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Abstract

We propose a general dual ascent framework for La-
grangean decomposition of combinatorial problems. Al-
though methods of this type have shown their efficiency for a
number of problems, so far there was no general algorithm
applicable to multiple problem types. In this work, we pro-
pose such a general algorithm. It depends on several param-
eters, which can be used to optimize its performance in each
particular setting. We demonstrate efficacy of our method on
graph matching and multicut problems, where it outperforms
state-of-the-art solvers including those based on subgradient
optimization and off-the-shelf linear programming solvers.

1. Introduction

Computer vision and machine learning give rise to a num-
ber of powerful computational models. It is typical that
inference in these models reduces to non-trivial combinato-
rial optimization problems. For some of the models, such
as conditional random fields (CRF), powerful specialized
solvers like [48, 49, 12, 52] were developed. In general, how-
ever, one has to resort to off-the-shelf integer linear program
(ILP) solvers like CPLEX [2] or Gurobi [36]. Although
these solvers have made a tremendous progress in the past
decade, the size of the problems they can tackle still remains
a limiting factor for many potential applications, as the run-
ning time scales super-linearly in the problem size. The goal
of this work is to partially fill this gap between practical
requirements and existing computational methods.

It is an old observation that many important optimization
ILPs can be efficiently decomposed into easily solvable com-
binatorial sub-problems [32]. The convex relaxation, which
consists of these sub-problems coupled by linear constraints
is known as Lagrangean or dual decomposition [31, 50]. Al-
though this technique can be efficiently used in various sce-
narios to find approximate solutions of combinatorial prob-
lems, it has a major drawback: In the most general setting
only slow (sub)gradient-based techniques [51, 57, 50, 42, 61]

can be used for optimization of the corresponding convex
relaxation.

In the area of conditional random fields, however, it
is well-known [41] that message passing or dual (block-
coordinate) ascent algorithms (like e.g. TRW-S [48]) signifi-
cantly outperform (sub)gradient-based methods. Similar ob-
servations were made much earlier in [59] for a constrained
shortest path problem.

Although dual ascent algorithms were proposed for a
number of combinatorial problems (see the related work
overview below), there is no general framework, which
would (i) give a generalized view on the properties of such
algorithms and more importantly (ii) provide tools to eas-
ily construct such algorithms for new problems. Our work
provides such a framework.

Related Work Dual ascent algorithms optimize a dual
problem and guarantee monotonous improvement (non-
deterioration) of the dual objective. The most famous exam-
ples in computer vision are block-coordinate ascent (known
also as message passing) algorithms like TRW-S [48] or
MPLP [28] for maximum a posteriori inference in condi-
tional random fields [41].

To the best of our knowledge the first dual ascent algo-
rithm addressing integer linear programs belongs to Bilde
and Krarup [11] (the corresponding technical report in Dan-
ish appeared 1967). In that work an uncapacitated facility
location problem was addressed. A similar problem (sim-
ple plant location) was addressed with an algorithm of the
same class in [30]. In 1980 Fisher and Hochbaum [22]
constructed a dual ascent-based algorithm for a problem of
database location in computer networks, which was used to
optimize the topology of Arpanet [1], predecessor of Internet.
The generalized linear assignment problem was addressed
by the same type of algorithms in [23]. The Authors con-
sidered a Lagrangean decomposition of this problem into
multiple knapsack problems, which were solved in each iter-
ation of the method. An improved version of this algorithm
was proposed in [34]. Efficient dual ascent based solvers
were also proposed for the min-cost flow in [25], for the set
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covering and the set partitioning problems in [24] and the
resource-constrained minimum weighted arborescence prob-
lem in [35]. The work [33] describes basic principles for
constructing dual ascent algorithms. Although the authors
provide several examples, they do not go beyond that and
stick to the claim that these methods are structure dependent
and problem specific.

The work [18] suggests to use the max-product belief
propagation [73] to decomposable optimization problems.
However, their algorithm is neither monotone nor even con-
vergent in general.

In computer vision, dual block coordinate ascent algo-
rithms for Lagrangean decomposition of combinatorial prob-
lems were proposed for multiple targets tracking [8], graph
matching (quadratic assignment) problem [78] and inference
in conditional random fields [48, 49, 28, 74, 75, 62, 37, 56,
72, 39]. From the latter, the TRW-S algorithm [48] is among
the most efficient ones for pairwise conditional random fields
according to [41]. The SRMP algorithm [49] generalizes
TRW-S to conditional random fields of arbitrary order. In a
certain sense, our framework can be seen as a generalization
of SRMP to a broad class of combinatorial problems.

Contribution. We propose a new dual ascent based com-
putational framework for combinatorial optimization. To
this end we:
(i) Define the class of problems, called integer-relaxed
pairwise-separable linear programs (IRPS-LP), our frame-
work can be used for. Our definition captures Lagrangean
decompositions of many known discrete optimization prob-
lems (Section 2).
(ii) Give a general monotonically convergent message-
passing algorithm for solving IRPS-LP, which in particu-
lar subsumes several known solvers for conditional random
fields (Section 4).
(iii) Give a characterization of the fixed points of our al-
gorithm, which subsumes such well-known fixed point
characterizations as weak tree agreement [48] and arc-
consistency [74] (Section 5).

We demonstrate efficiency of our method by outperform-
ing state-of-the-art solvers for two famous special cases of
IRPS-LP, which are widely used in computer vision: the
multicut and the graph matching problems. (Section 6).

A C++-framework containing the above mentioned
solvers and the datasets used in experiments can be obtained
at https://github.com/pawelswoboda/LP_MP.

We give all proofs in the supplementary material.

Notation. Undirected graphs will be denoted by G =
(V,E), where V is a finite node set and E ⊆

(
V
2

)
is the

edge set. The set of neighboring nodes of v ∈ V w.r.t. graph
G is denoted by NG(v) := {u : uv ∈ E}. The convex hull

of a set X ⊂ Rn is denoted by conv(X). Disjoint union is
denoted by ∪̇.

2. Integer-Relaxed Pairwise-Separable Linear
Programs (IRPS-LP)

Combinatorial problems of the form minx∈X θ(x), where
X ⊆ {0, 1}n are binary vectors, often have a decompos-
able representation as min xi∈Xi

i=1,...,k

∑k
i=1〈θi, xi〉 for Xi ⊆

{0, 1}di being sets of binary vectors, typically correspond-
ing to subsets of the coordinates of X . This decomposed
problem is equivalent to the original one under a set of linear
constraints A(i,j)xi = A(j,i)xj , which guarantee the mutual
consistency of the considered components. By replacing
Xi by its convex hull conv(Xi) we switching to real-valued
vectors from binary ones and obtain a convex relaxation of
the problem. It reads:

min
µ∈ΛG

k∑
i=1

〈θi, µi〉 , where ΛG is defined as (1)

ΛG :=

{
(µ1 . . . µk)

∣∣∣∣ µi ∈ conv(Xi) i ∈ F
A(i,j)µi = A(j,i)µj ∀ij ∈ E

}
. (2)

Here F := {1, . . . , k} are called factors of the decomposi-

tion and E ⊆
(
F
2

)
correspond to the coupling constraints.

The undirected graph G = (F,E) is called factor graph. We
will use variable names µ whenever we want to emphasize
µi ∈ conv(Xi) and x whenever xi ∈ Xi, i ∈ F.

Definition 1 (IRPS-LP). Assume that for each edge ij ∈ E
the matrices of the coupling constraints A(i,j), A(j,i) are
such that A(i,j) ∈ {0, 1}K×di and A(i,j)xi ∈ {0, 1}K
∀xi ∈ Xi for someK ∈ N, analogously forA(j,i). The prob-
lem minµ∈ΛG

∑
i∈F〈θi, µi〉 is called an Integer-Relaxed

Pairwise-Separable Linear Program, abbreviated by IRPS-
LP.

In the following, we give several examples of IRPS-LP.
To distinguish between notation for the factor graph of IRPS-
LP, where we stick to bold letters (such as G, F, E) we
will use the straight font (such as G, V, E) for the graphs
occurring in the examples.
Example 1 (MAP-inference for CRF). A conditional ran-
dom field is given by a graph G = (V,E), a discrete label
space X =

∏
u∈VXu, unary θu : Xu → R and pairwise

costs θuv : Xu × Xv → R for u ∈ V, uv ∈ E. We also
denote Xuv := Xu ×Xv . The associated maximum a poste-
riori (MAP)-inference problem reads

min
x∈X

∑
u∈V

θu(xu) +
∑

uv∈E
θuv(xuv) , (3)

where xu and xuv denote the components corresponding to
node u ∈ V and edge uv ∈ E respectively. The well-known
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local polytope relaxation [74] can be seen as an IRPS-LP
by setting F = V ∪ E, that is associating to each node
v ∈ V and each edge uv ∈ E a factor, and introducing two
coupling constraints for each edge of the graphical model, i.e.
E = {{u, uv}, {v, uv} : uv ∈ E}. For the sake of notation
we will assume that each label s ∈ Xu is associated a unit
vector (0, . . . , 0, 1︸︷︷︸

s
, 0 . . . , 0) with dimensionality equal to

the total number of labels |Xu| and 1 on the s-th position.
Therefore, the notation conv(Xu) makes sense as a convex
hull of all such vectors. After denoting an N -dimensional
simplex as ∆N := {µ ∈ RN+ :

∑N
i=1 µi = 1} the resulting

relaxation reads

min
µ∈LG

〈θ, µ〉 :=
∑
u∈V
〈θu, µu〉+

∑
uv∈E
〈θuv, µuv〉 (4)

in the overcomplete representation [71] and LG is defined as

µu ∈ conv(Xu) : µu ∈ ∆|Xu|, u ∈ V

µuv ∈ conv(Xuv) : µuv ∈ ∆|Xuv|, uv ∈ E

A(uv,u)µuv = A(u,uv)µu :
∑

xv∈Xv
µuv(xu, xv) = µu(xu),

uv ∈ E, (xu, xv) ∈ Xuv,
u ∈ uv, xu ∈ Xu .

(5)

Here µu(xu) and µuv(xu, xv) denote those coordinates of
vectors µu and µuv, which correspond to the label xu and
the pair of labels (xu, xv) respectively.
Example 2 (Graph Matching). The graph matching problem,
also known as quadratic assignment [13] or feature match-
ing, can be seen as a MAP-inference problem for CRFs (as
in Example 1) equipped with additional constraints: The
label set of G belongs to a universe L, i.e. Xu ⊆ L ∀u ∈ V
and each label s ∈ L can be assigned at most once. The
overall problem reads

min
x

∑
u∈V

θu(xu) +
∑
uv∈E

θuv(xu, xv) s.t. xu 6= xv∀u 6= v .

(6)
Graph matching is a key step in many computer vision ap-
plications, among them tracking and image registration,
whose aim is to find a one-to-one correspondence be-
tween image points. For this reason, a large number of
solvers have been proposed in the computer vision commu-
nity [18, 76, 78, 70, 53, 69, 63, 29, 79, 38, 54, 16]. Among
them two recent methods [70, 78] based on Lagrangean de-
composition show superior performance and provide lower
bounds for their solutions. The decomposition we describe
below, however, differs from those proposed in [70, 78].

Our IRPS-LP representation for graph matching consists
of two blocks: (i) the CRF itself (which further decomposes
into node- and edge-subproblems with variables (µu)u∈V
and (ii) additional label-factors keeping track of nodes as-
signed the label s. We introduce these label-factors for each
label s ∈ L. The set of possible configurations of this fac-
tor Xs := {u ∈ V : s ∈ Xu} ∪ {#} consists of those

nodes u ∈ V which can be assigned the label s and an
additional dummy node #. The dummy node # denotes
non-assignment of the label s and is necessary, as not every
label needs to be taken. As in Example 1, we associate a unit
binary vector with each element of the setXs, and conv(Xs)
denotes the convex hull of such vectors. The set of factors
becomes F = V∪̇E∪̇L, with the set E = {{u, uv}, {v, uv} :
uv ∈ E} ∪ {{u, l} : u ∈ V, l ∈ Xu} of the factor-graph
edges. The resulting IRPS-LP formulation reads

min
µ,µ̃

∑
u∈V
〈θu, µu〉+

∑
uv∈E
〈θuv, µuv〉+

∑
s∈L
〈θ̃s, µ̃s〉 (7)

µ ∈ LG
µ̃s ∈ conv(Xs), s ∈ L
µu(s) = µ̃s(u), s ∈ Xu .

Here we introduced (i) auxiliary variables µ̃s(u) for all vari-
ables µu(s) and (ii) auxiliary node costs θ̃s ≡ 0 ∀s ∈ L,
which may take other values in course of optimization. Fac-
tors associated with the vectors µu and µuv correspond to the
nodes and edges of the graph G (node- and edge-factors), as
in Example 1 and are coupled in the same way. Additionally,
factors associated with the vectors µ̃s ensure that the label s
can be taken at most once. These label-factors are coupled
with node-factors (last line in (7)).
Example 3 (Multicut). The multicut problem (also known
as correlation clustering) for an undirected weighted graph
G = (V,E) is to find a partition (Π1, . . . ,Πk), Πi ⊆ V,
V = ∪̇ki=1Πi of the graph vertexes, such that the total cost
of edges connecting different components is minimized. The
number k of components is not fixed but is determined by
the algorithm. See Fig. 1 for an illustration. Although the
problem has numerous applications in computer vision [4, 5,
6, 77] and beyond [7, 60, 14, 15], there is no scalable solver,
which could provide optimality bounds. Existing methods
are either efficient primal heuristics [66, 58, 27, 19, 20, 9, 10]
or combinatorial branch-and-bound/branch-and-cut/column
generation algorithms, based on off-the-shelf LP solvers [43,
44, 47, 77]. Move-making algorithms do not provide lower
bounds, hence, one cannot judge their solution quality or
employ them in branch-and-bound procedures. Off-the-shelf
LP solvers on the other hand scale super-linearly, limiting
their application in large-scale problems.

Instead of directly optimizing over partitions (which has
many symmetries making optimization difficult in a linear
programming setting), we follow [17] and formulate the
problem in the edge domain. Let θe, e ∈ E denote the cost of
graph edges and let C be the set of all cycles of the graph G.
Each edge that belongs to different components is called a
cut edge. The multicut problem reads

min
x∈{0,1}|E|

∑
e∈E

θexe , s.t. ∀C ∀e′ ∈ C :
∑

e∈C\{e′}
xe ≥ xe′ . (8)



Here xe = 1 signifies a cut edge and the inequalities force
each cycle to have none or at least two cut edges. The formu-
lation (8) has exponentially many constraints. However, it
is well-known that it is sufficient to consider only chordless
cycles [17] in place of the set C in (8). Moreover, the graph
can be triangulated by adding additional edges with zero
weights and therefore the set of chordless cycles reduces to
edge triples. Such triangulation is refered to as chordal com-
pletion in the literature [26]. The number of triples is cubic,
which is still too large for practical efficiency and therefore
violated constraints are typically added to the problem iter-
atively in a cutting plane manner [43, 44]. To simplify the
description, we will ignore this fact below and consider all
these cycles at once. Assuming a triangulated graph and
redefining C as the set of all chordless cycles (triples) we
consider the following IRPS-LP relaxation of the multicut
problem 1:

min
µ,µ̃

∑
e∈E

θeµe +
∑
c∈C

∑
e∈c

θ̃e,cµ̃e,c , s.t. (9)


µe ∈ conv({0, 1}) = [0, 1], e ∈ E
∀c ∈ C, e ∈ c :
µ̃c := (µ̃e,c)e∈c ∈ conv({0, 1}3| ∀e′ ∈ c :

∑
e∈c\{e′}

µ̃e,c ≥ µ̃e′,c)

≡ conv({0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1})
µe = µ̃e,c

(10)

For the sake of notation we shortened a feasible set def-
inition µ̃ ∈ conv(µ′ ∈ {0, 1}n : constraints on µ′) to
µ̃ ∈ conv({0, 1}n : constraints on µ̃). Here µe is the re-
laxed (potentially non-integer) variable corresponding to xe.
Variable µ̃e,c is a copy of µe, which corresponds to the cy-
cle c. Therefore, each µe gets as many copies µ̃e,c, as many
chordless cycles c contain the edge e. For each cycle the set
of binary vectors satisfying the cycle inequality is considered.
For a cycle with 3 edges this set can be written explicitly as
in (10). Along with copies of µe, e ∈ E we copy the corre-
sponding cost θe and create auxiliary costs θ̃e,c ≡ 0 for each
cycle c containing the edge e. During optimization, the cost
θe will be redistributed between θe itself and its copies θ̃e,c,
c ∈ C. The factors of the IRPS-LP are associated with each
edge (variable µe) and each chordless cycle (variable µ̃c).
Coupling constraints connect edge-factors with those cycle-
factors, which contain the corresponding edge (see the last
constraint in (10)). An in-depth discussion of message pass-
ing for the multicut problem with tighter relaxations can be
found in [67].

3. Dual Problem and Admissible Messages
Since our technique can be seen as a dual ascent, we will

not optimize the primal problem (1) directly, but instead
1One can show that this relaxation coincides with the standard LP

relaxation for the multicut problem [17]

Figure 1. Illustration of
Example 3. A multicut
of a graph induced by
three connected compo-
nentsΠ1, Π2, Π3 (green).
Red dotted edges indicate
cut edges xe = 1.

maximize its dual lower bound.

Dual IRPS-LP The Lagrangean dual to (1) w.r.t. the cou-
pling constraints reads

maxφ D(φ) :=
∑
i∈F minxi∈Xi〈θφi , xi〉

s.t. θφi := θi +
∑
j:ij∈EA

>
(i,j)φ(i,j) ∀i ∈ F

φ(i,j) = −φ(j,i) ∀ij ∈ E
(11)

Here φ(i,j) ∈ RK for A(i,j) ∈ {0, 1}K×di for some K ∈ N.
The functionD(φ) is called lower bound and is concave in φ.
The modified primal costs θφ are called reparametrizations
of the potentials θ. We have duplicated the dual variables
by introducing φ(i,j) := −φ(j,i) to symmetrize notation. In
practice, only one copy is stored and the other is computed on
the fly. Note that in this doubled notation the reparametrized
node and edge potentials of the CRF from Example 1 read

θφu(xu) = θu(xu) +
∑
v : uv∈E φu,uv(xu)

θφuv(xu, xv) = θuv(xu, xv) + φuv,v(xv) + φuv,u(xu)
φu,uv = −φuv,u

It is well-known for CRFs that cost of feasible solutions
are invariant under reparametrization. We generalize this to
the IRPS-LP-case.

Proposition 1.
∑
i∈F〈θi, µi〉 =

∑
i∈F〈θ

φ
i , µi〉, whenever

µ1, . . . , µk obey the coupling constraints.

Admissible Messages While Proposition 1 guarantees
that the primal problem is invariant under reparametriza-
tions, the dual lower bound D(φ) is not. Our goal is to find
φ such that D(φ) is maximal. By linear programming du-
ality, D(φ) will then be equal to the optimal value of the
primal (1).

First we will consider an elementary step of our future al-
gorithm and show that it is non-decreasing in the dual objec-
tive. This property will ensure the monotonicity of the whole
algorithm. Let θφ be any reparametrization of the problem
and D(φ) be the corresponding dual value. Let us consider
changing the reparametrization of a factor i by a vector ∆
with the only non-zero components ∆(i,j) and ∆(j,i) . This
will change reparametrization of the coupled factors j (such
that ij ∈ E) due to ∆(i,j) = −∆(j,i). The lemma below
states properties of ∆(i,j) which are sufficient to guarantee
improvement of the corresponding dual value D(φ+∆):



Lemma 1 (Monotonicity Condition). Let ij ∈ E be a pair
of factors related by the coupling constraints and φ(i,j) be
a corresponding dual vector. Let x∗i ∈ argmin

xi∈Xi
〈θφi , xi〉 and

∆(i,j) satisfy

∆(i,j)(s)

{
≥ 0, ν(s) = 1

≤ 0, ν(s) = 0
, where ν := A(i,j)x

∗
i . (12)

Then x∗i ∈ argmin
xi∈Xi

〈θφ+∆i , xi〉 implies D(φ) ≤ D(φ+∆).

Example 4. Let us apply Lemma 1 to Example 1. Let ij
correspond to {u, uv}, where u ∈ V is some node and
uv ∈ E is any of its incident edges. Then x∗i corresponds
to a locally optimal label x∗u ∈ argmins∈Xu θu(s) and
ν(s) = Js = x∗uK. Therefore we may assign ∆u,uv(s)
to any value from [0, θu(x

∗
u) − θu(s)]. This assures that

(20) is fulfilled and x∗u remains a locally optimal label after
reparametrization even if there are multiple optima in Xu.

Lemma 1 can be straightforwardly generalized to the
case, when more than two factors must be reparametrized
simultaneously. In terms of Example 1 this may correspond
to the situation when a graph node sends messages to several
incident edges at once:

Definition 2. Let i ∈ F be a factor and
J = {j1, . . . , jl} ⊆ NG(i) be a subset of its neigh-
bors. Let θ∆i := θi +

∑
j∈J A

>
(i,j)∆(i,j), ∆(i,j)(= −∆(j,i))

satisfies (20) for all j ∈ J and all other coordinates of ∆
are zero. If there exists x∗i ∈ argminxi∈Xi〈θi, xi〉 such
that x∗i ∈ argminxi∈Xi〈θ∆i , xi〉, the dual vector ∆ is called
admissible. The set of admissible vectors is denoted by
AD(θi, x

∗
i , J).

Lemma 2. Let∆ ∈ AD(θφi , x
∗
i , J) thenD(φ) ≤ D(φ+∆).

Procedure 1: Message-Passing Update Step.

1 Input:Factor i ∈ F, neighboring factors
J = {j1, . . . , jl} ⊆ NG(i), dual variables φ

Compute x∗i ∈ argminxi∈Xi〈θφ, xi〉 (13)

Choose δ ∈ Rdi s.t. δ(s)
{
> 0, x∗i (s) = 1
< 0, x∗i (s) = 0

(14)

2 Maximize admissible messages to J :

∆∗(i,J) ∈ argmax
∆∈AD(θφi ,x

∗
i ,J)

〈δ, θφ+∆i 〉 (15)

3 Output: ∆∗(i,J).

Message-Passing Update Step To maximize D(φ), we
will iteratively visit all factors and adjust messages φ con-
nected to it, monotonically increasing the lower bound (11).
Such an elementary step is defined by Procedure 1.

Procedure 1 is defined up to the vector δ, which
satisfies (14) (see Proc. 1). Usually, δ(s) ={

1, x∗i (s) = 1
−1, x∗i (s) = 0

is a good choice. Although different δ

may result in different efficiency of our framework, fulfill-
ment of (14) is sufficient to prove its convergence properties.

The reparametrization adjustment problem (15) serves
the intuitive goal to move as much slack as possible from the
factor i to its neighbors J . For example, for the setting of
Example 4 its solution reads ∆u,uv(s) = θφu(x

∗
u) − θφu(s).

Depending on the selected δ it might correspond to maxi-
mization of the dual objective in the direction defined by
admissible reparametrizations. Although maximization (15)
is not necessary to prove convergence of our method (as we
show below, only a feasible solution of (15) is required for
the proof), (i) it leads to faster convergence; (ii) for the case
of CRFs (as in Example 1) it makes our method equivalent to
well established techniques like TRW-S [48] and SRMP [49],
as shown in Section 4.1.

The following proposition states that the elementary up-
date step defined by Procedure 1 can be performed efficiently.
That is, the size of the reparametrization adjustment prob-
lem (15) grows linearly with the size of the factor i and its
attached messages:

Proposition 2. Let conv(Xi) = {µi : Aiµi ≤ bi} with
Ai ∈ Rn×m. Let the messages in problem (15) have size
n1, . . . , n|J|. Then (15) is a linear program withO(n+n1+
. . .+n|J|) variables andO(m+n1+ . . .+n|J|) constraints.

4. Message Passing Algorithm
Now we combine message passing updates into Algo-

rithm 2. It visits every node of the factor graph and performs
the following two operations: (i) Receive Messages, when
messages are received from a subset of neighboring factors,
and (ii) Send Messages, when messages to some neighbor-
ing factors are computed and reweighted by ω. Distribution
of weights ω may influence the efficiency of Algorithm 2
just like it influences the efficiency of message passing for
CRFs (see [49]). We provide typical settings in Section 4.1.
Usually, factors are traversed in some given a-priori order
alternately in forward and backward direction, as done in
TRW-S [48] and SRMP [49]. We refer to [49] for a motiva-
tion for such a schedule of computations.

We will discuss parameters of Algorithm 2 (factor par-
titioning {Ji}, weights wJi) right after the theorem stating
monotonicity for any choice of parameters.

Theorem 1. Algorithm 2 monotonically increases the dual
lower bound (11).



Algorithm 2: One Iteration of Message-Passing

1 for i ∈ F in some order do
2 Receive Messages:
3 Choose a subset of connected factors

Jreceive ⊆ NG(i)
4 for j ∈ Jreceive do
5 Compute ∆∗(j,{i}) with Procedure 1.
6 Set φ = φ+∆∗(j,{i}).
7 end
8

9 Send Messages:
10 Choose partition J1∪̇ . . . ∪̇Jl ⊆ NG(i).
11 for J ∈ {J1, . . . , Jl} do
12 Compute ∆∗(i,J) with Procedure 1.
13 end
14 Choose weights ωJ1 , . . . , ωJl ≥ 0 such that

ωJ1 + . . .+ ωJl ≤ 1.
15 for J ∈ {J1, . . . , Jl} do
16 Set φ = φ+ ωJ∆

∗
(i,J).

17 end
18 end

4.1. Parameter Selection for Algorithm 2

There are the following free parameters in Algorithm 2:
(i) The order of traversing factors of F; (ii) for each factor
the neighboring factors from which to receive messages
Jreceive ⊆ NG(i); (iii) the partition J1∪̇ . . . ∪̇Jl ⊆ NG(i)
of factors to send messages to and (iv) the associated weights
ωJ1 , . . . , ωJl for messages.

Although for any choice of these parameters Algorithm 2
monotonically increases the dual lower bound (as stated
by Theorem 1), its efficiency may significantly depend on
their values. Below, we will describe the parameters for
Examples 1-3, which we found the most efficient empirically.

Sending a message by some factor automatically implies
receiving this message by another, coupled factor. There-
fore, usually there is no need to go over all factors in Algo-
rithm 2. It is usually sufficient to guarantee that all coupling
constraints are updated by Procedure 1. Formally, we can
always exclude processing some factors by setting Jreceive
and Ji, i = 1, . . . , l to the empty set. Instead, we will ex-
plicitly specify, which factors are processed in the loop of
Algorithm 2 in the examples below.

Parameters for Example 1, MAP-inference in CRFs.
Pairwise CRFs have the specific feature that node factors are
coupled with edge factors only. This implies that processing
only node factors in Algorithm 2 is sufficient. Below, we de-
scribe parameters, which turn Algorithm 2 into SRMP [49]
(which is up to details of implementation equivalent to TRW-

S [48] for pairwise CRFs). Other settings, given in the
supplement, may turn it to other popular message passing
techniques like MPLP [28] or min-sum diffusion [64].

We order node factors and process them according to this
ordering. The ordering naturally defines the sets of incoming
E+
u and outgoing E−u edges for each node u ∈ V. Here
uv ∈ E is incoming for u if v < u and outgoing if v > u.
Each node u ∈ V receives messages from all incoming edges,
which is Jreceive = NG(u) = E+

u . The messages are sent
to all outgoing edges. Each edge uv ∈ E in the partition in
line 10 of Algorithm 2 is represented by a separate set. That
is, the partition reads ∪̇e∈E−u {e}. Weights are distributed
uniformly and equal to we = { 1

max{|E−u |,|E+
u |}
}, e ∈ E−u .

After each outer iteration, when all nodes were processed,
the ordering is reversed and the process repeats. We refer
to [49] for substantiation of these parameters.

Parameters for Example 2, Graph Matching. Addition-
ally to the node and edge factors, the corresponding IRPS-LP
has also label factors (7). To this end all node factors are
ordered, as in Example 1. Each node factor u ∈ V re-
ceives messages from all incoming edge factors and label
factors Jreceive(u) = E+

u ∪ Xu and sends them to all out-
going edges and label factors. The corresponding partition
reads ∪̇f∈NG(u)\E+

u
{f} ∪̇Xu. The weights are distributed

uniformly with wf = { 1
1+max{|E−u |,|E+

u |}
}. The label factors

are processed after all node factors were visited. Each label
factor receives messages from all connected node factors
and send messages back as well: Jreceive(s) = {u ∈ V :
s ∈ Xu}. We use the same single set for sending messages,
i.e. J1 = Jreceive. After each iteration we reverse the factor
order.

Parameters for Example 3, Multicut. Similarly to Ex-
ample 1, it is sufficient to go only over all edge factors
in the loop of Algorithm 2, since each coupling constraint
contains exactly one cycle and one edge factor. Each edge
factor e receives messages from all coupled cycle factors
Jreceive = NG({c ∈ C : e ∈ c}) and sends them to the
same factors. As in Example 1, each cycle factor forms a
trivial set in the partition in line 10 of Algorithm 2, the parti-
tion reads ∪̇c∈C:e∈c{c}. Weights are distributed uniformly
with we = 1

|c∈C:e∈c| . After each iteration the processing
order of factors is reversed.

4.2. Obtaining Integer Solution

Eventually we want to obtain a primal solution x ∈ X
of (1), not a reparametrization θφ. We are not aware of any
rounding technique which would work equally well for all
possible instances of IRPS-LP problem. According to our
experience, the most efficient rounding is problem specific.
Below, we describe our choices for the Examples 1 – 3.



Rounding for Example 1 coincides with the one sug-
gested in [48]: Assume we have already computed a primal
integer solution x∗v for all v < u and we want to compute x∗u.
To this end, right before the message receiving step of Algo-
rithm 2 for i = u we assign

x∗u ∈ argmin
xu

θu(xu) +
∑

v<u:uv∈E
θuv(xu, x

∗
v) . (16)

Rounding for Example 2 is the same except that we se-
lect the best label xu among those, which have not been
assigned yet, to satisfy uniqueness constraints:

x∗u ∈ argmin
xu:x∗v 6=xu∀v<u

θφu(xu)+
∑

v<u:uv∈E
θφuv(xu, x

∗
v) . (17)

Rounding for Example 3. We use the efficient
Kernighan&Lin heuristic [45] as implemented in [46]. Costs
for the rounding are the reparametrized edge potentials.

5. Fixed Points and Comparison to Subgradi-
ent Method

Algorithm 2 does not necessarily converge to the op-
timum of (1). Instead, it may get stuck in suboptimal
points, similar to those correspoding to the ”weak tree agree-
ment” [48] or ”arc consistency” [74, 3] in CRFs from Exam-
ple 1. Below we characterise these fixpoints precisely.

Definition 3 (Marginal Consistency). Given a
reparametrization θφ, let for each factor i ∈ F a
non-empty set Si ⊆ argminxi∈Xi〈θφ, xi〉, i ∈ F be
given. Define S =

∏
i∈F Si. We call reparametrization θφ

marginally consistent for S on ij ∈ E if

A(i,j) (Si) = A(j,i) (Sj) . (18)

If θφ is marginally consistent for S on all ij ∈ E, we call θφ

marginally consistent for S.

Note that marginal consistency is necessary, but not suffi-
cient for optimality of the relaxation (1). This can be seen
in the case of CRFs (Example 1), where it exactly corre-
sponds to arc-consistency. The latter is only necessary, but
not sufficient for optimality [74].

Theorem 2. If θφ is marginally consistent, the dual lower
bound D(φ) cannot be improved by Algorithm 2.

Comparison to Subgradient Method. Decomposi-
tion IRPS-LP and more general ones can be solved via
the subgradient method [50]. Similar to Algorithm 2, it
operates on dual variables φ and manipulates them by
visiting each factor sequentially. Contrary to Algorithm 2,
subgradient algorithms converge to the optimum. Moreover,

on a per-iterations basis, computing subgradients is cheaper
than using Algorithm 2, as only (13) needs to be computed,
while Algorithm 2 needs to solve (15) additionally. How-
ever, for MAP-inference, the study [41] has shown that
subgradient-based algorithms converge much slower than
message passing algorithms like TRWS [48]. In Section 6
we confirm this for the graph matching problem as well.

The reason for this large empirical difference is that one
iteration of the subgradient algorithm only updates those co-
ordinates of dual variables φ that are affected by the current
minimal labeling x∗i ∈ argminxi∈Xi〈θ

φ
i , xi〉 (i.e. coordi-

nates k : (A>(i,j)x
∗
i )k = 1), while in Algorithm 2 all coor-

dinates of φ are taken into account. Also message passing
implicitly chooses the stepsize so as to achieve monotoni-
cal convergence in Algorithm 1, while subgradient based
algorithms must rely on some stepsize rule.

6. Experimental Evaluation

Our experiments’ goal is to illustrate applicability of the
proposed technique, they are not an exhaustive evaluation.
The presented algorithms are only basic variants, which can
be further improved and tuned to the considered problems.
Both issues are addressed in the specialized studies [68,
67]. Still, we show that the presented basic variants are
already able to surpass state-of-the-art specialized solvers on
challenging datasets.

6.1. Graph Matching

Solvers. We compare against two state-of-the-art algo-
rithms: (i) the subgradient based dual decomposition
solver [70] abbreviated by DD and (ii) the recent “hungarian
belief propagation” message passing algorithm [78], abbrevi-
ated as HBP. While the authors of [78] have embedded their
solver in a branch-and-bound routine to produce exact solu-
tions, we have reimplemented their message passing com-
ponent but did not use branch and bound to make the com-
parison fair. Both algorithms DD and HBP outperformed
alternative solvers [18, 76, 53, 69, 63, 29, 79, 38, 54, 16]
at the time of their publication, hence we have not tested
against them. We call our solver AMP.

Datasets. We selected three challenging datasets. The first
two are the standard benchmark datasets car and motor,
both used in [55], containing 30 pairs of cars and 20 pairs of
motorbikes with keypoints to be matched 1:1. The images
are taken from the VOC PASCAL 2007 challenge [21]. Costs
are computed from features as in [55]. Instances are densely
connected graphs with 20 – 60 nodes. The third one is the
novel worms datasets [40], containing 30 problem instances
coming from bioimaging. The problems are made of sparsely
connected graphs with up to 600 nodes and up to 1500 labels.
To our knowledge, the worms dataset contains the largest
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Figure 2. Runtime plots comparing averaged log(primal energy− dual lower bound) values on car, motor and worms graph matching
datasets. Both axes are logarithmic.
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Figure 3. Runtime plots comparing averaged primal/dual values on the three knott-3d-{150|300|450} multicut datasets. Values are
averaged over all instances in the dataset. The x-axis are logarithmic. Continuous lines are dual lower bounds while corresponding dashed
lines show primal solutions obtained by rounding.

graph matching instances ever considered in the literature.
For runtime plots showing averaged logarithmic primal/dual
gap over all instances of each dataset see Fig. 2.

Results. Our solver AMP consistently outperforms HBP
and DD w.r.t. primal/dual gap and anytime performance
Most markedly on the largest worms dataset, the subgra-
dient based algorithm DD struggles hard to decrease the
primal/dual gap, while AMP gives reasonable results.

6.2. Multicuts

Solvers. We compare against state-of-the-art multicut al-
gorithms implemented in the OpenGM [41] library, namely
(i) the branch-and-cut based solver MC-ILP [44] utilizing
the ILP solver CPLEX [2], (ii) the heuristic primal “fusion
move” algorithm CC-Fusion [9] with random hierarchical
clustering and random watershed proposal generator, de-
noted by the suffixes -RHC and -RWS and (iii) the heuristic
primal “Cut, Glue & Cut” solver CGC [10]. Those solvers
were shown to outperform other multicut algorithms [9]. Al-
gorithm MC-ILP provides both upper and lower bounds,
while CC-Fusion and CGC are purely primal algorithms.
We call our message passing solver with cycle constraints
added in a cutting plane fashion MP-C.

Datasets. We have selected three datasets
knott-3d-{150|300|450} from OpenGM [41].

The problems come from electron microscopy of brain
tissue, for which we wish to obtain a neuron segmentation.
Each dataset contains 8 instances with ≤ 972, 5896 and
17074 nodes and ≤ 5656, 36221, and 107060 edges
respectively.

Results. For plots showing dual bounds and primal solu-
tion objectives over time see Figure 3. Our algorithm MP-C
combines advantages of LP-based techniques awith those of
primal heuristics: It delivers high dual lower bounds faster
than MC-ILP. Its has fast primal convergence speed and
delivers primal solutions comparable/superior to CGC’s and
CC-Fusion’s.
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[6] B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Korogod,
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8. Supplementary Material
Proof of Proposition 1

Proposition.
∑
i∈F〈θi, µi〉 =

∑
i∈F〈θ

φ
i , µi〉, whenever

µ1, . . . , µk obey the coupling constraints.

Proof.
∑
i∈F〈θφ, µi〉 =∑

i∈F〈θ, µi〉 +
∑
ij∈E
〈φ(i,j), A(i,j)µi〉+ 〈φ(j,i), A(j,i)µj〉︸ ︷︷ ︸

(∗)

=

∑
i∈F〈θ, µi〉 , where (∗) = 0 due to φ(i,j) = −φj,i) and

A(i,j)µi = A(j,i)µj .

Proof of Proposition 2

Proposition. Let conv(Xi) = {µi : Aiµi ≤ bi} with
Ai ∈ Rn×m. Let the messages in problem (15) have
size n1, . . . , n|J|. Then (15) is a linear program with
O(n+n1+ . . .+n|J|) variables andO(m+n1+ . . .+n|J|)
constraints.

Proof. From LP-duality we know that µ∗i ∈
argminµi:Aµi≤bi〈c, µi〉 iff ∃y ≥ 0 : A>i y = ci and
〈bi −Aiµ∗i , y〉 = 0. Hence, (15) can be rewritten as

max
y≥0,∆(i,j1),...,∆(i,jl)

〈δ, θφ+∆〉
s.t. 〈bi −Aiµ∗i , y〉 = 0

A>i y = θφ+∆

∆(i,j)(s)

{
≤ 0, νi(s) = 0

≥ 0, νi(s) = 1

where νi := A(i,j)µ
∗
i

(19)
θφ+∆ is a linear expression and µ∗ is constant during the
computation, hence (19) is a LP.

Proof of Lemma 1 and Lemma 2

Lemma. Let ij ∈ E be a pair of factors related by the
coupling constraints and φ(i,j) be a corresponding dual
vector. Let x∗i ∈ argmin

xi∈Xi
〈θφi , xi〉 and ∆(i,j) satisfy

∆(i,j)(s)

{
≥ 0, ν(s) = 1

≤ 0, ν(s) = 0
, where ν := A(i,j)x

∗
i . (20)

Then x∗i ∈ argmin
xi∈Xi

〈θφ+∆i , xi〉 implies D(φ) ≤ D(φ+∆).

Proof. Let x∗j ∈ argminxj∈Xj 〈θ
φ
j , xj〉 be a solution of (13)

at which the dual lower bound (11) is attained before the
update and x∗∗j ∈ argminxj∈Xj 〈θφ − A>(j,i)∆∗(i,j), xj〉 be
an integral solution at which the dual lower bound is attained
after φ has been updated. Variable x∗i as chosen in (13) is

optimal for θφ and for θφ+∆ by construction. We need to
prove

〈θφi , x∗i 〉+
∑
j∈J
〈θφj , x∗j 〉

≤ 〈θφi +
∑
j∈J

A>(i,j)∆
∗
(i,j), x

∗
i 〉+

∑
j∈J
〈θφj−A>(j,i)∆∗(i,j), x∗∗j 〉 .

(21)

We shuffle all terms with variables ∆∗(i,j), j ∈ J to the right
side and all other terms to the left side.

〈θφi , x∗i − x∗i 〉+
∑
j∈J
〈θφj , x∗j − x∗∗j 〉

≤ 〈
∑
j∈

A>(i,j)∆
∗
(i,j), x

∗
i 〉 −

∑
j∈J
〈A>(j,i)∆∗(i,j), x∗∗j 〉 (22)

All terms on the left side are smaller than zero due to the
choice of x∗j being minimizers w.r.t. θφj . Hence, it will be
enough to prove the above inequality when assuming the left
side to be zero. We rewrite the scalar products by transposing
A>(i,j) and A>(j,i).

0 ≤
∑

j∈J

{
〈∆∗(i,j), A(i,j)x

∗
i −A(j,i)x

∗∗
j 〉
}

(23)

Due to A(j,i)x
∗∗
j ∈ {0, 1}dim(φ(i,j)) and A(i,j)x

∗
i ∈

{0, 1}dim(φ(i,j)) by Definition 1 and ∆∗(i,j) ≶ 0 whenever
A(i,j)x

∗
i ≶ 0, the result follows.

Lemma. Let ∆ ∈ AD(θφi , x
∗
i , J) then D(φ) ≤ D(φ+∆).

Proof. Analoguous to the proof of Lemma 1.

Proof of Theorem 1

Theorem. Algorithm 2 monotonically increasis the dual
lower bound (11).

Proof. We prove that (i) the receiving messages and (ii) the
sending messages step improve (11).
(i) Directly apply Lemma 1. (ii) The difficulty here is that we
compute descent directions from the current dual variables
φ in parallel and then apply all of them simultaneously. By
Lemma 2, the send message step is non-decreasing when
called for each set J1, . . . , Jl in Algorithm 2. The dual lower
bound L(φ) is concave, hence we apply Jensen’s inequality
and note that ω1 + . . .+ ωl ≤ 1 to obtain the result.

Proof of Theorem 2

Theorem. If θφ is marginally consistent, the dual lower
bound D(φ) cannot be improved by Algorithm 2.

First, we need two technical lemmata.



Lemma 3. Let X ⊂ {0, 1}n, A ∈ {0, 1}K×n
and Ax ∈ {0, 1}K ∀x ∈ X . Let x∗ ∈ X
be given and define ν∗ := Ax∗. Let ∆ ∈ RK

be given such that ∆(s)

{
≥ 0, ν∗(s) = 1

≤ 0, ν∗(s) = 0
. Then

(i) x∗ ∈ argminx∈X〈−∆,Ax〉 and (ii) for x∗∗ ∈
argminx∈X〈−∆,Ax〉, ν∗∗ = Ax∗∗ it holds that ∆(s) = 0
whenever ν∗(s) 6= ν∗∗(s).

Proof. Let x ∈ X and define ν = Ax. Then

〈−∆,Ax〉
=

∑
s:ν∗(s)=1=ν(s)

−∆(s)

︸ ︷︷ ︸
(∗)

+
∑

s:ν(s)=1>0=ν∗(s)

−∆(s)

︸ ︷︷ ︸
(∗∗)

≥
∑

s:ν∗(s)=1

−∆(s)

︸ ︷︷ ︸
(∗∗∗)

= 〈−∆,Ax∗〉 (24)

because (∗) ≥ (∗ ∗ ∗) due to ∆(s) ≥ 0 for ν∗(s) = 1 and
(∗∗) ≥ 0 due to∆(s) ≤ 0 for ν∗(s) = 0. This proves (i) and
(ii) is proven by observing that (∗∗) = 0 and (∗) = (∗ ∗ ∗)
must also hold.

Lemma 4. Let x∗i , x
∗∗
i ∈ argminxi∈Xi〈θφ, xi〉 be two solu-

tions to the i-th factor for the current reparametrization θφ.
If ∆ is admissible w.r.t. x∗i then ∆ is also admissible w.r.t.
x∗∗i .

Proof. As both x∗i and x∗∗i are optimal to
θφ and x∗i is also optimal to θφ+∆, we have
〈∆(i,j), A(j,i)x

∗
i 〉 ≤ 〈∆(i,j), A(j,i)x

∗∗
i 〉. By Lemma 3,

(i) also 〈−∆(i,j), A(j,i)x
∗
i 〉 ≤ 〈−∆(i,j), A(j,i)x

∗∗
i 〉

holds, hence equality must hold. This shows
x∗∗i ∈ argminxi∈Xi〈θφ+∆, xi〉. Second, Lemma 3, (ii) im-
plies that ∆(s) = 0 whenever ν∗(s) 6= ν∗∗(s). This proves

that ∆(i,j)(s)

{
≥ 0, ν∗∗(s) = 1

≤ 0, ν∗∗(s) = 0
, ν∗∗ := A(i,j)x

∗∗
i .

Proof of Theorem 2. It is sufficient to show that for
marginally consistent θφ for S, the update ∆ computed by
Algorithm 1 on an arbitrary factor i ∈ F and some set J ⊂
NG(i) has the following properties: (i) L(φ) = L(φ+∆),
(ii) θφ+∆ is marginally consistent for S. For an easier proof,
we only consider the case J = {j}. The general case can be
proven analoguously.

(i) Let x∗i ∈ Si, x∗j ∈ Sj with A(i,j)x
∗
i = A(j,i)x

∗
j . We

have to show that

min
xi∈Xi

〈θφi , xi〉+ min
xj∈Xj

〈θφj , xj〉 = min
xi∈Xi

〈θφ+∆i , xi〉+ min
xj∈Xj

〈θφ+∆j , xj〉
(25)

Due to x∗i optimal to θφ+∆i , since by Lemma 4 the
update ∆ is admissible for x∗i , it remains to show
that x∗j ∈ argminxj∈Xj 〈θφ+∆, xj〉. As x∗j ∈
argminxj∈Xj 〈θφ, xj〉, it is sufficient to prove that x∗j ∈
argminxj∈Xj 〈−∆(i,j), A(j,i)xj〉. This follows from

Lemma 3 (i). We conclude by noting 〈θφi , x∗i 〉+ 〈θφj xj〉 =
〈θφ+∆i , x∗i 〉+ 〈θφ+∆j xj〉.

(ii) The computations in (i) show that
Si ⊆ argminxi∈Xi〈θ

φ+∆
i , xi〉 and Sj ⊆

argminxj∈Xj 〈θ
φ+∆
j , xj〉. The reparametrizations of

all other factors stay the same: θφ+∆k = θφk for k ∈ F\{i, j}.
Hence, θφ+∆ is marginally consistent for S after the
update.

9. Special Cases: Graphical Model Solvers
We will show how Algorithm 2 subsumes known

message-passing algorithms MSD [74], TRWS [48],
SRMP [49] and MPLP [28] for MAP-inference with com-
mon graphical models, considered in Example 1.

Solver Primitives (13) and (15). As it can
be seen, all factors in (5) are of the form
Xi = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
and conv(Xi) = {µ ≥ 0 : 〈1, µ〉 = 1} is a dim(Xi)-
dimensional simplex.

In all message passing algorithms [48, 49, 74, 28],
there are two types of invokations of Algo-
rithm 1 together with solutions of the accom-
panying optimization problem (13) and (15):

Alg. 1
input

Factor
Optimization

(13)

Reparametrization
adjustment (15)

i = u ∈ V
J = {uv}
uv ∈ E

min
xu∈Xu

{θφu(xu)}

∆∗(u,uv)(xu) =

min
x′u∈Xu

θφu(x
′
u)

− θφu(xu)

i = uv ∈ E
J = {u}
u ∈ V

min{θφu(xu, xv)}
(xu, xv) ∈ Xu ×Xv

∆∗(uv,u)(xu) =

min
x′uv∈Xuv

θφuv(x
′
uv)

− min
xv∈Xv

{θuv(xu, xv)}

MAP-inference Solvers. In Table 1 we state solvers
MSD [74], TRWS [48], SRMP [49] and MPLP [28] as spe-
cial cases of our framework. Factors are visited in the order
they are read in.



Algorithm Current
factor

Jreceive J1∪̇ . . . ∪̇Jl ω

MSD [74] u ∈ V NG(u) {uv} ⊂ NG(u) ω1, . . . = 1/|NG(u)|
uv ∈ E ∅ — —

MPLP [28] u ∈ V ∅ — —
uv ∈ E {u, v} {u}, {v} ω1 = 1/2 = ω2

TRWS [48]
SRMP [49]

forward pass:
u ∈ V {uv : v ∈ NG(u), v < u} {uv} : v ∈ NG(u), v > u ω1, . . . = 1/max({v∈NG(u):v>u},{v∈NG(u):v<u})

backward pass:
u ∈ V {uv : v ∈ NG(u), v > u} {uv} : v ∈ NG(u), v < u ω1, . . . = 1/max({v∈NG(u):v>u},{v∈NG(u):v<u})
uv ∈ E ∅ — —

Table 1. [74, 48, 49, 28] as special cases of Algorithm 2.

Remark 1. We have only treated the case of unary θu, u ∈ V
and pairwise potentials θuv, uv ∈ E here. MPLP [28] and
SRMP [49] can be applied to higher order potentials as well,
which we do not treat here.SRMP [49] is a generalisation of
TRWS [48] to the higher-order case.

Remark 2. There are convergent message-passing algo-
rithms such that factors comprise trees [72, 65]. Their anal-
ysis is more difficult, hence we omit it here.

Note that our framework generalizes upon [48, 49, 28,
74, 65, 72] in several ways: (i) Our factors need not be
simplices or trees. (ii) Our messages need not be marginal-
ization between unary/pairwise/triplet/. . . factors. (iii) We
can compute message updates on more than one coupling
constraint simultaneously, i.e. we may choose J1∪̇ . . . ∪̇Jl
in Algorithm 2 to be different than singleton sets. (i) and (ii)
affect LP-modeling, (iii) affects computational efficiency:
By considering multiple messages at once in Procedure 1,
we may be able to make larger updates∆∗, resulting in faster
convergence.


