>u

fτw(xw)+
∑

u′v′∈Eτ
u′≤u

fu′v′(xu′ , xv′)).

(44)

• If u∗ > u, message ϕvu(j) is equal to the left min-

marginals of the chain:

ϕvu(j) = min
(xw|w<v)
xv=j

(
∑
w∈Vτ
w<v

fτw(xw)+
∑

u′v′∈Eτ
u′≤u

fu′v′(xu′ , xv′)).

(45)
Weak tree agreement is the condition when the lower

bound cannot be improved further by TRW-S [12]. It re-
quires that among all optimal assignments of the chains
there is a consistent subset.

We now introduce a measure of how far the TRW-S al-
gorithm is from a fixed integer solution y. For a node u we
define node margin of u as the value

mu(ϕ) = min
i

(fϕu (i)− fϕu (yu)). (46)

The margin is related to the set Ou(ϕ) of local minimizers.
If it is negative,Ou(ϕ) does not contain yu and the negative
value measures how well it is separated. Let us define the
problem margin as the value

m(ϕ) = min
s∈V

mu(ϕ). (47)

For the convenience of analysis, we continue to denote the
cost vector to which Algorithm 4 is applied as f . In the
context of Algorithm 3, we temporarily let f := ḡ.

Theorem D.3 (Margin for TRW-S). For the reduced verifi-
cation problem f and reparametrization ϕ build by TRW-S
there holds:

LBT(ϕ) = 0 iff mu(ϕ) ≥ 0. (48)

Proof. (⇒) Let LBT (ϕ) = 0. By construction, Ef (y) = 0
so the duality gap is zero and therefore ϕ is dual optimal
and δ(y) is primal optimal. By complementary slackness it
must be that (∀u ∈ V) fϕu (yu) is locally minimal. There-
fore problem margin is exactly zero. This part of the proof
holds also for non-reduced verification problem and any
reparametrization such that LBT (ϕ) = 0.

(⇐) Let now the problem margin be non-negative. Let
us consider edge uv ∈ E and let fτ be the cost vector of
the monotonic chain τ passing through edge uv at the be-
ginning of iteration processing node v. Since u was already
processed, the value fϕu is proportional to min-marginals of
chain τ in u and we have mu(ϕ) ≥ 0. It follows that there
is a minimizer x ∈ minx〈fτ , δ(x)〉 such that xu = yu. For
this minimizer there holds

x ∈ argmin
x̃|x̃v=xv

〈fτ , δ(x̃)〉. (49)

This is because we constrained x̃ to coincide with the global
chain minimizer in v. This conditional minimizer however
clearly does not depend on fτv , the unary term associated to
chain τ .
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Consider the operation of averaging min-marginals over
node v. By assumption, after averaging operation, mv ≥ 0
and therefore the local minimum over each chain is attained
in yv . The averaging operation only changes the value fτv .
The conditional minimizer

x′ ∈ argmin
x̃|x̃v=yv

〈fτ , δ(x̃)〉 (50)

does not depend on fτv .
Let r precede u in τ . Assume for contradiction that x′u 6=

yu. Because u has been processed, the value ϕur(i) is the
left-min-marginal for chain τ in node u and label i ∈ Xu.
Denote

−→
fτu = ϕur(i) + fτu (i). The relations (49) and (50)

can be expressed as

yu ∈ argmin
i

(−→
fτu + fuv(i, xv)

)
; (51a)

x′u ∈ argmin
i

(−→
fτu + fuv(i, yv)

)
. (51b)

From (51a) we have that
−→
fτu (yu)+fuv(yu, xv) ≤

−→
fτu (x′u)+

fuv(x
′
u, xv). We use now the partial submodularity fulfilled

for f ,

fuv(yu, xv) + fuv(x
′
u, yv) ≥ fuv(x′u, xv) (52)

and obtain that
−→
fτu (yu) ≤

−→
fτu (x′u) + fuv(x

′
u, yv). (53)

Adding on the LHS the term fuv(yu, yv) = 0, we get

−→
fτu (yu) + fuv(yu, yv) ≤

−→
fτu (x′u) + fuv(x

′
u, yv). (54)

This inequality allows to conclude that yu is a also a mini-
mizer to (51b). Therefore either x′u = yu or yu is an equally
good substitute.

We have shown that as soon as there is zero margin, for
each chain the part of the minimizer over already processed
nodes can be selected equal to y. By induction, at the end
of the sweep, y is a minimizer for each chain. Hence WTA
is achieved. In this case, there is zero integrality gap and
LBT = Ef (y) = 0.

It follows that on every iteration (but the first initializing
one) of TRW-S either the problem margin is negative and
therefore (∃u)Ou(ϕ)∩Yu 6= ∅ (there is always something
to prune) or WTA is achieved and the algorithm terminates
with y being optimal integer solution. This proves Theo-
rem D.1. Furthermore, if the stopping condition in line 12
is the iteration limit, Algorithm 3 runs in polynomial time.

D.3. Efficient Message Passing

Suppose that some pairwise potentials are specially
structured, so that messages in message passing algorithms

i /∈ Yu ḡu(i) = 0;
i ∈ Yu ḡu(i) = fu(i)− fu(yu);

i /∈ Yu j /∈ Yv ḡuv(i, j) = 0;

i /∈ Yu j ∈ Yv
ḡuv(i, j) = ∆vu(j),

∆vu(j) = min
i′ /∈Yu

[
fuv(i

′, j)− fuv(i′, yv)
]
;

i ∈ Yu j /∈ Yv
ḡuv(i, j) = ∆uv(i),

∆uv(i) = min
j′ /∈Yv

[
fuv(i, j

′)− fuv(yu, j′)
]
;

i ∈ Yu j ∈ Yv
ḡuv(i, j) = min

{
fuv(i, j)− fuv(yu, yv),

∆vu(j) + ∆uv(i)
}
.

Table 6. Components of the Reduced Verification Problem

can be computed in linear time in the number of labels in-
stead of quadratic time, see [5]. This is the case for many
potentials with a linear ordering, e.g. absolute differences,
squared distance and truncated versions thereof, including
the Potts model.

It would be very helpful to be able to compute messages
fast in these cases also for our reduced verification problem
ḡ. The components of ḡ specified by Theorem 5.1 can be
expressed directly in components of f as proposed in Ta-
ble 6. Passing a message on edge uv amounts to calculate
an expression of the form

ϕvu(j) := min
i∈Xu

[
a(i) + ḡuv(i, j)

]
(55)

for some vector a ∈ RXu . For j /∈ Yv , substituting pairwise
terms of ḡ it is expanded as

ϕvu(j) = min
i∈Xu

[
a(i) + ∆uv(i)

]
= min
i∈Xu

[
a(i) + ∆uv(i)

]
+ ∆vu(j), (56)

where we defined that ∆uv(Uu) = ∆vu(Uv) = 0.
For j ∈ Yv , substituting pairwise terms of ḡ and denot-

ing c = fuv(yu, yv) the message is expanded as

min
{

min
i∈Uu

a(i) + ∆vu(j),

min
i∈Yu

[
a(i) + min

{
fuv(i, j)− c,∆uv(i) + ∆vu(j)

}]}
= min

{
min
i∈Yu

[
a(i) + fuv(i, j)

]
− c,

min
i∈Xu\Yu

[
a(i) + ∆uv(i)

]
+ ∆vu(j)

}
.

(57)

We therefore need to calculate (56) for all j ∈ Xu because
the expression reoccurs in (57) for j ∈ Yv . Then for j ∈ Yv
it remains to take the minimum of a regular message and
ϕvu(j) by (56).
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Algorithm 5: Message Passing for Pruning

Input: Unary term a : Yu ∪ {yu} → R;
Output: Message ϕvu : Yv ∪ {yv} → R;
/* Offset constant in (56) */

1 m1 := min
i∈Yu∪{yu}

[
a(i) + ∆uv(i)

]
;

/* Message passing for f */

2 (∀j ∈ Yv) ϕvu(j) := min
i∈Yu∪{yu}

[
a(i) + fuv(i, j)

]
;

/* Message correction for ḡ */
3 (∀j ∈ Yv) ϕvu(j) := min{ϕvu(j)−c,∆vu(j)+m1};
4 ϕvu(yv) := m1;

We thus have reduced the message passing for ḡ to the
message passing for f , O(|Xu| + |Xv|) operations to cal-
culate expression (56) and O(|Xv|) operations for the outer
minimum. Therefore we can compute the message for the
modified energy in time O(|Xu| + |Xv|). We can take this
complexity down to the theoretical perfection as follows.
Recall that labels in Xu\Yu can be contracted to a single
one. In this case calculating (56) for all j ∈ Yu takes
only O(|Yu| + |Yv|) time. Using the non-uniform min-
convolution algorithm of [37] the message passing for the
labels in the set Yu to labels in Yv can be implemented
in O(|Yu| + |Yv|) time. We have obtained the complexity
matching to the total number of active labels in the problem.
The more labels are marked as immovable in the course of
the algorithm (sets Yu reduce), the less work is required.
The final message update is specified in Algorithm 5, where
the contracted labels Xu\Yu are represented by yu. In the
implementation for each edge uv we need to store the off-
sets ∆uv : Yu → R and ∆vu : Yv → R and c ∈ R.

E. Detailed Experimental Evaluation

Datasets and Evaluation. We give a brief characteriza-
tion of all 38 test problem instances and report the ob-
tained total percentage of persistent variables of our and
competing methods in Table 2. The datasets mrf-stereo
and mrf-photomontage originate from the Middle-
bury MRF benchmark [31]. The color-seg and
color-seg-n4 datasets were taken from the OpenGM
MRF benchmark [10, 9], ProteinFolding originates
from [16, 36]. All datasets are made available in the
OpenGM-format [10, 9].

Detailed quantitative experimental evaluation can be
found in Table 7. In addition to the per-label measure of
partial optimality (15), to allow for future comparisons we
report also the logarithmic measure. It is motivated by the
fact that eliminating one label in a variable with say 2 states
brings more information than eliminating one label in a
variable with 100 states. We propose to measure the to-
tal decrease of the number of configurations of the search
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Figure 2. Instance pfau. (a) Proved part of optimal solution (red
solution not determined / non-unique). (b) Reminder of the opti-
mization problem: number of remaining labels in every pixel.
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Figure 3. Instance ted. (a) Proved part of optimal solution (red =
solution not determined / non-unique). (b) Reminder of the opti-
mization problem: number of remaining labels in every pixel.

space, e.g., from |X | to p(|X |), in the logarithmic domain:

1−
log
∏
v∈V |pv(Xv)|

log
∏
v∈V |Xv|

= 1−
∑
v∈V log |pv(Xv)|∑
v∈V log |Xv|

. (58)

In Figures 2-4 we give examples where the method was
performing well. Figures 5 and 6, on the contrary re-
veal some cases of very poor performance. For example
for photomontage/pano instance, we report 80% solu-
tion completeness, but these 80% only correspond to trivial
hard constraints in the problem. Other methods perform
worse mainly because they consider determining complete
optimal labels only ([29]-TRWS) or intervals of labels
(MQPBO).
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Figure 4. Instance brain-9mm/brain-0. Slices of the 3D vol-
umetric problem. Proved part of optimal solution (red = solution
not determined / non-unique).
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Figure 5. Instance pano: label encodes the image index for pho-
tomontage. (a) (b) Two labelings by TRW-S with slightly different
initializations. It is clear that there is high ambiguity. (c) Part of
the solution that was proved optimal and unique. (d) Reminder of
the optimization problem (number of non-eliminated labels). It is
clear that the method essentially removed hard constraints implied
by different fields of view of images composing the panorama.
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Figure 6. Instance family. (a) Labeling by TRW-S. (b) Re-
minder of the optimization problem (number of labels per pixel).
It is clear that the method essentially only followed the hard con-
straints corresponding to the scribbles provided by the user and
constrained very few pixels ontop of that.
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Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

ProteinFolding
1CKK Our-CPLEX 2757.62 1177.62 5 † 14.24% 27.04%

Our-TRWS 5.76 5.00 3 1000+15 13.83% 26.53%
MQPBO-10 5670.00 0.00 0 † 0.00% 0.00%
MQPBO 825.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2502.69 2493.65 1 † 0.00% 0.00%
[29]-TRWS 47.57 30.19 2 288+185 0.00% 0.00%

1CM1 Our-CPLEX 4070.00 992.15 7 † 8.38% 34.28%
Our-TRWS 6.03 4.70 4 1000+65 8.07% 29.98%
MQPBO-10 5520.00 0.00 0 † 0.00% 0.00%
MQPBO 723.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2388.46 2198.04 3 † 0.00% 0.00%
[29]-TRWS 51.33 21.60 3 242+358 0.00% 0.00%

1SY9 Our-CPLEX 2628.72 416.74 5 † 25.34% 51.30%
Our-TRWS 6.88 5.50 4 1000+15 28.06% 57.98%
MQPBO-10 7494.00 0.00 0 † 0.00% 0.00%
MQPBO 2112.00 0.00 0 † 0.00% 0.11%
[29]-CPLEX 1067.46 910.90 4 † 0.00% 0.00%
[29]-TRWS 66.73 46.77 5 400+174 0.00% 0.00%

2BBN Our-CPLEX 9677.42 5476.81 5 † 2.12% 8.58%
Our-TRWS 10.00 8.60 3 1000+10 2.64% 14.17%
MQPBO-10 1736.00 0.00 0 † 0.00% 0.00%
MQPBO 2429.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 9776.60 9771.18 1 † 0.00% 0.00%
[29]-TRWS 54.21 42.90 2 242+146 0.00% 0.00%

2BCX Our-CPLEX 36222.90 6998.66 5 † 4.81% 15.66%
Our-TRWS 9.14 7.90 3 1000+55 4.39% 14.21%
MQPBO-10 1008.00 0.00 0 † 0.00% 0.00%
MQPBO 1288.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 11419.60 11409.90 2 † 0.00% 0.00%
[29]-TRWS 55.26 39.60 2 252+194 0.00% 0.00%

2BE6 Our-CPLEX 1381.60 765.84 4 † 9.14% 17.68%
Our-TRWS 4.67 3.91 4 1000+60 8.96% 15.12%
MQPBO-10 3728.00 0.00 0 † 0.00% 0.05%
MQPBO 540.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 1552.95 1552.88 1 † 0.00% 0.00%
[29]-TRWS 40.12 28.12 2 363+230 0.00% 0.00%

2F3Y Our-CPLEX 3628.90 2546.68 5 † 6.22% 10.66%
Our-TRWS 5.83 5.20 3 1000+10 8.39% 13.74%
MQPBO-10 5138.00 0.00 0 † 0.00% 0.00%
MQPBO 928.00 0.00 0 † 0.00% 0.05%
[29]-CPLEX 4618.78 4618.76 1 † 0.00% 0.00%
[29]-TRWS 41.87 33.03 3 321+164 0.00% 0.00%

2FOT Our-CPLEX 7458.75 1996.55 5 † 4.10% 11.64%
Our-TRWS 6.25 5.30 4 1000+25 4.01% 11.01%
MQPBO-10 4961.00 0.00 0 † 0.00% 0.09%
MQPBO 1054.00 0.00 0 † 0.00% 0.07%
[29]-CPLEX 4473.58 4440.51 1 † 0.00% 0.00%
[29]-TRWS 61.92 44.42 2 398+222 0.00% 0.00%

2HQW Our-CPLEX 5721.95 1946.20 6 † 10.30% 17.30%
Our-TRWS 6.49 4.80 6 1000+160 8.33% 18.08%
MQPBO-10 7228.00 0.00 0 † 0.00% 0.00%
MQPBO 1193.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 2163.98 2161.07 1 † 0.00% 0.00%
[29]-TRWS 44.07 35.46 2 382+121 0.00% 0.00%

2O60 Our-CPLEX 12085.40 3007.95 6 † 4.22% 12.81%
Our-TRWS 7.74 6.50 3 1000+55 4.94% 15.55%
MQPBO-10 7516.00 0.00 0 † 0.00% 0.00%
MQPBO 1997.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 6137.07 6128.14 1 † 0.00% 0.00%
[29]-TRWS 93.87 46.42 2 352+369 0.00% 0.00%

3BXL Our-CPLEX 3247.11 915.86 7 † 4.97% 17.18%
Our-TRWS 7.44 5.90 4 1000+60 4.66% 12.35%
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Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

MQPBO-10 6709.00 0.00 0 † 0.00% 0.00%
MQPBO 1291.00 0.00 0 † 0.00% 0.00%
[29]-CPLEX 1776.23 1598.07 2 † 0.00% 0.00%
[29]-TRWS 44.71 25.52 2 227+216 0.00% 0.00%

pdb1b25 Our-CPLEX 1599.67 55.01 28 † 76.76% 84.05%
Our-TRWS 5.18 2.92 18 530+150 83.00% 87.84%
MQPBO-10 27.00 0.00 0 † 0.00% 2.53%
MQPBO 2.00 0.00 0 † 0.00% 1.99%
[29]-CPLEX 324.64 72.11 14 † 18.84% 22.32%
[29]-TRWS 119.71 27.62 14 443+1238 18.92% 22.34%

pdb1d2e Our-CPLEX 154.76 25.44 5 † 97.30% 97.98%
Our-TRWS 1.67 1.13 7 420+75 96.97% 98.25%
MQPBO-10 12.00 0.00 0 † 0.00% 4.61%
MQPBO 0.00 0.00 0 † 0.00% 2.74%
[29]-CPLEX 483.55 34.59 25 † 55.53% 58.94%
[29]-TRWS 83.82 6.16 47 190+2775 55.69% 58.98%

pdb1fmj Our-CPLEX 99.33 12.35 7 † 92.58% 94.90%
Our-TRWS 1.05 0.60 14 540+135 83.18% 87.09%
MQPBO-10 6.00 0.00 0 † 0.00% 2.92%
MQPBO 0.00 0.00 0 † 0.00% 2.04%
[29]-CPLEX 77.30 16.97 11 † 15.94% 18.83%
[29]-TRWS 16.67 3.10 11 186+677 16.18% 18.91%

pdb1i24 Our-TRWS 0.06 0.02 2 60+5 99.73% 99.94%
MQPBO-10 3.00 0.00 0 † 0.00% 2.85%
MQPBO 0.00 0.00 0 † 0.00% 3.43%
[29]-CPLEX 5.66 5.66 0 † 100.00% 100.00%
[29]-TRWS 0.82 0.82 0 115+0 100.00% 100.00%

pdb1iqc Our-CPLEX 111.58 18.51 5 † 99.10% 99.63%
Our-TRWS 0.74 0.40 8 200+35 96.39% 97.10%
MQPBO-10 8.00 0.00 0 † 0.00% 6.06%
MQPBO 0.00 0.00 0 † 0.00% 4.90%
[29]-CPLEX 229.09 24.36 20 † 35.32% 41.15%
[29]-TRWS 36.03 4.06 28 169+2058 40.50% 45.56%

pdb1jmx Our-CPLEX 142.20 15.52 9 † 97.24% 98.69%
Our-TRWS 0.67 0.29 10 200+75 93.46% 95.83%
MQPBO-10 8.00 0.00 0 † 0.00% 3.76%
MQPBO 0.00 0.00 0 † 0.00% 3.73%
[29]-CPLEX 121.71 16.21 19 † 35.86% 39.98%
[29]-TRWS 20.02 3.59 24 188+1098 35.26% 39.12%

pdb1kgn Our-CPLEX 196.03 17.97 10 † 89.22% 93.23%
Our-TRWS 1.37 0.76 9 400+170 88.92% 93.16%
MQPBO-10 9.00 0.00 0 † 0.00% 3.24%
MQPBO 0.00 0.00 0 † 0.00% 2.27%
[29]-CPLEX 161.57 24.37 12 † 39.42% 39.67%
[29]-TRWS 53.49 6.45 17 268+1824 13.20% 13.36%

pdb1kwh Our-CPLEX 105.77 9.63 10 † 79.09% 85.64%
Our-TRWS 0.46 0.27 8 440+50 76.53% 83.26%
MQPBO-10 5.00 0.00 0 † 0.00% 2.99%
MQPBO 0.00 0.00 0 † 0.00% 3.43%
[29]-CPLEX 51.33 12.89 9 † 25.54% 31.15%
[29]-TRWS 9.15 2.43 8 208+401 25.43% 31.13%

pdb1m3y Our-CPLEX 73.60 18.58 3 † 98.54% 99.47%
Our-TRWS 0.79 0.65 3 340+10 97.53% 99.08%
MQPBO-10 8.00 0.00 0 † 0.00% 6.38%
MQPBO 0.00 0.00 0 † 0.00% 5.72%
[29]-CPLEX 120.60 25.18 14 † 31.05% 27.97%
[29]-TRWS 28.19 4.82 12 200+1135 31.08% 27.98%

pdb1qks Our-CPLEX 138.12 15.19 8 † 98.30% 98.93%
Our-TRWS 0.30 0.12 4 80+20 98.57% 99.38%
MQPBO-10 9.00 0.00 0 † 0.00% 5.09%
MQPBO 0.00 0.00 0 † 0.00% 3.68%
[29]-CPLEX 96.77 15.82 12 † 28.18% 26.37%

20



Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
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[29]-TRWS 27.99 3.24 15 161+1154 30.63% 28.46%
color-seg

colseg-cow3 Our-TRWS 66.30 48.10 6 1000+140 99.96% 99.97%
Kovtun 1.00 0.00 0 † 0.00% 99.89%
MQPBO-10 206.00 0.00 0 † 0.00% 43.55%
MQPBO 24.00 0.00 0 † 0.00% 32.06%
[29]-TRWS 7530.72 690.55 14 826+6056 99.95% 99.95%

colseg-cow4 Our-TRWS 91.26 48.31 13 1000+310 99.92% 99.93%
Kovtun 2.00 0.00 0 † 0.00% 99.90%
MQPBO-10 46.00 0.00 0 † 0.00% 0.56%
MQPBO 40.00 0.00 0 † 0.00% 0.37%
[29]-TRWS 7395.03 742.58 10 848+6349 99.80% 99.80%

colseg-garden4 Our-TRWS 0.49 0.15 5 70+20 99.91% 99.94%
Kovtun 0.00 0.00 0 † 0.00% 94.96%
MQPBO-10 14.00 0.00 0 † 0.00% 4.27%
MQPBO 1.00 0.00 0 † 0.00% 0.21%
[29]-TRWS 33.68 6.75 5 167+488 99.89% 99.89%

color-seg-n4
clownfish-small Our-TRWS 1.72 0.68 3 80+10 >99.99% >99.99%

Kovtun 1.00 0.00 0 † 0.00% 74.11%
MQPBO-10 536.00 0.00 0 † 0.00% 15.83%
MQPBO 41.00 0.00 0 † 0.00% 4.67%
[29]-TRWS 151.98 30.01 6 223+610 99.97% 99.97%

crops-small Our-TRWS 1.87 1.02 2 120+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 64.70%
MQPBO-10 577.00 0.00 0 † 0.00% 14.32%
MQPBO 33.00 0.00 0 † 0.00% 0.71%
[29]-TRWS 677.08 34.88 40 260+3578 99.00% 99.00%

fourcolors Our-TRWS 0.57 0.08 2 20+5 99.96% 99.97%
Kovtun 0.00 0.00 0 † 0.00% 69.52%
MQPBO-10 37.00 0.00 0 † 0.00% 0.00%
MQPBO 3.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 31.28 2.60 8 34+238 99.92% 99.92%

lake-small Our-TRWS 1.28 0.43 2 50+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 74.87%
MQPBO-10 607.00 0.00 0 † 0.00% 15.31%
MQPBO 31.00 0.00 0 † 0.00% 6.65%
[29]-TRWS 13.75 13.75 0 95+-95 100.00% 100.00%

palm-small Our-TRWS 2.48 1.37 3 160+10 >99.99% >99.99%
Kovtun 1.00 0.00 0 † 0.00% 68.65%
MQPBO-10 510.00 0.00 0 † 0.00% 0.48%
MQPBO 19.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 846.27 39.97 19 291+4582 98.20% 98.20%

penguin-small Our-TRWS 1.21 0.54 2 90+5 100.00% 100.00%
Kovtun 0.00 0.00 0 † 0.00% 91.99%
MQPBO-10 193.00 0.00 0 † 0.00% 1.42%
MQPBO 13.00 0.00 0 † 0.00% 1.03%
[29]-TRWS 15.67 15.67 0 152+-152 100.00% 100.00%

pfau-small Our-TRWS 18.77 7.22 48 950+470 89.43% 93.41%
Kovtun 1.00 0.00 0 † 0.00% 5.59%
MQPBO-10 591.00 0.00 0 † 0.00% 0.70%
MQPBO 16.00 0.00 0 † 0.00% 0.00%
[29]-TRWS 799.08 79.34 44 654+10857 10.43% 10.43%

snail Our-TRWS 0.79 0.23 2 50+5 99.99% 99.99%
Kovtun 0.00 0.00 0 † 0.00% 97.77%
MQPBO-10 7.00 0.00 0 † 0.00% 77.91%
MQPBO 1.00 0.00 0 † 0.00% 58.35%
[29]-TRWS 46.20 6.47 5 83+332 99.98% 99.98%

strawberry-glass-2-small Our-TRWS 1.35 0.60 2 80+5 100.00% 100.00%
Kovtun 1.00 0.00 0 † 0.00% 54.99%
MQPBO-10 528.00 0.00 0 † 0.00% 2.78%
MQPBO 39.00 0.00 0 † 0.00% 0.00%
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Instance Algorithm
Time
needed
overall (s)

Time for
initial
solution (s)

#iterations
Algorithm 1,2

#iterations
TRWS

Logarithmic
percentage
partial
optimality

Percentage
excluded
labels

[29]-TRWS 311.54 31.00 11 259+1721 99.31% 99.31%
mrf-photomontage

family-gm Our-TRWS 286.40 93.08 77 1000+1265 4.75% 4.80%
MQPBO-10 1087.00 0.00 0 † 0.00% 4.41%
MQPBO 90.00 0.00 0 † 0.00% 4.34%
[29]-TRWS 12726.45 1291.11 50 1015+22483 4.41% 4.41%

pano-gm Our-TRWS 320.00 112.17 59 1000+1105 67.73% 79.17%
MQPBO-10 646.00 0.00 0 † 0.00% 28.06%
MQPBO 97.00 0.00 0 † 0.00% 40.37%
[29]-TRWS 14360.45 1871.14 33 911+11193 27.55% 27.55%

mrf-stereo
ted-gm Our-TRWS 231.97 72.67 119 1000+715 67.27% 72.05%

[29]-TRWS 3837.51 436.30 28 689+10383 38.13% 38.13%
tsu-gm Our-TRWS 19.75 14.67 10 670+75 99.91% 99.94%

[29]-TRWS 9277.99 267.55 54 377+17421 0.39% 0.39%
ven-gm Our-TRWS 108.73 94.44 9 1000+40 0.01% 0.02%

[29]-TRWS 14737.47 1451.83 55 993+16592 0.00% 0.00%

Table 7: Detailed experimental evaluation for Algorithm 1 utilising CPLEX [8] as a sub-
solver, denoted as Our-CPLEX, Algorithm 2 utilising TRW-S [12] as a subsolver, denoted
as Our-TRWS, their counterparts from [29] denoted by [29]-CPLEX and [29]-TRWS
and MQPBO [11] run for one iteration with predefined label order, denoted by MQPBO, and
run 10 iterations in 10 random label orders, denoted by MQPBO-10.
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