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MAP-Inference

with General Graphical Models
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and Bogdan Savchynskyy

Abstract—We consider the energy minimization problem for undirected graphical models, also known as MAP-inference problem
for Markov random fields which is NP-hard in general. We propose a novel polynomial time algorithm to obtain a part of its optimal
non-relaxed integral solution. Our algorithm is initialized with variables taking integral values in the solution of a convex relaxation
of the MAP-inference problem and iteratively prunes those, which do not satisfy our criterion for partial optimality. We show that
our pruning strategy is in a certain sense theoretically optimal. Also empirically our method outperforms previous approaches
in terms of the number of persistently labelled variables. The method is very general, as it is applicable to models with arbitrary
factors of an arbitrary order and can employ any solver for the considered relaxed problem. Our method’s runtime is determined
by the runtime of the convex relaxation solver for the MAP-inference problem.

Index Terms—MAP-inference, Markov random fields, energy minimization, persistency, partial optimality, local polytope

F

1 INTRODUCTION

Finding the most likely configuration of a Markov
random field (MRF), also called MAP-inference or
energy minimization problem for graphical models,
is of big importance in computer vision, bioinformat-
ics, communication theory, statistical physics, com-
binatorial optimization, signal processing, informa-
tion retrieval and statistical machine learning, see [1],
[13], [40] for an overview of applications. This key
problem however is NP-hard. Therefore approximate
methods have been developed to tackle big instances
commonly arising in image processing, see [13], [38]
for an overview of such methods. These approximate
methods often cannot find an optimal configuration,
but deliver close solutions. If one could prove, that
some variables of the solution given by such approx-
imate algorithms belong to an optimal configuration,
the value of such approximate methods would be
greatly enhanced. In particular, the problem for the
remaining variables could be solved by stronger, but
computationally more expensive methods to obtain a
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global optimum as done e.g. in [15].
In this paper we propose a way to gain such a par-

tially optimal solution for the MAP-inference problem
with general discrete MRFs from possibly also non-
exact solutions of the commonly used local polytope
relaxation (see [41]). Solving over the local polytope
amounts to solving a linear problem for which any
linear programming (LP) solver can be used and for
which dedicated and efficient algorithms exist.

1.1 Related Work

We distinguish two classes of approaches to partial
optimality.
(i) Roof duality based approaches. The earliest pa-
per dealing with persistency is [22], which states a
persistency criterion for the stable set problem and
verifies it for every solution of a certain relaxation.
This relaxation is the same, as used by the roof duality
method in [2] and which is also the basis for the
well known QPBO-algorithm [2], [23]. The MQPBO
method [17] extends roof duality to the multi-label
case. The authors transform multi-label problems into
quadratic binary ones and solve them via QPBO [2].
However, their transformation is dependent upon
choosing a label order and their results are so as well,
see the experiments in [36], where the label order is
sampled randomly. It is not known how to choose an
optimal label order to obtain the maximum number
of persistent variables.

The roof duality method has been extended to
higher order binary problems in [4], [10], [12]. The
generalized roof duality method for binary higher
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order problems [12] computes partially optimal vari-
ables directly for higher order potentials, while
Ishikawa’s and Fix et al’s approaches [4], [10] trans-
form the higher order problem to one with unary
and pairwise terms only. Fix et al’s method [4] is an
improvement upon Ishikawa’s [10].

Windheuser et al [42] proposed a multi-label higher-
order roof duality method, which is a generalization
of both MQPBO [17] to higher order and Kahl and
Strandmark’s work [12] to the multi-label case. How-
ever Windheuser et al neither describe an implemen-
tation nor provide experimental validation for the
higher order multi-label case.
(ii) Labeling testing approaches. A different ap-
proach, specialized for Potts models, is pursued by
Kovtun [20], where possible labelings are tested for
persistency by auxiliary submodular problems. The
dead-end elimination procedure [3] tests, if certain
labels of nodes cannot belong to an optimal solution.
It is a local heuristic and does not perform any
optimization.

Since for non-binary multi-labeling problems the
submodular approximations constructed by ap-
proaches of class (i) are provably less tight than the
standard local polytope relaxation [31, Prop. 1], we
consider class (ii) in this paper. Specifically, based on
ideas in [36] to handle the Potts model, we develop
a theoretically substantiated approach to recognizing
partial optimality for general graphical models, to-
gether with a competitive comparison to the 5 ap-
proaches [4], [10], [12], [17], [20] discussed above, that
define the state-of-the-art.
Unified study. In addition we point to the recent
paper [29], which provides a unified study of most
mentioned methods and a systematic way of their
analysis. While their persistency criterion is provably
not weaker than ours, due to the general structure
of the resulting LP it cannot be applied to large-scale
problems in a straightforward manner. Moreover, our
approach is directly applicable to higher order mod-
els and tighter then the local polytope relaxations,
whereas [29] requires generalization to these cases,
though such a generalization is presumably possible.
We show that our algorithm solves a special case of
the maximal presistency problem formulated in [29].
Shrinking technique. The recent work [25] proposes
a method for efficient shrinking of the combinatorial
search area with the local polytope relaxation. Though
the algorithmic idea is similar to the presented one,
the method [25] does not provide partially optimal
solutions. We refer to Section 4 for further discussion.

Furthermore, preliminary shorter version of the our
study was published at a conference as [37].

1.2 Contribution and Organization

Adopting ideas from [36], we propose a novel method
for computing partial optimality, which is applicable

to general graphical models with arbitrary higher order
potentials. Similarly to [36] our algorithm is initialized
with variables taking integral values in the solution
of a convex relaxation of the MAP-inference problem
and iteratively prunes those, which do not satisfy
our persistency criterion. We show that our pruning
strategy is in a certain sense theoretically optimal.
Though the used relaxation can be chosen arbitrarily,
for brevity we restrict our exposition and experiments
to the local polytope relaxation. Tighter relaxations
provably yield better results. However even by using
the local polytope relaxation we can often achieve
a substantially higher number of persistent variables,
than competing approaches, which we confirm ex-
perimentally. We also show how our approach can
be made invariant against reparametrizations. This
improves our partial optimality criterion and we can
show equivalence with the all-to-one improving map-
ping class of partial optimality methods proposed
in [29]. Our approach is very general, as it can use any,
also approximate, solver for the considered convex
relaxation. Moreover, the computational complexity of
our method is determined mainly by the runtime of
the used solver.

The comparison to existing persistency methods is
summarized in Table 1.

Our code together with the experimental setup is
available at http://paulswoboda.net.
Organization. In Section 2 we review the energy min-
imization problem and the local polytope relaxation,
in Section 3 our persistency criterion is presented. The
corresponding algorithm and its theoretical analysis
are presented in Sections 4, 5 and 6 respectively.
Extensions to the higher order case and tighter relax-
ations are discussed in Section 7. Section 8 provides
experimental validation of our approach and a com-
parison to the existing methods [4], [10], [12], [17],
[20].

2 MAP-INFERENCE PROBLEM
The MAP-inference problem for a graphical model
over an undirected graph G = (V, E), reads

min
x∈XV

EV(x) :=
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) , (2.1)

where xu belongs to a finite label set Xu for each node
u ∈ V , θu : Xu → R and θuv : Xu × Xv → R are
the unary and pairwise potentials associated with the
nodes and edges of G. The label space for A ⊂ V is
XA =

⊗
u∈AXu, where

⊗
stands for the Cartesian

product. For notational convenience we write Xuv =
Xu×Xv and xuv = (xu, xv) for uv ∈ E . Notations like
x ∈ XA implicitly indicate that the vector x only has
components xu indexed by u ∈ A. With x|A ∈ XA we
denote restriction of the labeling x ∈ XV to the set
A ⊂ V .

More general graphical models with terms depend-
ing on three or more variables can be considered as

http://paulswoboda.net
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Work non-binary higher order non-Potts Auxiliary problem
Boros & Hammer 2002 [2] − − + QPBO
Kovtun 2003 [20] + − − submodular
Rother et al. 2007 [23] − − + QPBO
Kohli et al. 2008 [17] + − + QPBO
Kovtun 2011 [21] + − + submodular
Ishikawa 2011 [10] − + + QPBO
Fix et al. 2011 [4] − + + QPBO
Kahl & Strandmark 2012 [12] − + + bi-submodular
Windheuser et al. 2012 [42] + + + bi-submodular
Swoboda et al. 2013 [36] + − − local polytope
Shekhovtsov 2014 [29] + − + general linear program
Ours + + + any convex relaxation

TABLE 1
Comparison between partial optimality methods. Detailed description is presented in Section 1.1.

well. For brevity we restrict ourselves here to the
pairwise case. An extension to the higher order case
is discussed in Section 7.

Problem (2.1) is equivalent to the integer linear
problem

min
µ∈ΛV

∑
v∈V

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈E

∑
xuv∈Xuv

θuv(xuv)µuv(xuv)

s.t. µw(xw) ∈ {0, 1} for w ∈ V ∪ E , xw ∈ Xw , (2.2)

where the local polytope ΛV [40] is the set of µ fulfilling∑
xv∈V µv(xv) = 1, v ∈ V,∑
xv∈V µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ E ,

µw(xw) ≥ 0, w ∈ V ∪ E , xw ∈ Xw .

(2.3)

We define ΛA for A ⊂ V similarly. Slightly abus-
ing notation we will denote the objective function
in (2.2) as EV(µ). The formulation (2.2) utilizes the
overcomplete representation [40] of labelings in terms
of indicator vectors µ, which are often called marginals.
The problem of finding µ∗ ∈ argminµ∈ΛV EV(µ) (i.e.
solving (2.2) without integrality constraints) is called
the local polytope relaxation of (2.1).

While solving the local polytope relaxation can be
done in polynomial time, the corresponding optimal
marginal µ∗ may not be integral anymore, hence in-
feasible and not optimal for (2.2). For a wide spectrum
of problems however most of the entries of optimal
marginals µ∗ for the local polytope relaxation will be
integral. Unfortunately, there is no guarantee that any
of these integral variables will be part of a globally
optimal solution to (2.2), except in the case of binary
variables, that is Xu = {0, 1} ∀u ∈ V , and unary and
pairwise potentials [6]. Natural questions are: (i) Is
there a subset A ⊂ V and a minimizer µ0 of the
original NP-hard problem (2.2) such that µ0

v = µ∗v
∀v ∈ A? In other words, is µ∗ partially optimal or
persistent on some set A? (ii) Given a relaxed solution
µ∗ ∈ ΛV , how can we determine such a set A? We

Figure 1. An exemplary graph con-
taining inside nodes (yellow with
crosshatch pattern) and boundary
nodes (green with diagonal pat-
tern). The blue dashed line encloses
the set A. Boundary edges are those
crossed by the dashed line.

provide a novel approach to tackle these problems in
what follows.

3 PERSISTENCY
Assume we have marginals µ ∈ ΛV . We say that the
marginal µu, u ∈ V , is integral if µu(xu) ∈ {0, 1} ∀xu ∈
Xu. In this case the marginal corresponds uniquely to
a label xu with µu(xu) = 1. If this integrality condition
holds for all u ∈ V the corresponding vector µ will be
denoted as δ(x). The convex hull of marginals corre-
sponding to all labelings known as marginal polytope
will be denoted as MV := conv(δ(XV)). The non-
relaxed energy minimization (2.1) can be equivalently
written as minµ∈MV EV(µ).

Let the boundary nodes and edges of a subset of
nodes A ⊂ V be defined as follows:

Definition 1 (Boundary and Interior). For the set
A ⊂ V the set ∂VA := {u ∈ A : ∃v ∈ V\A s.t. uv ∈ E}
is called its boundary. The respective set of boundary
edges is defined as ∂EA = {uv ∈ E : u ∈ A and v ∈
V\A}. The set A\∂VA is called the interior of A.

An exemplary graph illustrating the concept of
interior and boundary nodes can be seen in Figure 1.

Definition 2 (Persistency). A labeling x0 ∈ XA on a
subset A ⊂ V is partially optimal or persistent if x0

coincides with an optimal solution to (2.1) on A.

In the remainder of this section, we state our novel
persistency criterion in Theorem 1. Taking addition-
ally into account convex relaxation yields a computa-
tionally tractable approach in Corollary 1.
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As a starting point, consider the following sufficient
criterion for persistency of x0 ∈ XA. Introducing a
concatenation of labelings x0 ∈ XA and x̃ ∈ XV\A as

(x0, x̃) :=

{
x0
v, v ∈ A,
x̃v, v ∈ V\A , the criterion reads:

Proposition 1. The partial labeling x0 ∈ XA is persistent
if there holds

∀x̃ ∈ XV\A : x0 ∈ argmin
x∈XA

EV((x, x̃)) . (3.1)

Proof: Consider the equation

min
x∈XV

E(x) = min
x̃∈XV\A

min
x∈XA

EV((x, x̃)) . (3.2)

Let x̃ ∈ XV\A be such that it leads to a minimal value
on the right hand side of (3.2). Then x̃ is part of an
optimal solution. By the assumption (3.1), x0 is an
optimal solution to the inner minimization problem
of (3.2), hence (x0, x̃) is optimal for (2.1).

This means that if we fix any labeling x̃ on the
complement of A and optimize with respect to x0

on A, the concatenated labeling (x0, x̃) has to be
optimal. Informally this means that the solution x0 is
independent of what happens on V\A. This criterion
however is hard to check directly, as it entails solving
NP-hard minimization problems over an exponential
number of labelings x̃ ∈ XV\A.

We relax the above criterion (3.1) so that we have
to check the solution of only one energy minimization
problem by modifying the unaries θv on boundary
nodes so that they bound the influence of all labelings
on V\A uniformly.

Definition 3 (Boundary potentials and energies). For
a set A ⊂ V and a test labeling y ∈ XA, we define for
each boundary edge uv ∈ ∂EA, u ∈ ∂VA the “boundary”
potential θ̂uv,yu : Xu → R as follows:

θ̂uv,yu(xu) :=

{
maxxv∈Xv

θuv(xu, xv), yu = xu
minxv∈Xv

θuv(xu, xv), yu 6= xu
.

(3.3)
Define the energy ÊA,y : XA → R with test labeling y as

ÊA,y(x) := EA(x) +
∑

uv∈∂EA : u∈∂VA

θ̂uv,yu(xu) , (3.4)

where EA(x) =
∑
u∈A

θu(xu) +
∑

uv∈E:u,v∈A
θuv(xuv) is the

energy with potentials with support in A.

Given a test labeling y ∈ XA, energy (3.4) assigns a
higher value than the original energy (2.1) for all la-
belings conforming to y and makes it more favourable
for all labelings to not conform to y. An illustration
of a boundary potential is depicted by Figure 2.

As a consequence, if the test labeling y from Defi-
nition 1 minimizes the energy (3.4), the proof of the
following theorem asserts that changing an arbitrary

labeling x ∈ XV as follows: x′(v) =

{
y(v), v ∈ A
x(v), v /∈ A

θ

θ(3, 1) θ(3, 2) θ(3, 3)

θ(2, 1) θ(2, 2) θ(2, 3)

θ(3, 1) θ(3, 2) θ(3, 3)

θ̂y

min
i=1,2,3

θ(3, i)

max
i=1,2,3

θ(2, i)

min
i=1,2,3

θ(1, i)

y = 2

Fig. 2. Illustration of a boundary potential θ̂y con-
structed in (3.3). The second label comes from the
test labeling y, therefore entries are maximized for the
second row and minimized otherwise.

will always result in a labeling with not bigger en-
ergy (2.1), hence y in particular fulfills the condi-
tions (3.1) of Proposition 1 and thus is persistent.

Theorem 1 (Partial optimality criterion). A labeling
x0 ∈ XA on a subset A ⊆ V is persistent if

x0 ∈ argminx∈XA
ÊA,x0(x) , (3.5)

where ÊA,x0 is the augmented energy functional (3.4).

To prove the theorem we need the following tech-
nical lemma.

Lemma 1. Let A ⊂ V be given together with y ∈ XA. Let
x0 and x′ be two labelings on V such that x0|A = y. Then
it holds for uv ∈ ∂EA, u ∈ ∂VA that

θuv(x
0
u, x
′
v) + θ̂uv,y(x′u)− θ̂uv,y(x0

u) ≤ θuv(x′u, x′v) . (3.6)

Proof: The case x′u = x0
u is trivial. Otherwise, by

Definition 3, inequality (3.6) is equivalent to

θuv(x
0
u, x
′
v) + min

xv∈Xv

θuv(x
′
u, xv)

− max
xv∈Xv

θuv(x
0
u, xv)− θuv(x′u, x′v) ≤ 0 . (3.7)

Choose x′v for xv in the minimization and maximiza-
tion in (3.7) to obtain the result.

Proof of Theorem 1: Let

x̃ ∈ arg min
x∈XV

x|A=x0|A

EV(x) . (3.8)

and let x′ ∈ XV be an arbitrary labeling. Then

EV(x̃) = EA(x0) + EV\A(x̃) +
∑

uv∈∂EA

θuv(x
0
u, x̃v) (3.9)

=EA(x0) +
∑

uv∈∂EA

θ̂uv,y(x0
u)

+ EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x

0
u, x̃v)− θ̂uv,y(x0

u)
]

=ÊA,x0(x0) + EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x

0, x̃v)− θ̂uv,x0(x0
u)
]

≤ÊA,x0(x′) + EV\A(x′) +
∑

uv∈∂EA

[
θuv(x

0, x′v)− θ̂uv,x0(x0
u)
]

(3.10)
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=EA(x′) +
∑

uv∈∂EA

θ̂uv,x0(x′u)

+ EV\A(x′) +
∑

uv∈∂EA

[
θuv(x

0
u, x
′
v)− θ̂uv,x0(x0

u)
]

≤EA(x′)+EV\A(x′)+
∑

uv∈∂EA

θuv(x
′
u, x
′
v) = EV(x′). (3.11)

The equality (3.9) is due to definition of x̃ in (3.7). The
first inequality (3.10) is due to x0 ∈ argminx ÊA,x0(x),
as assumed, and of x̃ for (3.8). The second inequal-
ity (3.11) is due to Lemma 1. Hence x0 is part of a
globally optimal solution, as x′ was arbitrary.

Checking the criterion in Theorem 1 is NP-hard,
because (3.5) is a MAP-inference problem of the
same class as (2.1). By relaxing the minimization
problem (3.5) one obtains the polynomially verifiable
persistency criterion in Corollary 1.

Corollary 1 (Tractable partial optimality criterion).
Labeling x0 ∈ XA on A ⊂ V fulfilling the condition

δ(x0) ∈ argminµ∈ΛA
ÊA,x0(µ) (3.12)

is also a solution to (3.5), hence persistent on A.

Proof: Expression (3.12) implies

δ(x0) ∈ argminµ∈ΛA,µ∈{0,1} ÊA,x0(µ) (3.13)

because δ(x0) is integral by definition. As (2.1)
and (2.2) are equivalent and the corresponding la-
beling x0 satisfies the conditions of Theorem 1, x0 is
partially optimal on A.

4 PERSISTENCY ALGORITHM

Now we concentrate on finding a set A and labeling
x ∈ XA such that the solution of minµ∈ΛA

ÊA,x(µ)
fulfills the conditions of Corollary 1. Our approach
is summarized in Algorithm 1.

In the initialization step of Algorithm 1 we solve the
relaxed problem over V without boundary labeling
and initialize the set A0 with nodes having an integer
label. Then in each iteration t we minimize over
the local polytope the energy ÊAt,xt defined in (3.4),
corresponding to the set At and boundary labeling
coming from the solution of the last iteration. We
remove from At all variables which are not integral
or do not conform to the boundary labeling. In each
iteration t of Algorithm 1 we shrink the set At by
removing variables taking non-integral values or not
conforming to the current boundary condition.
Convergence. Since V is finite and |At| is monotoni-
cally decreasing, the algorithm converges in at most
|V| steps. Solving each subproblem in Algorithm 1
can be done in polynomial time. As the number of
iterations of Algorithm 1 is at most |V|, Algorithm 1
itself is polynomial as well. In practice only few
iterations are needed.

After termination of Algorithm 1, we have

δ(x∗) ∈ argminµ∈ΛA∗
ÊA∗,x∗(µ) . (4.1)

Algorithm 1: Finding persistent variables.
Data: G = (V, E), θu : Xu → R, θuv : Xuv → R
Result: A∗ ⊂ V , x∗ ∈ XA∗

Initialize:
Choose µ0 ∈ argminµ∈ΛV EV(µ)

A0 = {u ∈ V : µ0
u ∈ {0, 1}|Xu|}

t = 0
repeat

Set xtu such that µtu(xtu) = 1, u ∈ At
Choose µt+1 ∈ argminµ∈ΛAt

ÊAt,xt(µ)
t = t+ 1
W t = {u ∈ ∂VAt−1 : µtu(xt−1

u ) 6= 1}
At = {u ∈ At−1 : µtu ∈ {0, 1}|Xu|}\W t

until At = At−1;
A∗ = At

Set x∗ ∈ XA∗ such that µtu(x∗u) = 1

Hence x∗ and A∗ fulfill the conditions of Corollary 1,
which proves persistency.

Choice of Solver. All our results are independent of
the specific algorithm one uses to solve the relaxed
problems minµ∈ΛA

ÊA,y , provided it returns an exact
solution. However this can be an issue for large-scale
datasets, where classical exact LP solvers like e.g. the
simplex method become inapplicable. It is important
that one can also employ approximate solvers, as soon
as they provide (i) a proposal for potentially persistent
nodes and (ii) sufficient conditions for optimality of
the found integral solutions such as e.g. zero duality
gap. These properties have the following precise for-
mulation.

Definition 4 (Consistent labeling). A labeling c ∈⊗
v∈V (Xv ∪ {#}) is called a consistent labeling for

the energy minimization problem (2.1), if from cv ∈ Xv

∀v ∈ V follows that c ∈ argminx∈XV EV(x).
We will call an algorithm for solving the energy min-

imization problem (2.1) consistency ascertaining, if it
provides a consistent labeling as its output.

Consistent labelings can be constructed for a wide
range of algorithms, e.g.:

• Dual decomposition based algorithms [14], [18],
[19], [24], [26] deliver strong tree agreement [39]
and algorithms considering the Lagrangian
dual [5], [7], [28] return strong arc consistency [41]
for some nodes. If one of these properties holds
for a node v, we set cv as the corresponding label.
Otherwise we set cv = #.

• Naturally, any algorithm solving minµ∈ΛV E(µ)
exactly is consistency ascertaining with

cv =

{
xv, µv(xv) = 1
#, µv /∈ {0, 1}|Xv| .

Proposition 2. Let operations µ ∈ argmin(...) in Algo-
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nodes At,
nodes V\At.

Boundary costs are
assigned to boundary
nodes on ∂VAt .

Having solved the infer-
ence problem:

nodes are fractional,
nodes disagree with

previous labeling,
nodes agree.

Variables are pruned. A
new set At+1 is con-
structed.

Fig. 3. Illustration of one iteration of Algorithm 1.

rithm 1 be exchanged with

∀v ∈ V, xv ∈ Xv, µv(xv) :=

 1, cv = xv
0, cv /∈ {xv,#},

1/|Xv|, cv = #

where c are consistent labelings returned by a consis-
tency ascertaining algorithm applied to the corresponding
minimization problems. Then the output labeling x∗ is
persistent.

Proof: At termination of Algorithm 1 we have
obtained a subset of nodes A∗, a test labeling y∗ ∈ XA,
a labeling x∗ equal to y∗ on A and a consistency
mapping cu = x∗u for u ∈ A∗. Hence, by Definition 4,
x∗ ∈ argminx∈XA

ÊA∗,y∗ and x∗ fulfills the conditions
of Theorem 1.
Remark 1. Note that a bad or early stopped solver, i.e.
one which rarely (or even never) returns an optimality
certificate or solves a weak relaxation, will also work
with Algorithm 1. However it will find smaller (or
even empty) partial optimal solutions.
Comparison to the Shrinking Technique (Com-
biLP) [25]. The recently published approach [25], simi-
lar to Algorithm 1, describes how to shrink the combi-
natorial search area with the local polytope relaxation.
However (i) Algorithm 1 solves a series of auxiliary
problems on the subsets At of integer labels, whereas
the method [25] considers nodes, which got fractional
labels in the relaxed solution; (ii) Algorithm 1 is poly-
nomial and provides only persistent labels, whereas
the method [25] has exponential complexity and either
finds an optimal solution or gives no information
about persistence.

From the practical point of view, both algorithms
have different application scenarios: CombiLP [25]
will only work on sparse graphs, as otherwise the
combinatorial part, which one has to solve with exact
methods, becomes too big, as the boundary ∂VA for
A ( V grows very quickly then. Also, even for
sparse graphs, the combinatorial part may not grow
too big during the application of the algorithm, as

otherwise the combinatorial solver will again not be
able to cope with it. Our algorithm does not possess
these two disadvantages. From the perspective of
running time it does not matter how big the set
V\At becomes during the iterations of Algorithm 1.
On the other hand, the subsets of variables to which
the method [25] applies a combinatorial solver to
achieve global optimality are often smaller than V\At
in Algorithm 1, because potentials in CombiLP [25] re-
main unchanged in contrast to the perturbation (3.4).
Another advantage of the method [25] is that it needs
to solve the (typically) big LP relaxation of the original
problem only once, whereas our method does this
iteratively, which makes it often slower then CombiLP.

One other possible application scenario which is
possible with our method but not with CombiLP [25]
is the following: Assume we want to solve an ex-
tremely big inference problem, one that does not
fit even into memory. To do this, choose a subset
A ( V of nodes of the graphical model, solve the
inference problem on the induced subgraph G(A)
with some boundary conditions, and find a partially
optimal labeling on it. This is akin to the windowing
technique of [30]. By doing so for an overlapping set
of subgraphs, one may try to find a labeling for the
overall problem on G.

The major differences between CombiLP [25] and
our method are summarised in Table 2.

5 LARGEST PERSISTENT LABELING

Let A0 ⊆ V and µ0 ∈ ΛA0 be defined as in Algo-
rithm 1. Subsets A ⊂ A0 which fulfill the conditions of
Corollary 1 taken with labelings µ0|A can be partially
ordered with respect to inclusion ⊂ of their domains.
In this section we will show that the following holds:
• There is a largest set among those, for which

there exists a unique persistent labeling fufilling
the conditions of Corollary 1.

• Algorithm 1 finds this largest set.
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C
om

bi
LP

[2
5]

O
ur

m
et

ho
d

Dense graphs − +
Very large-scale − +
Big fractional part of LP solution − +
Relaxed MAP-inference is
solved only once + −

Provides a complete solution to
Labeling Problem (2.1) + −

TABLE 2
Comparison between our method and CombiLP [25].

This will imply that Algorithm 1 cannot be improved
upon with regard to the criterion in Corollary 1.

Definition 5 (Strong Persistency). A labeling x∗ ∈ XA

is called strongly persistent on A, if x∗ is the unique
labeling on A fulfilling the conditions of Theorem 1.

Lemma 2. Let x∗ ∈ XA be strongly persistent. Then for
any optimal solution x of (2.1) we have x∗ = x|A.

Proof: This follows from Inequality (3.10) being
strict in this case.

Theorem 2 (Largest persistent labeling). Algorithm 1
finds a superset A∗ of the largest set A∗strong ⊆ A∗ ⊂ V
of strongly persistent variables identifiable by the criterion
in Corollary 1.

To prove the theorem we need the following tech-
nical lemma.

Lemma 3. Let A ⊂ B ⊂ V be two subsets of V and
µA ∈ ΛA marginals on A and xA ∈ XA a labeling
fulfilling the conditions of Corollary 1 uniquely (i.e. xA

is strongly persistent). Let yB ∈ XB be a test labeling
such that yB |A = xA.

Then for all marginals µ∗ ∈ argminµ∈ΛB
ÊB,yB (µ) on

B it holds that µ∗v(xAv ) = 1 ∀v ∈ A.

Proof: Similar to the proof of Theorem 1. Replace
V by B.

Proof of Theorem 2: We will use the notation
from Algorithm 1. It will be enough to show that
for every A ⊆ V such that there exists a strongly
persistent labeling x ∈ XA we have A ⊆ At in each
iteration of Algorithm 1 and furthermore xv = xtv for
all v ∈ VA. Hence the union of sets A′strong, for which
a strongly persistent labeling exists which fulfills the
conditions of Corollary 1, is a subset of At ∀t. Also by
Lemma 2 the associated strongly persistent labelings
agree where they overlap, hence we are done.

For t = 0 apply Lemma 3 with A := A and B :=
A0(= V). Condition x = yB |A in Lemma 3 is assured

by Corollary 1. Hence, Lemma 3 ensures that for all
µ0 ∈ argminµ∈ΛV E(µ) it holds that µ0

v(xv) = 1 for all
v ∈ A.

Now assume the claim to hold for iteration t − 1.
We need to show that it also holds for t. For this
invoke Lemma 3 with A := A, B := At−1 and
yB := xt−1. The conditions of Lemma 3 hold by
assumption on t − 1. Lemma 3 now ensures that
for all µt ∈ argminµ∈ΛAt−1

ÊAt−1,xt−1(µ) there holds
µt(xAv ) = 1 ∀v ∈ A.

From the proof of Theorem 2 we can directly
conclude the existence and uniqueness of a largest
strongly persistent labeling identifiable by Corollary 1
and a set supporting it.

Corollary 2. There exists a unique largest set A∗strong, for
which there exists a strongly persistent labeling identifiable
by Corollary 1.

Also exactly the largest strongly persistent labeling
identifiable by Corollary 1 can be found under a mild
uniqueness assumption.

Corollary 3. If there is a unique solution of
minµ∈ΛAt ÊAt,xt(µ) for all t = 0, . . . obtained during
the iterations of Algorithm 1, then Algorithm 1 finds the
largest subset of persistent variables identifiable by the
sufficient partial optimality criterion in Corollary 1.

Remark 2. Above we showed that Algorithm 1 will
find a persistent labeling which contains the largest
strongly persistent one identifiably by Corollary 1.
The two may differ when the optimization problems
solved in the course of Algorithm 1 have multiple
optima. The simplest example of such a situation
occurs if the relaxation minµ∈ΛV EV(µ) is tight, but
has several integer solutions. Any convex combina-
tion of these solutions will form a non-integral so-
lution, hence the strongly persistent labeling is de-
fined on a smaller set than any integral solution of
minµ∈ΛV EV(µ), which is non strongly persistent. Note
however that a labeling obtained by Algorithm 1, also
when it is not strongly persistent, comes from one
globally optimal labeling, i.e. it can be completed to a
globally optimal labeling by solving for the remaining
variables.

6 REPARAMETRIZATION AND OPTIMALITY
OF THE METHOD

It is well-known [27] (see also [41]) that representa-
tion (2.1) of the energy function is not unique. There
are other potentials, which keep the energy of all
labelings unchanged. Any such potentials θϕ can be
represented as

θϕv (xv) := θv(xv)−
∑

u∈nb(v)

ϕv,u(xv) , (6.1)

θϕuv(xu, xv) := θuv(xu, xv) + ϕv,u(xv) + ϕu,v(xu) (6.2)
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with some numbers ϕu,v(xu), uv ∈ E , xu ∈ Xu, where
nb(v) := {u ∈ V : uv ∈ E} denotes the set of nodes
adjacent to v ∈ V . The vector ϕ with coordinates
ϕu,v(xu) is called reparametrization.

6.1 Optimal Reparametrization
The boundary potentials (3.3) and hence the persis-
tency approach described above are dependent on
reparametrization. The natural question is existence of
an optimal reparametrization, that is, the one providing
the largest persistent set.

The only coordinates of the reparametrization vec-
tor ϕ, which can potentially influence the solution of
the test problem (3.5) are ϕv,u(xv), u ∈ ∂VA, uv ∈ ∂EA.
Reparametrization ϕv,u(xv), v ∈ A ”inside” A does not
influence the solution, because it does not change the
augmented energy ÊA,· of any labeling. Similarly, the
reparametrization ϕu,v(xu), u, v /∈ A ”outside” A does
not influence it, because the optimization is performed
over A only.

Considering the reparametrized potentials θϕ and
subtracting maxxv∈Xv

θuv(yu, xv) in (3.3) the boundary
potentials θ̂ϕuv,yu(xu) can be equivalently exchanged
with{

0, yu = xu
min
xv∈Xv

θϕuv(xu, xv)− max
xv∈Xv

θϕuv(yu, xv), yu 6= xu .

(6.3)
It means that the labelings x not coinciding with y on
∂VA will be ”encouraged” with (typically negative)
value ∆ϕ

uv(xu) := min
xv∈Xv

θϕuv(xu, xv)− max
xv∈Xv

θϕuv(yu, xv).

Intuitively clear that the bigger ∆ϕ
uv(xu) is, the better

the proposal labeling y|A comparing to x|A 6= y|A
is and hence the greater the found persistent set A∗

returned by Algorithm 1 would be. We will prove
correctness of this intuition formally, but first let
us find the maximal possible value of ∆ϕ

uv(xu) w.r.t.
the reparametrization ϕ, where we consider as non-
zero only coordinates ϕv,u(xv), u ∈ ∂VA, uv ∈ ∂EA,
xv ∈ Xv .

Clearly

∆ϕ
uv(xu) ≤ min

xv∈Xv

(θϕuv(xu, xv)− θϕuv(yu, xv))

= min
xv∈Xv

(θuv(xu, xv)+ϕv,u(xv)−θuv(yu, xv)−ϕv,u(xv))

= min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) , (6.4)

hence, the right-hand-side of this inequality does not
depend on the reparametrization, whereas the left-
hand-side does. There is indeed such a reparametriza-
tion that turns the inequality (6.4) into equality and
in this way guarantees the largest possible values of
∆ϕ
uv(xu) for all xu. This, as we show below, optimal

reparametrization is defined as

ϕu,v(xv) = −θuv(yu, xv) , (6.5)

which can be seen when plugging (6.5) into (6.3).

Moreover, since as we mentioned above the
reparametrization ”outside” an ”inside” At does not
influence the criterion (3.3), we can construct a sin-
gle, equal for all iterations of Algortihm 1 optimal
reparametrization ψ according to the rule (6.5) as

ψu,v(xv) = −θuv(yu, xv), u ∈ V, uv ∈ E , (6.6)

where y is arbitrarily extended from A0 to V . Now we
are ready to formulate our main result related to the
reparametrization.

Let us denote ÊϕA,y the energy with boundary label-
ing defined as in Definition 3 w.r.t. the potentials θϕ.
Then for the reparametrization ψ defined as in (6.6)
there holds

Lemma 4. From

δ(y) ∈ arg min
µ∈ΛA

ÊA,y(µ) (6.7)

follows δ(y) ∈ arg minµ∈ΛA
ÊψA,y(µ), which means: if

y satisfies the persistency criterion of Corollary 1 w.r.t.
potentials θ then it satisfies it w.r.t. the reparametrized
potentials θψ .

Proof: From (6.4) and (6.7) it follows that for all
uv ∈ EA, xu ∈ Xu there holds θ̂ψuv,y(xu) − θ̂ψuv,y(yu) ≥
θ̂uv,y(xu)− θ̂uv,y(yu) and hence

ÊψA,y(µ) − ÊψA,y(y)
(6.4)
≥ ÊA,y(µ) − ÊA,y(y) ≥ 0 (6.8)

for all µ ∈ ΛA. Thus ÊψA,y(y) ≤ ÊψA,y(µ), which proves
the statement of the lemma.

Remark 3. Lemma 4 holds for any polytope containing
all integer solutions, i.e. ΛA ⊇MA and hence it holds
also when ΛA = MA. In this case it corresponds
to the non-relaxed persistency criterion provided by
Theorem 1.

Let now Aϕ,∗y be the largest set containing all
strongly persistent variables satisfying Corollary 1
w.r.t. the reparametrized potentials θϕ and test label-
ing y ∈ XV . Let also A∗y correspond to the trivial
reparametrization ϕ ≡ 0.

Applying Lemma 4 to the set A∗y leads to the
following

Theorem 3. For any test labeling y ∈ XV there holds
A∗y ⊆ Aψ,∗y .

Proof: Same proof as in Lemma 4 applied to A∗y .

Remark 4. For Potts models, where θuv(xu, xv) ={
0, xu = xv
α, xu 6= xv

, the inequality (6.4) holds as equal-

ity also for trivial reparametrization ϕv,u(xv) = 0
∀u, v ∈ V , uv ∈ E , xv ∈ Xv . For such models
Algorithm 1 with trivial reparametrization delivers
the same persistent set as with the optimal one (6.6).
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6.2 Optimality of the Method

Theorem 2 proves optimality of Algorithm 1 w.r.t. the
formulated persistency criterion provided by Theo-
rem 1. However it does not prove optimality of the
method with respect to other possible criteria and
hence does not guarantee its superiority over other
partial optimality techniques. There is however a re-
cent study [29], which provides such an optimal relaxed
persistency criterion covering all existing methods. In
what follows we will introduce key notions from [29]
and show that our persistency criterion coincides with
the optimal one provided in [29] for a certain class
of persistency methods, those providing only node-
persistency, i.e. either eliminating all labels except one
in a given node or not eliminating any.

In this section we will employ the commonly used
representation of energy EV(µ) in a form of an in-
ner product 〈θ, µ〉, where vectors of potentials θ and
marginals µ belong to the vector space RI with the
suitably selected dimension I =

∑
v∈V
|Xv|+

∑
uv∈E

|Xuv|.

Definition 6. A mapping p : XV → XV is called
(strictly) improving for the potentials θ if it is idempotent
(p(p(x)) = p(x)) and for all x ∈ XV such that p(x) 6= x
there holds 〈θ, δ(p(x))〉 ≤ 〈θ, δ(x)〉 (resp. 〈θ, δ(p(x))〉 <
〈θ, δ(x)〉).

Following [29] we consider only node-wise maps of
the form p(x)v = pv(xv), where pv : Xv → Xv are
idempotent, i.e. pv(pv(xv)) = pv(xv) for all xv ∈ Xv .
This class is already general enough to include nearly
all existing techniques.

Improving mappings defines persistency due to the
following proposition:

Proposition 3 (Stat.1 [29]). Let p be an improving
mapping. Then there exists an optimal solution x of (2.1)
such that for all v ∈ V from pv(i) 6= i follows xv 6= i.
In case p is strictly improving this holds for any optimal
solution.

For an idempotent mapping p a linear mapping
P : RI → RI satisfying δ(p(x)) = Pδ(x) for all
x ∈ XV is called its linear extension. A particular
linear extension denoted as [p] is defined as follows.
For each pv we define the matrix Pv ∈ RXv×Xv

by Pv,ii′ =

{
1, pv(i

′) = i
0, pv(i

′) 6= i
. The linear extension

P = [p] is given by

(Pµ)v =
∑

i′∈Xv

Pv,ii′µv(i
′) = Pvµv; (6.9)

(Pµ)uv = PuµuvP
>
v .

Denote by I the identity matrix. From Definition 6
follows that p is improving iff the value of

min
x∈XV

〈θ, (I − [p])δ(x)〉 ≡ min
x∈XV

〈
(I − [p])>θ, δ(x)

〉
≡ min
µ∈MV

〈
(I − [p])>θ, µ

〉
(6.10)

is zero. If additionally p(x) = x for all minimizers
of (6.10) then the mapping p is strictly improving.

Problem (6.10) is of the same form as energy min-
imization (2.1) and is therefore as hard as Prob-
lem (6.10). Its relaxation is obtained by letting µ
to vary in the local polytope ΛV ⊂ RI , an outer
approximation to MV .

Definition 7. Mapping p : XV → XV is ΛV -improving
for potentials θ ∈ RI if

min
µ∈ΛV

〈
(I − [p])>θ, µ

〉
= 0 . (6.11)

If additionally [p]µ = µ for all minimizers µ of (6.11) then
p is strictly ΛV -improving.

Compared to (6.10), only the polytope was changed
to ΛV ⊃MV . This implies the following simple fact:

Proposition 4. If mapping p is (strictly) ΛV -improving
then it is (strictly) improving.

The method presented in this work can be inter-
preted as considering all-to-one node-wise mappings p
having the form

pv(i) =

{
yv, if v ∈ A
i, if v /∈ A (6.12)

for a fixed test labeling y. All labels in the nodes
v ∈ A ⊂ V are mapped to yv . Among all all-to-one
(strictly) ΛV -improving mappings the one with the
largest set A will be called maximal.

Corollary 1 determines ΛV -improving mappings, as
stated by

Lemma 5. The relaxed persistency criterion provided by
Corollary 1 with the reparametrization given by (6.6) is
equivalent to Definition 7 with the improving mapping p
defined as in (6.12) for a given test labeling y.

Proof: For future references we write down poten-
tials θψ with ψ defined by (6.6) explicitly:

θψu (xu) = θu(xu) +
∑

v∈nb(u)

θuv(xu, yv) , (6.13)

θψuv(xu, xv) = θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv) .

In what follows we will show that the criteria (3.12)
and (6.11) coincide. Both of them represent the local
polytope relaxation of specially constructed energy
minimization problems. To prove that the relaxations
coinside it is sufficient to prove that the non-relaxed
energies are equal.

First we write down the non-relaxed test prob-
lem (3.5) with potentials θψ as

arg min
x∈XV

∑
v∈V

βv(xv)+
∑
uv∈E

βuv(xu, xv)+
∑

uv∈∂EA : u∈∂VA

θ̂ψuv,yu(xu)

(6.14)
with potentials β equal to θψ on A and vanishing
outside it, i.e.
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βu(xu) =

{
θu(xu) +

∑
v∈nb(u)

θuv(xu, yv), u ∈ A

0, u ∈ V\A
(6.15)

βuv(xu, xv) ={
θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv), u, v ∈ A

0, otherwise .
(6.16)

Border potentials θ̂ψ for uv ∈ E , u ∈ VA, v ∈ V\A
and xu 6= yu read:

θ̂ψuv,yu(xu) = min
xv∈Xv

θψuv(xu, xv) =

= min
xv∈Xv

(θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv))

= −θuv(xu, yv) + min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) ;

(6.17)

for xu = yu:

θ̂ψuv,yu(yu) = max
xv∈Xv

θψuv(yu, xv) =

= max
xv∈Xv

(θuv(yu, xv)− θuv(yu, yv)− θuv(yu, xv))

= −θuv(yu, yv) . (6.18)

Note that (6.17) turns into (6.18) when xu = yu, hence
it is sufficient to use only expression (6.17).

The non-relaxed version of condition (6.11) defining
ΛV -improving all-to-one mapping, with the labeling
proposal y can be formulated as checking whether

y ∈ arg min
x∈XV

∑
v∈V

γv(xv)+
∑
uv∈E

γuv(xu, xv)+
∑
u∈∂EA

γ̂uv,yu(xu)

(6.19)
with potentials γ defined as:

γu(xu) =

{
θu(xu)− θu(yu), u ∈ A

0, u ∈ V\A (6.20)

γuv(xu, xv) ={
θuv(xu, xv)− θuv(yu, yv), u, v ∈ A

0, otherwise . (6.21)

and the border term

γ̂uv,yu(xu) = min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) . (6.22)

Comparing (6.20), (6.21) and (6.22) to (6.15), (6.16)
and (6.17) respectively it can be seen that they can
be transformed to each other by several operations,
which equally change energies of all labelings and thus
do not influence the criterions provided by Theorem 1
and [29, eq.(14)]. These operations are:

1) Subtract θu(yu) from βu(xu) for all u ∈ VA, xu ∈
Xu.

2) Subtract θuv(yu, yv) from βuv(xu, xv) for all uv ∈
EA, (xu, xv) ∈ Xu ×Xv .

3) Reparametrize β with the reparametrization vec-
tor φ defined as

φu,v(xu) =

{
−θuv(xu, yv), u ∈ A

0, u ∈ V\A . (6.23)

The following theorem states that our method prov-
ably delivers the best results among the methods
providing node-persistency:

Theorem 4. Under conditions of Corollary 3, Algorithm 1
with the reparametrizations given by (6.6) finds the max-
imal strict ΛV -improving all-to-one mapping for a given
proposal labeling x0.

Proof: Under condition of Corollary 3 (i.e. when
on each iteration there is a unique solution µt)
Lemma 5 guarantees equivalence of our criterion
(Corollary 1 with reparametrization ψ) to Definition 7
for the strict ΛV -improving all-to-one mapping. The-
orem 2 states that Algorithm 1 delivers the largest set
A∗ satisfying this criterion, which in turn proves the
theorem.

7 EXTENSIONS

Higher Order Models. Assume now we are not in
the pairwise case anymore but have an energy mini-
mization problem over a hypergraph G = (V, E) with
E ⊂ P(V) a set of subsets of V :

min
x∈XV

EV(x) :=
∑
e∈E

θe(xe) . (7.1)

All definitions, our persistency criterion and Algo-
rithm 1 admit a straightforward generalization. Ana-
loguously to Definition 1 define for a subset of nodes
A ⊂ V the boundary nodes as

∂VA := {u ∈ A : ∃v ∈ V\A,∃e ∈ E s.t. u, v ∈ e} (7.2)

and the boundary edges as

∂EA := {e ∈ E : ∃u ∈ A,∃v ∈ V\A s.t. u, v ∈ e} . (7.3)

The equivalent of boundary potential in Definition 3
for e ∈ ∂EA is

θ̂e,y(x) :=


max

x̃∈Xe : x̃|A∩e=x|A∩e
θe(x̃), x|A∩e = y|A∩e

min
x̃∈Xe : x̃|A∩e=x|A∩e

θe(x̃), x|A∩e 6= y|A∩e
.

(7.4)
Now Theorem 1, Corollary 1 and Algorithm 1 can be
directly translated to the higher order case.
Tighter Relaxations. Essentially, Algorithm 1 can be
applied also to tighter relaxations than ΛA, e.g. when
one includes cycle inequalities [32]. One merely has to
replace the local polytope ΛA for A ⊂ V by the tighter
feasible convex set:

Proposition 5. Let the polytopes Λ̃A ⊇ MA satisfy
Λ̃A ⊆ ΛA ∀A ⊆ V . Use Λ̃At in place of ΛAt in Algorithm 1
and let Ã∗ be the corresponding persistent set returned
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by the modified algorithm. Let A∗strong ⊆ A∗ be the
largest subset of strongly persistent variables identifiable
by Corollary 1 subject to the relaxations Λ̃A and ΛA. Then
A∗strong ⊆ Ã∗strong.

Remark 5. For approximate dual solvers for tighter
relaxations like [33], [34] there are analogues of
strict arc-consistency, hence these are also consistency-
ascertaining solvers as in Definition 4 and we can also
use these algorithms in Algorithm 1 with the obvious
modifications.

Optimal reparametrization for tighter relaxations
and higher order models is beyond the scope of this
paper.

8 EXPERIMENTS

We tested our approach with initial and optimal
reparametrizations (described in Section 6) on several
datasets from different computer vision and machine
learning benchmarks, 47 problem instances overall,
see Table 3. We describe each dataset and the corre-
sponding experiments in detail below.
Competing methods. We compared our method to
MQPBO [17], [31], Kovtun’s method [20], Gener-
alized Roof Duality (GRD) by Kahl and Strand-
mark [12], Fix et al’s [4] and Ishikawa’s Higer Order
Clique Reduction (HOCR) [10] algorithms. For the
first two methods we used our own implementation,
and for the other the freely available code of Strand-
mark [35]. We were unable to compare to the method
of Windheuser et al. [42], because the authors do not
give a description for implementing their method in
the higher order case and only provide experimen-
tal evaluation for problems with pairwise potentials,
where their method coincides with MQPBO [17].
Implementation details. We employed TRWS as an
approximate solver for Algorithm 1 and strong tree
agreement as a consistency mapping (see Propo-
sition 2) for most of the pairwise problems. We
stop TRWS once it has either arrived at (i) tree-
agreement; (ii) a small duality gap of 10−5; (iii)
when number of nodes with tree agreement did
not increase over the last 100 iterations or (iv)
overall 1500 iterations. For the higher-order mod-
els protein-interaction, cell-tracking and
geo-surf we employed CPLEX [9] as an exact lin-
ear programming solver. We have run Algorithm 1
with boundary potentials computed as in (3.3) for
all problems and with boundary potentials computed
with the optimal reparametrization as in (6.3) for the
pairwise problems.
Datasets and Evaluation. We give a brief charac-
terization of all datasets and report the obtained
total percentage of persistent variables of our and
competing methods in Table 3. The percentage of
partial optimality is computed as follows: Suppose
we have found a persistent labeling on set A ⊂ V .

Then the percentage is 1−
∑

u 6∈A log |Xu|∑
u∈V log |Xu| . Note that by

this formulation we take into account the size of the
label space for each node. For an uniform label space
the above formula equals |A||V| . The latter measure was
used in [37].

Remark 6. Note that in comparison to our confer-
ence paper [37], persistency results for some datasets
with higher order potentials, which were solved with
CPLEX are lower now. This is due to two reasons:
First, we weight the size of the label space instead of
simply counting the number of variables which are
partially optimal. In models with nonuniform label
space our method tends to find partial optimality for
nodes with small label space, hence the new formula
gives a smaller percentage. Second, our original re-
search implementation contained subtle bugs which
resulted in a higher number of wrongly assigned
partially optimal nodes for these models. We apolo-
gize for reporting incorrect results in the experimental
section of [37].

The problem instances teddy, venus, family,
pano, Potts and geo-surf were made avail-
able by [13], while the datasets side-chain and
protein-interaction were made available by [1].

The problem instances teddy and venus come
from the disparity estimation for stereo vision [38].
None of the competing approaches was able to find
even a single persistent variable for these datasets,
presumably because of the large number of labels,
whereas we labeled over one third of them as per-
sistent in teddy, though none in venus.

Instances named pano and family come from
the photomontage dataset [38]. These problems have
more complicated pairwise potentials than the dis-
parity estimation problems, but less labels. For both
datasets we found significantly more persistent vari-
ables than MQPBO, in particular, we were able to label
more than a third of the variables in pano.

We also chose 12 relatively big energy minimization
problems with grid structure and Potts interaction
terms. The underlying application is a color segmen-
tation problem previously considered in [36]. Our
general approach reproduces results of [36] for the
specific Potts model.

We considered also side-chain prediction prob-
lems in protein folding [43]. The datasets consist of
pairwise graphical models with 32 − 1971 variables
and 2−483 labels. The problems with fewer variables
are densely connected and have very big label spaces,
while the larger ones are less densely connected and
have label space up to 81 variables.

The protein interaction models [11] aim to
find the subset of proteins, which interact with each
other. Roof-duality based methods, i.e. Fix et at, GRD,
HOCR [4], [10], [12] gave around a quarter of persis-
tent labels. This is the only dataset where our methods
gives worse results. Note that for higher-order models
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teddy 1 60 168749 2 0 † † † † 0.3820 0.3820
venus 1 20 166221 2 0 † † † † 0 0
family 1 5 425631 2 0.0432 † † † † 0.0044 0.0611
pano 1 7 514079 2 0.1247 † † † † 0.2755 0.3893
Potts 12 ≤12 ≤424720 2 0.1839 0.7475 † † † 0.9220 0.9220
side-chain 21 ≤483 ≤1971 2 0.0247 † † † † 0.1747 0.2558
protein
-interaction 8 2 ≤14440 3 † † 0.2603 0.2545 0.2545 0.0008 †
cell-tracking 1 2 41134 9 † † † 0.1771 † 0.2966 †
geo-surf † † † † † † † † † 0.0743 †

TABLE 3
Percentage of persistent variables obtained by methods [17], [20], [12], [4], [10] and our methods with boundary
potentials computed as in (3.4) (Ours original) and as in (6.3) (Ours optimal). Notation † means inapplicability of
the method. The columns #I,#L,#V,O denote the number of instances, labels, variables and the highest order of

potentials respectively.
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Fig. 4. Iterations needed by TRWS [18] in Algorithm 1 for three instances from the Potts dataset.

we do not provide an optimal reparametrization and
hence our method is not provably better then the
competitors. We consider this as a direction for future
work.

The cell tracking problem consists of a binary
higher order graphical model [16]. Given a se-
quence of microscopy images of a growing organ-
ism, the aim is to find the lineage tree of all cells.
For implementation reasons we were not able to
solve cell-tracking dataset with Ishikawa’s [10]
method. However Fix [4] reports that his method
outperforms Ishikawa’s method [10]. Other methods
are not applicable even theoretically.

Last, we took the higher order multi-label geomet-
ric surface labeling problems (denoted as geo-surf
in Table 3) from [8]. The only instance having an
integrality gap has 968 variables with 7 labels each
and has ternary terms. Note that MQPBO cannot
handle ternary terms, Fix et al’s [4] Ishikawa’s [10]
methods and the generalized roof duality method
by Strandmark and Kahl [12] cannot handle more

than 2 labels. Hence we report our results without
comparison.
Runtime. The runtime of our algorithm mainly de-
pends on the speed of the underlying solver for
the local polytope relaxation. Currently there seems
to be no general rule regarding the runtime of our
algorithm, neither in the number of Algorithm 1-
iterations nor in the number of TRWS [18]-iterations.
We show three iteration counts for instances of the
Potts dataset in Figure 4.

Exemplary pictures comparing the pixels optimally
labelled between Kovtuns’s method [20] and our
method for some Potts-models can be seen in Figure 8.

9 CONCLUSION AND OUTLOOK

We have presented a novel method for finding persis-
tent variables for undirected graphical models. Em-
pirically it outperforms all tested approaches with
respect to the number of persistent variables found
on every single dataset. Our method is general: it can
be applied to graphical models of arbitrary order and
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Kovtun’s method [20]

Our method

TABLE 4
Comparison between Kovtun’s method [20] and our method. The red area denotes pixels which could not be

labelled persistently. Contrary to ours the Kovtun’s method allows to eliminate separate labels, which is denoted
by different intensity of the red color: the more intensive is red, the less labels were eliminated.

type of potentials. Moreover, there is no fixed choice of
convex relaxation for the energy minimization prob-
lem and also approximate solvers for these relaxations
can be employed in our approach.

In the future we plan to significantly speed-up the
implementation of our method and consider finer
persistency criteria, as done in [29], where the subset-
to-one class of persistency conditions was introduced,
but no efficient algorithm for finding persistency in
this class was proposed.
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