MPLP++: Fast, Parallel Dual Block-Coordinate Ascent (BCA) for Dense Graphical Models
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Objective

What:
- Fast and parallel algorithms for dense graphical models

Why:
- Dense graphical models are more expressive

- CNN+CREF training
-Huge datasets and Real Time Applications

Czech Republic

Motivation for Algorithm Structure

- The subgradient for the dual 1s sparse. Block Coordinate Ascent
methods are more efficient than sub-gradient based methods.

« TRWS [1] 1s the best performer for MAP inference.
- Dense graphs need no large sub-problem decompositions.

Comparing BCA Updates
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To be able to deal with arbitrary potentials, we address the dual prob- MPLP ++ -
lem: M (s) == OM(s), OM(s) = OM(s), Vs € Y,
0,(t) == 07 (t) + mingey[guo(s, t) — O7H(t) — 0}(s)], Vt € ¥, (H)
D(¢) == > minfy(s)+ > min 07 (s,1). (1) M (s) := 07(s) + minyey[guo(s, t) — 0% (t) — 0% (s)], Vs € V.
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Dual variables ¢,,_,, and ¢,_,,, are the Lagrange multipliers.

D(¢)is

-concave

- plece-wise linear
- non-smooth

We prove

With same input, at the end of the first iteration, D(¢™) < D(¢™).

Parallelization: CPU & GPU
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Non-incident edges can be processed in parallel. — We use maximum
matching solvers.
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(e) protein (100% density, 40 (f) worms (10% density, 556 vars,
vars, up to 200 states) 40-50 states)
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(9) pose (100% density, 600- (N) stereo (tsukuba, venus,
4800 nodes,13 states) teddy, grid graph, 12-60 states)

Figure 1: Dual versus time
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Figure 2: Obtained Speedups

Conclusions and Outlook

» Our approach 1s the state-of-the-art method for dense graphical
models (> 10% graph density), beating even TRWS.

» We give CPU and GPU parallel implementations provided at XXXX.
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