Discrete Cycle-Consistency Based Unsupervised Deep Graph Matching

Siddharth Tourani^{1,2}, Muhammad Haris Khan¹, Carsten Rother², Bogdan Savchynskyy² Computer Vision and Learning Lab, IWR, Heidelberg University, Mohamed Bin Zayed University of Artificial Intelligence

Combinatorial solver:

$$\mathbf{x}(\mathbf{c}) = \operatorname*{arg\,min}_{\mathbf{x}\in\mathcal{X}} \langle \mathbf{c},\mathbf{x}
angle \ .$$

Differentiation of blackbox combinatorial solvers [1]:

С

Perturbed costs:
$$c^{\lambda} = c + \lambda \frac{d\mathcal{L}}{dx}(x(c))$$

Approx. loss gradient:

$$\frac{d\mathcal{L}(x(c))}{dc} := \frac{x(c^{\lambda}) - x(c)}{\lambda}$$

Can we train Our Proposed Architecture **COMBINATORIAL ALGORITHMS** (Im^1, KP^1) VGG16 CA (Im^2, KP^2) \mathcal{F}^2 -SA+RPE $\rightarrow \mathcal{U}^2$ Feature Extraction Im^1 , Im^2 -images, KP^1 , KP^2 -keypoints, SA+RPE - self-attention+relative position, CA - cross-attention, NC - node costs, EC - edge costs, QAP - quadratic assignment solver Results in an UNSUPERVISED way? Supervised BBGM NGMv2 GANN Unsupervised SCGM Dataset w/NGMv2PasVOC(Filt) $31.5 \\ 24.3 \\ 92.0 \\ 31.7$ 54.380.1PasVOC(Unf) Willow SPair-71K 55.4 97.2 82.1 $54.0 \\ 97.5 \\ 80.2$ 32.1^{*} 91.0 36.9 Cycle loss F1 score for Pascal VOC (Unfiltered) and average accuracy for other datasets. QAP 1-2 References _____ _____ _ _ _ _ _ _ [1] Differentiation of Blackbox Combinatorial Solvers, Vlastelica et al., ICLR 2019 S Ū costs [2] Deep Graph Matching Based of Blackbox Differentiation, Rolinek et al., ECCV 2020 eatu QAP 1-3 ▶ 2 [3] Graduated assignment for joint multi-graph matching and clustering with application to unsupervised graph matching, Wang et al., Neurips 2020 [4]. Self-supervised learning of visual graph matching", Liu, Chang, et al, ECCV 2022 _____ ____ ____ QAP 2-3

<u>supervised</u> BBGM [2] 55.4

SCGM w/BBGM 33.9

<u>unsupervised</u> Ours/CL-BBGM 43.5/41.7

	Olisupervise	u		
SCGM	CL-BBGM	CL-BBGM	\mathbf{CLUM} -L	\mathbf{CLUM}
w/BBGM		(SCGM)		(Ours)
57.1	58.4	58.8	59.7	62.4
33.9^{*}	38	41.7	40.3	43.5
91.3	91.6	93.2	93.4	95.6
38.7	40.6	41.2	41.6	${\bf 43.1}$

Take a picture to download the full paper

MOHAMED BIN ZAYED UNIVERSITY OF ARTIFICIAL INTELLIGENCE

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386