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Applications of energy minimization problems: segmentation

and many others: optical flow, stereo, . . .
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Continuous energy:

min
u∈BV (Ω;{1,...,k})

Econt =

ˆ
Ω
|Du|+ W (x , u(x))dx .

Discrete Potts energy:

min
ua∈{e1,...,ek}∀a∈V

E (u) =
∑
a∈V

k∑
l=1

θa(l)ua(l) +
∑

(a,b)∈E

k∑
l=1

αab

2
|ua(l)− ub(l)|.

where G = (V ,E ) is a graph.

NP-hard
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Tractable relaxation
Continuous energy:

min
u∈BV (Ω;∆k )

Econt =

ˆ
Ω
|Du|+ W (x , u(x))dx .

Discrete Potts energy:

min
ua∈∆k∀a∈V

E (u) =
∑
a∈V

k∑
l=1

θa(l)ua(l) +
∑

(a,b)∈E

k∑
l=1

αab

2
|ua(l)− ub(l)|.

where G = (V ,E ) is a graph.

Polynomial time solvable
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Solution of relaxation at red points not integral anymore:

Partial Optimality:
Let u∗ ∈ argminu∈{e1,...,ek} E (u)

u∗relax ∈ argmin
u∈∆

|V |
k

E (u)

Does u∗relax(a) ∈ {e1, . . . , ek} ⇒ u∗relax(a) = u∗(a) hold?
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Benefits of partial optimality:

Obtain integral solution by solving the remaining variables with exact
methods1.

Speed up minimization2: Run an algorithm, stop after a few
iterations. Check for partial optimality. Iterate.

1Kappes et al., “Towards Efficient and Exact MAP-Inference for Large Scale
Discrete Computer Vision Problems via Combinatorial Optimization”.

2Alahari, Kohli, and Torr, “Reduce, Reuse & Recycle: Efficiently Solving
Multi-Label MRFs”.
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Related work concerning partial optimality:

Nemhauser and Trotter, “Vertex packings: Structural properties and
algorithms”

Boros and Hammer, “Pseudo-Boolean optimization”

Rother et al., “Optimizing Binary MRFs via Extended Roof Duality”

Kohli et al., “On partial optimality in multi-label MRFs”

Windheuser, Ishikawa, and Cremers, “Generalized Roof Duality for
Multi-Label Optimization: Optimal Lower Bounds and Persistency”

Kahl and Strandmark, “Generalized roof duality”

Kovtun, “Partial Optimal Labeling Search for a NP-Hard Subclass of
(max,+) Problems”
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Partial Optimality criterion: Given A ⊂ V , a labeling u∗|A on A is

partially optimal if for every labeling uoutside on V \A it holds that
u∗|A ∈ argmin{u : u|V\A=uoutside} E (u).

Tractable Partial Optimality Criterion: Bound away the effect of all
labelings on V \A and test.

Algorithmic idea: Prune nodes of the graph G until we arrive at a set
which has a labeling fulfilling the tractable partial optimality criterion.
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Original energy:

E (u) =
∑
a∈V

k∑
l=1

θa(l)ua(l) +
∑

(a,b)∈E

k∑
l=1

αab

2
|ua(l)− ub(l)|.

For every edge (a, b) ∈ E with a ∈ A, b /∈ A modify the unary costs

θ̃a =

{
θa(i) + αab , ũa(i) = 1
θa(i) , ũa(i) = 0

.

Intuition: We worsen the unaries for the current labeling.

Theorem: If u is optimal for the problem with modified unaries, then it is
partially optimal.
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Modified energy for a subset A and labeling ũ:

EA,ũ(u) =
∑
a∈A

k∑
l=1

θ̃a(l)ua(l) +
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Iteration 0

Outside node

Inside node

Boundary node
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Iteration 1
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Inside node
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Iteration 2

Outside node

Inside node

Boundary node
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Iteration 3

Outside node

Inside node
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Iteration 4

Outside node

Inside node

Boundary node
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Iteration 5

Outside node

Inside node

Boundary node
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Algorithm 1: Finding persistent variables

Compute solution of the relaxed problem on V .
Prune all non-integral variables.
while Variables had to be pruned do

Modify unary costs.
Compute solution of the relaxed problem on current set.
Prune all non-integral variables.
Prune all variables that have changed since last iteration.

end
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We compared our approach with the following methods:

MQPBO3.

Kovtun’s method4.

KMPQBO: Apply Kovtun’s method followed by MQPBO.

KMPQBO-N: Apply Kovtun’s method followed by N iterations of
MQPBO.

We used the OpenGM5 software package for these implementations. All
models were taken from the OpenGM benchmark website6.

3Kohli et al., “On partial optimality in multi-label MRFs”.
4Kovtun, “Partial Optimal Labeling Search for a NP-Hard Subclass of

(max,+) Problems”.
5OpenGM. hci.iwr.uni-heidelberg.de/opengm2/.
6OpenGM benchmark.

http://hci.iwr.uni-heidelberg.de/opengm2/?l0=benchmark.
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Color segmentation dataset7:

Dataset Ours KMQPBO KMQPBO100 Kovtun MQPBO

clownfish (12) 0.9852 0.7659 0.9495 0.7411 0.0467
crops (12) 0.9308 0.6486 0.8803 0.6470 0.0071
fourcolors(4) 0.9993 0.6952 0.7010 0.6952 0.0
lake (12) 0.9998 0.7613 0.9362 0.7487 0.0665
palm (12) 0.8514 0.6866 0.7192 0.6865 0.0
penguin (8) 0.9999 0.9240 0.9471 0.9199 0.0103
peacock (12) 0.1035 0.0559 0.1234 0.0559 0.0
snail (3) 0.9997 0.9786 0.9819 0.9778 0.5835
strawberry-glass (12) 0.9639 0.5502 0.5997 0.5499 0.0

7Lellmann and Schnörr, “Continuous Multiclass Labeling Approaches and
Algorithms”.
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Brain scan dataset8:

Dataset Ours KMQPBO KMQPBO100 Kovtun MQPBO

181× 217× 20 0.9968 0.9993 0.9994 0.9235 0.3886
181× 217× 26 0.9969 1 0.9996 0.9322 0.3992
181× 217× 36 0.9967 † † 0.9363 0.4020
181× 217× 60 0.9952 † † 0.9496 0.4106

8BrainWeb: Simulated Brain Database.
http://brainweb.bic.mni.mcgill.ca/brainweb/.
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Partial optimality over time:

1 s 10 s 100 s 1000 s 10000 s

25%

50%

75%

100%

time (seconds)

p
ar

ti
al

op
ti

m
al

it
y

KMQPBO-100
KMQPBO
MQPBO
KOVTUN

ours

Partial Optimality via Iterative Pruning for the Potts Model 14 / 12



Conclusion

Extend our approach to more general labeling problems.

Improve computational efficiency

Layered approach:

1. Kovtun’s method
2. Our method
3. ILP solver
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