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Chapter 1

Bayesian Decision Making

1.1 Basics

• X 3 x – observation set;

• K 3 k – the set of object states;

• D 3 d – set of decisions;

• W : K ×D → R - penalty (loss) function;

• p(k, x) - joint probability distribution.

Bayesian strategy q : X → D:

Risk R(q) =
∑
x∈X

∑
k∈K

p(k, x)W (k, q(x))→ min
q

i.e. for a given x ∈ X holds p(k, x) = p(x)p(k|x) and thus

q(x) = d∗ = arg min
d∈D

∑
k∈K

p(x, k)W (k, d) = arg min
d∈D

p(x)
∑
k∈K

p(x|k)W (k, d) =

arg min
d∈D

∑
k∈K

p(x|k)W (k, d) (1.1)

Take-home formula:

d∗ = arg min
d∈D

∑
k∈K

p(k|x)W (k, d)

Example 1.1.0.1 (Maximum aposteriory decision). D = K,

W (k, d) =

{
1, d 6= k
0, d = k

(1.2)

Then
k∗ = arg min

k∈K

∑
k′ 6=k

p(k′|x) = arg min
k∈K

(1− p(k|x)) = arg max
k∈K

p(k|x) . (1.3)
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6 CHAPTER 1. BAYESIAN DECISION MAKING

Example 1.1.0.2 (Bayesian strategy with possible rejection). K = {1, 2}, D = K ∪ {]},

W (k, d) =

 0, d = k
1, d 6= k, d ∈ K
ε, d = ]

d∗ = arg min
d∈D

∑
k 6=d

p(k|x)W (k, d) = arg min

{
1− p(d|x), d 6= ]
ε, d = ]

Discussion:

• ε = 0 – always refuse;

• ε >= 1 - never refuse;

thus ε ∈ (0, 1).

Example 1.1.0.3 (Face Recognition). K = K+ ∪ K−, D = {+,−},

W (k, d) =

 a, d = −, k ∈ K+

b, d = +, k ∈ K−
0, otherwise

d = arg min
d∈D

∑
k∈K

p(k|x)W (k, d) = arg min

{
a ·
∑
k∈K+ p(k|x), d = −

b ·
∑
k∈K− p(k|x), d = +

Compare to the result of Example 1.1.0.1.

1.2 Deterministic vs. Random Strategies

Bayesian strategy is deterministic, i.e. q(x) is selected deterministically even though the same
x can correspond to different k. Let us show, that probabilistic strategy would be worse than
the deterministic one. Let qr : X ×D → R – randomized strategy (probability distribution).
Then

Rrand(qr) =
∑
x∈X

∑
k∈K

p(k, x)
∑
d∈D

qr(d|x)W (k, d)

Proposition 1.2.0.1. For any randomized qr exists deterministic q such that Rrand(qr) ≥
R(q).

B

Rrand(qr) =
∑
x∈X

∑
d∈D

qr(d|x)
∑
k∈K

p(k, x)W (k, d)

≥
∑
x∈X

min
d∈D

∑
k∈K

p(k, x)W (k, d) = R(q) , (1.4)

where q(x) = arg mind∈D
∑
k∈K p(x, k)W (k, d)

C
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Figure 1.1: Convex and non-convex cones in R3. The image is taken from [1]

1.3 Convexity Property of Bayesian Strategies

Let K = {1, 2}. Then

q(x) = arg min
d∈D

(pX ,K(x, 1)W (1, d) + pX ,K(x, 2)W (2, d))

= arg min
d∈D

(
pX/K(x/1)pK(1)W (1, d) + pX/K(x/2)pK(2)W (2, d)

)
= arg min

d∈D

(
pX/K(x/1)

pX/K(x/2)
pK(1)W (1, d) + pK(2)W (2, d)

)
= arg min

d∈D
(γ(x)c1(d) + c2(d)) . (1.5)

Thus
γ(x)c1(d∗) + c2(d∗) ≤ γ(x)c1(d) + c2(d),∀d ∈ D\d∗ (1.6)

A solution of this system of liner inequalities is a convex set (possibly empty). The only
non-trivial convex set in R 3 γ(x) is an interval.

d1 d2 d3 d4 d5

γ(x)

Definition 1.3.0.1. The function γ(x) =
pX/K(x/1)

pX/K(x/2) is very important in decision making

and has a special name likelihood ratio.

When additionally D = K all strategies need only to compare γ(x) to a given threshold.
Let us consider the general case (K 6= {1, 2}):

Proposition 1.3.0.2. Let q(x) be a Bayesian strategy and π(x) = (p(x|k), k ∈ K) be points
in a positive orthant of Π = R|K|. Then among optimal strategists exists a strategy, that
sets of points {π(x), q(x) = d} are convex cones (Each convex cone corresponds to a certain
decision d).

BLet n(d) - an index of the decision d. Than optimal strategy satisfies∑
k∈K

p(x|k)p(k)W (k, d∗) ≤
∑
k∈K

p(x|k)p(k)W (k, d), d ∈ D\d∗ (1.7)∑
k∈K

πk(x)p(k)W (k, d∗) <
∑
k∈K

πk(x)p(k)W (k, d), d ∈ D\d∗ (1.8)
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Since constraints hold also for π(x) = απ(x), thus they define a cone. Since constraints are
linear this cone is convex C

Corollary 1.3.0.1.

• Cones can be split by a hyperplane containing origin - (K− 1)-dimensional analogue of
γ(x);

• In conditions of Example 1.1.0.2 (possible rejection) - refuse to make any decision in
case p(x|k) < θ ∀k ∈ K - this not a bayesian strategy! Since {πk(x) < θ} is not a cone.

•
Example 1.3.0.4. K = {1, 2, 3, 4}, D = {1 − 2, 3 − 4}. Typical but incorrect solution
is to compute arg maxk p(k|x) and then decide whether it belongs to 1− 2 ar to 3− 4.
It is incorrect, because union of two convex cones is not a convex cone anymore. The
correct solution is...? :) See also Example 1.1.0.3

1.4 Discussion

An advantage of the Bayesian theory is its generality. Properties of X , K, D, W are quite
general (in fact, the theory is formulated even for general sets, not obligatory finite). They
can represent numbers or non-numbers (symbols in abstract alphabet, graphs, sequences,
functions, processes - almost anything!). The only numbers are W (k, d) and p(x, k).

Disadvantages:

1. W (k, d) is a numerical function. But not all losses are representable as numbers! Ex-
ample: medical diagnostics. Incorrect solution leads not only to additional costs for an
operation, but also can be dangerous (lead to death).

2. p(k, x) = p(k)p(x|k). The distribution p(x|k) is always reasonably formulated and
constitutes a model of an object. But p(k) can be unknown or even have no statistical
meaning. Example: radiolocation – is it an enemy airplane or not?

3. p(x|k; z) - distribution depends on unknown (even non-random) parameter z. Example:
OCR under condition of unknown language or/and font.

There is a Non-Bayesian decision theory. The most famous example: Neyman-Peason prob-
lem.

Bibliography

We mainly follow
[1] Schlesinger M.I., Hlavač V. Ten Lectures on Statistical and Structural Pattern Recogni-
tion. 2002 (c) Kluwer Academic Publishers.

Another book recommended for reading is:
[2] Richard O. Duda, Peter E. Hart, David G. Stork Pattern Classification (2nd Edition)
Available on-line:

http://www.ai.mit.edu/courses/6.891-f99/



Chapter 2

Two Statistical Models of the
Recognized Objects

2.1 Conditionally Independent Features

Let X = X1 × · · · × Xn 3 (x1, . . . , xn). Let also

p(x/k) =

n∏
i=1

p(xi|k).

– conditionally independent features.
NB! In general, however

p(x) 6=
n∏
i=1

p(xi) .

Let K = {1, 2}. Then a decision d ∈ D (for a Bayesian problem) should be selected if

θdmin < log
p(x|k = 1)

p(x|k = 2)
≤ θdmax . (2.1)

Let Xi = {0, 1} ∀i = 1, . . . , n. Then

log
p(x|k = 1)

p(x|k = 2)
=

n∑
i=1

log
p(xi|k = 1)

p(xi|k = 2)

=

n∑
i=1

xi log
p(1|k = 1)p(0|k = 2)

p(1|k = 2)p(0|k = 1)
+

n∑
i=1

log
p(0|k = 1)

p(0|k = 2)
. (2.2)

Thus (2.1) has a form

θdmin <

n∑
i=1

αixi ≤ θdmax .

In a special case D = K the set X should be splitted to X1 ∪ X2 such that

x ∈
{
X1, if

∑n
i=1 αixi ≤ θ

X2, if
∑n
i=1 αixi > θ

Exercise 2.1.0.1. Show that decision strategy has the same form also for the case when Xi
are general finite sets.
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10 CHAPTER 2. TWO STATISTICAL MODELS OF THE RECOGNIZED OBJECTS

2.2 Gaussian Probability Distribution

Let X = Rn - we consider probability densities p(x|k) instead of probabilities. Let

p(x|k) = C(A(k)) exp

(
−1

2
〈A(k)(x− µ), (x− µ)〉

)
– Gaussian distribution. Let K = D = {1, 2}. Then

log
p(x|k = 1)

p(x|k = 2)
= log(

C(A(1))

C(A(2))
) +

1

2
(〈A(2)(x− µ), (x− µ)〉 − 〈A(1)(x− µ), (x− µ)〉)

– quadratic function of x.
Thus recognition strategy again has a form: X = X1 ∪ X2 and

x ∈
{
X1, if

∑
i

∑
j αijxixj +

∑
i βixi ≤ θ

X2, if
∑
i

∑
j αijxixj +

∑
i βixi > θ

(2.3)

Let us introduce new variables yl := (xixj) for τl := αij and yl := 1 for τl := βi.
Then (2.3) can be rewritten as

y ∈
{
Y1, if

∑
l=1 τlyl ≤ θ

Y2, if
∑
l=1 τlyl > θ

Such a technique of variables change is called straightening of the feature space.

Bibliography

We mainly follow
[1] Schlesinger M.I., Hlavač V. Ten Lectures on Statistical and Structural Pattern Recogni-
tion. 2002 (c) Kluwer Academic Publishers.



Chapter 3

Learning in Pattern Recognition

The distribution p(x, k) is often unknown or known up to a parameter a, i.e. p(x, k; a).

3.1 Non-regularized learning

3.1.1 Maximal Likelyhood Estimation (MLE) of Parameters

Other names: Generative learning.

Given a multi-set L = ((xi, ki), i = 1, l).

a∗ = (a∗k : k ∈ K) = arg max
ak : k∈K

l∏
i=1

p(ki)p(xi|ki; ai)

= arg max
ak : k∈K

∏
x∈X

∏
k∈K

(p(k)p(x|k; a))α(x,k)

= arg max
ak : k∈K

∑
x∈X

∑
k∈K

α(x, k) log(p(k)p(x|k; a))

= arg max
ak : k∈K

∑
k∈K

∑
x∈X

α(x, k) log p(x|k; a) (3.1)

Thus

a∗k = arg max
ak

∑
x∈X

α(x, k) log p(x|k; ak) . (3.2)

In this case we do not need a priori probabilities p(k) during estimating a∗k.

Conditions: elements of the training multi-set are i.i.d. from the same distribution
as during use of the recognition system. Convergence to true parameter values for big l.
However the discribution is often unknown!

Example 3.1.1.1. OCR, ak - template of the character k ∈ K.

Example 3.1.1.2. Gaussian distribution - center in the mean value.

Example 3.1.1.3. Geologist.

11



12 CHAPTER 3. LEARNING IN PATTERN RECOGNITION

3.1.2 Learning According to a Non-random Set

Instead of random learning multi-set - well-selected, highly probable set, which represents
well the whole data.

a∗k = arg max
ak

min
x∈X (k)

p(x|k; ak) ,

where X (k)– representatives of k-th class.

Example 3.1.2.1. Gaussian distribution - center of the smallest circle containing all training
points.

3.1.3 Learning by Minimizing Empirical Risk

Problem is posed as minimization of the empirical risk – average loss value over the training
set:

R̂(a) =
1

l

l∑
i=1

W (ki, q(a)(xi))→ min
a

.

This formulation is connected to the algorithm (=recognition strategy) q and tries to tune
it to achieve minimal loss on the training data.

Example 3.1.3.1. Gaussian distributions, |K| = |D| = 2 - find a separating hyperplane.

3.2 Discussion: General Properties of Learning Prob-
lems

Generalization property. Capacity of strategies. Learning by minimizing an empirical risk
and just remembering the whole dataset.

3.3 Regularized Learning

3.3.1 Regularized MLE

Let p(k) = p(k; a). Typically p(k; a) = Ck · exp(−λk‖a‖). Then (3.1) takes the form

a∗ = (a∗k : k ∈ K) = arg max
ak : k∈K

∑
k∈K

∑
x∈X

α(x, k) log(p(k; a)p(x|k; ai))

= arg max
ak : k∈K

−λk‖a‖+
∑
x∈X

∑
k∈K

α(x, k) log p(x|k; a) (3.3)

If p(k; a) = Ck · exp(−λk‖ak‖) then

a∗k = arg max
ak

∑
x∈X

α(x, k)(−λk‖ak‖+ log p(xi|ki; ai)) .

– penalization of too complicated parameter values.
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3.3.2 Regularized discriminative learning

Let us consider p(x|k; a) = 1
C(x) exp(−W (k, q(a)(x))) (the more penalty the less probable is

x). Then from (3.3) follows

a∗ = (a∗k, k ∈ K) = arg max
ak,k∈K

−λ̃‖a‖+

l∑
i=1

log p(xi|ki; ai) = arg min
ak,k∈K

λ‖a‖+ R̂(a) (3.4)

Bibliography

[1] Schlesinger M.I., Hlavač V. Ten Lectures on Statistical and Structural Pattern Recognition.
2002 (c) Kluwer Academic Publishers.
[2] Herbrich R. Learning Kernel Classifiers. Theory and Algorithms (MIT,2002)
[3] Duda, Hart Pattern Classification and Scene Analysis, 1973
[4] Vapnik V. Statistical Learning Theory, 1998
[5] Scholkopf B., Smola A.J. Learning with Kernels. Support Vector Machines, Regularization,
Optimization, and Beyond 2001
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Chapter 4

Linear Discriminant Analysis

The core problem of this topic is
Given two sets X1 and X2 in RN . Find such α ∈ RN , that

〈α, x〉 > 0, x ∈ X1 (4.1)

〈α, x〉 < 0, x ∈ X2 . (4.2)

4.1 Motivation for LDA

• Bayesian decision strategies in probability space can be formulated in terms of discrim-
inating hyperplanes.

• More complicated strategies (having polynomial form) can be represented as hyper-
planes in higher dimensional spaces using straightening of the feature space.

• Two considered models (and there are more!) lead to linear discriminative strategies.

4.2 Equivalent Formulations in LDA

• affine vs. linear

〈α, x〉 > b, x ∈ X1

〈α, x〉 < b, x ∈ X2

⇒ Rn+1 3 y = (x,−1), β = (α, b)
〈β, y〉 > 0, y ∈ Y1 = (X1,−1)
〈β, y〉 < 0, y ∈ Y2 = (X2,−1)

•
one set vs. two
sets

〈α, x〉 > 0, x ∈ X1

〈α, x〉 < 0, x ∈ X2

⇒ y =

{
x, x ∈ X1

−x, x ∈ X2

〈α, y〉 > 0, y ∈ Y = X1

⋃
X−2

Another direction is straightforward.

X1

X2

X−
2

α

conv(Y )

15
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•
necessary and suf-
ficient condition
for existence of
the solution α

convex hull does contain an origin: 0̄ /∈ conv(Y )

•
Fischer classifiers
(template match-
ing)

X ⊂ Rn, K = {1, . . . ,K}
〈αk, x〉 > 〈αj , x〉 , x ∈ Xk, j 6= k
Introduce β = (α1, . . . , αK) ∈ RnK
and

Y = {(0, . . . , x︸︷︷︸
k

, 0, . . . , 0, −x︸︷︷︸
j

, 0, . . . , 0), x ∈ Xk, j ∈ K\{k}, k ∈ K}

Thus 〈β, y〉 > 0, y ∈ Y

4.3 Perceptron

Maybe the simplest algorithm for the LDA problem.

Perceptron algorithm

0: w := 0
t : while ∃x ∈ X 〈w, x〉 ≤ 0 w+ = x
t ≤ D2/ε2

D = supx∈X ‖x‖2, ε = minx∈conv(X ) ‖x‖.
B

‖wt+1‖2 = ‖wt + xt‖2 = ‖wt‖2 + 2 〈wt, xt〉︸ ︷︷ ︸
≤0

+‖xt‖2 ≤ ‖wt‖2 + ‖xt‖2 ≤ ‖wt‖2 +D2

Hence
‖wt+1‖2 ≤ t ·D2 (4.3)

Let w∗ = arg minx∈conv(X ) ‖x‖, thus ‖w∗‖ = ε and
〈

w∗

‖w∗‖ , x
〉
≥ ‖w∗‖ = ε, x ∈ X . Thus〈

w∗

‖w∗‖
, wt+1

〉
=

〈
w∗

‖w∗‖
, wt + xt

〉
=

〈
w∗

‖w∗‖
, wt

〉
+

〈
w∗

‖w∗‖
, xt

〉
≥
〈

w∗

‖w∗‖
, wt

〉
+ ε

From that follows: 〈
w∗

‖w∗‖
, wt+1

〉
≥ t · ε

and

t · ε ≤
〈

w∗

‖w∗‖
, wt+1

〉
≤ ‖wt+1‖ ·

∥∥∥∥ w∗

‖w∗‖

∥∥∥∥ ≤ ‖wt+1‖

Hence
‖wt+1‖2 ≥ t2 · ε2 (4.4)

Divide (4.3) to (4.4) and obtain t ≤ D2/ε2. C

•

Main property. |X | can be arbitrary large,
even infinite, continuum. Important is only ex-
istence of the oracle which finds x : 〈w, x〉 < 0.
Example: Separating 2 sets of balls
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• Size does not matter. If w is a solution, then aw is also a solution for any a > 0.

• Dual view. w =
∑N
i=1 x

i =
∑
x∈X n(x) · x. Thus C · w ∈ conv(X ) for some C > 0.

BSelect C = 1/
∑
x∈X n(x)) C · w =

∑
x∈X α(x) · x,

α(x) = n(x)/
∑
x∈X n(x), α ∈ ∆X – simplex in R|X |. C

• Dual perceptron algorithm:
0: n(x) := 0, x ∈ X
i : while ∃x ∈ X 〈w, x〉 < 0 n(x)+ = 1.

• Dual view to the decision rule:

〈w, x〉 =

〈∑
x∈X

n(x) · x, z

〉
=
∑
x∈X

n(x) 〈x, z〉 =
∑
x∈X

n(x)K(x, z) . (4.5)

There is no need to compute a straightening mapping x = (x1, · · · , xn) → φ(x) =
(φ1(x), . . . , φN (x)) and then a scalar product in RN (N >> n typically) - it is just
enough to know how to compute κ(x, z) – scalar product in the original space=kernel.

4.4 Kernels

κ : X×X → R is a kernel if a straightening mapping x = (x1, · · · , xn)→ φ(x) = (φ1(x), . . . , φN (x))
and scalar product 〈·, ·〉 in RN exist such that κ(x, z) = 〈φ(x), φ(z)〉.

Necessary conditions:

1. κ(x, x) ≥ 0

2. κ(x, z) = κ(z, x)

3. κ(x, z)2 = 〈φ(x), φ(z)〉2 ≤ ‖φ(x)‖2‖φ(z)‖2 = 〈φ(x), φ(x)〉 〈φ(z), φ(z)〉 = κ(x, x)κ(z, z)

These conditions are NOT SUFFICIENT!

Example 4.4.0.1. Consider κ - symmetric, but not positive semidefinite.

Definition 4.4.0.1. A square matrix κ is called positive semidefinite if all its eigenvalues
are real and non-negative

Theorem 4.4.0.1. A square x × n matrix κ is positive semidefinite iff ∀x ∈ Rn holds
xTκx ≥ 0.

Theorem 4.4.0.2. Let X be a non-empty set. A function κ : X × X → R is kernel iff
∀m ∈ N and all x1, . . . , xm ∈ X it gives rise to a symmetric positive semidefinite matrix
κ = (κ(xi, xj)).

Remark 4.4.0.1. Symmetric positive semidefinite means it can be represented (as any sym-

metric) as κ = V ΛV T , where Λ = (λj)
|X |
j=1 - diagonal matrix with eigenvalues of κ, V -

ortogonal and Λjj ≥ 0. Let us denote λt = Λtt and vt = (vti)
n
i=1 be columns of V . Let X be

finite. Let us construct

φ(xi) =
(√

λtvti

)n
i=1
∈ Rn, i = 1, . . . , n

Then

〈φ(xi), φ(xj)〉 =

n∑
t=1

λtvtivtj = (V ΛV T )ij = κij = κ(xi, xj) .
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4.4.1 Making Kernels from Kernels

Proposition 4.4.1.1. Let K1 and K2 be kernels over X × X , X ∈ Rn, then the following
functions are kernels:

1. κ(x, z) = κ1(x, z) + κ2(x, z)

2. κ(x, z) = aκ(x, z), a ≥ 0

3. κ(x, z) = κ1(x, z)κ2(x, z)

4. κ(x, z) = f(x)f(z), f : X → R

5. κ(x, z) = κ3(φ(x), φ(z)), φ : X → Rm and K3 - a kernel over Rm × Rm

6. K(x, z) = xTBz, B – symmetric positive semidefinite matrix.

BFix a finite set of points {x1, . . . , xl} and let κi be korresponding matrices obtained by
restricting corresp. kernels to these points. Let α be any vector in Rl. Then

1. αT (κ1 + κ2)α = αTκ1α+ αTκ2α ≥ 0

2. analog. to 1.

3. Based on Shur theorem ([2]), stating that elementwise product of matrices secures
positive semidefinitness property.

4.

l∑
i=1

l∑
j=1

αiαjκ(xi, xj) =

l∑
i=1

l∑
j=1

αiαjf(xi)f(xj) =

(
l∑
i=1

αif(xi)

) l∑
j=1

αjf(xj)

 =

(
l∑
i=1

αif(xi)

)2

≥ 0 (4.6)

5. Since K3 is a kernel, the matrix obtained by restricting K3 to the points φ(x1), . . . , φ(xl)
is positive semi-definite as required.

6. κ(x, z) = xTBz = xTV TΛV z = xTV T
√

Λ
√

ΛV z = xTATAz = 〈Ax,Az〉 – it is an
inner product using a feature mapping A.

C

Corollary 4.4.1.1. Let κ1 be a kernel over X × X and p(x) - a polynomial with positive
coefficients. Then the following funcitons are also kernels:

• κ(x, z) = p(κ1(x, z))

• κ(x, z) = exp(κ1(x, z))

• κ(x, z) = exp(−‖x− z‖2/σ2)

B

• follows from 1-4 of Proposition 4.4.1.1. 4-for a constant of polynomial.

• exp is a limit of a sum of positive polynomials. The set of kernels are closed with
respect to pointwise limit.

• exp(−‖x−z‖2/σ2) = exp(−‖x‖2/σ2) exp(−‖z‖2/σ2) exp(2 〈x, z〉 /σ2). Hence the proof
follows from 4,3,5.

C



4.5. SUPPORT VECTOR MACHINES 19

4.5 Support Vector Machines

Let us consider K = {−1, 1}, X = X−1 ∪X 1, classifier q(x) = sgn(〈w, x〉) =

{
1, x > 1
−1, x ≤ 1

Loss-function

W (k, d) =

{
0, k = d
1, k 6= d

(4.7)

Training set: L = ((xi, ki), i = 1,m).
We should solve

〈w, x〉 > 0, x ∈ X 1 (4.8)

〈w, x〉 < 0, x ∈ X−1 (4.9)

We know that it can be represented as

〈w, x〉 > 0, x ∈ X

Hence an empirical risk minimization problem:

Remp(qw) = min
w

1

m

m∑
i=1

W (ki, q(xi)) = min
w

1

m

m∑
i=1

I(
〈
w, xi

〉
≤ 0) (4.10)

This is a maximum feasible linear subsystem problem – NP-hard.
Regularized version

λ‖w‖+

m∑
i=1

I(〈w, x〉 ≤ 1)

is equivalent to (4.10) for λ small enough - also hopeless problem. We should consider
approximations.

Hinge Loss Consider

min
w,ξ

λ‖w‖+

m∑
i=1

ξi (4.11)

〈w, xi〉 ≥ 1− ξi, xi
ξi ≥ 0 , i = 1, . . . ,m

Proposition 4.5.0.2. Let (w, ξ) be any feasible point of (4.11). Then ξi ≥W (ki, q(xi)) for
W and q(x) defined above.

BIf 〈w, xi〉 > 1 then ξi = 0 = W (ki, q(xi))
Otherwise ξi = 1− 〈w, xi〉. If 〈w, xi〉 > 0 then ξi > 0 = W (ki, q(xi)).
If 〈w, xi〉 ≤ 0 then ξi ≥ 1 = W (ki, q(xi)) C

4.6 Anderson Problem (Multiclass Discriminative Learn-
ing)

From
〈
wk

i

, xi
〉
−
〈
wj , xi

〉
> 0 follows:
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
〈
w, φ(xi, ki, k′)

〉
> 1− ξi, k′ ∈ K\{ki},

ξi, i = 1, . . . ,m
λ‖w‖+

∑m
i=1 ξ

i

Disadvantage: very simple loss function (4.7). Let’s consider an arbitrary W (k, d) ≥ 0
such that W (k, k) = 0 k ∈ K:{ 〈

w, φ(xi, ki, k′)
〉
> W (ki, k′)− ξi, k′ ∈ K, i = 1, . . . ,m

λ‖w‖+
∑m
i=1 ξ

i (4.12)

NB! Constraint ξi ≥ 0 is implicitly included (consider k′ = k)

Proposition 4.6.0.3. Let w, ξ be a feasible point of (4.12). Then ξi ≥W (ki, q(xi)).

Proof is absolutely analogous to the proof of Proposition 4.5.0.2.

4.7 Regularizers

4.7.1 `2-Regularizer

Rewrite the problem (4.12) in a compact way and consider an `2-regularization.

1

2
λ‖w‖2 +

m∑
i=1

ξi (4.13)〈
w, xki

〉
> ∆ki − ξi, k ∈ K, i = 1, . . . ,m (4.14)

Lagrangian:

F (w, ξ, α) =
1

2
λ‖w‖2 +

m∑
i=1

ξi +
∑
k,i

αki(∆ki − ξi −
〈
w, xki

〉
), α ≥ 0 (4.15)

∂F

∂w
= λw −

∑
k,i

αkixki = 0⇒ w =
∑
k,i

αkixki/λ (4.16)

∂F

∂ξi
= 1−

∑
k

αki = 0⇒
∑
k

αki = 1– simplex constraint ∀i = 1, . . . ,m. (4.17)

Plugging in w

1

2
λ‖w‖2 =

∑
k,i

∑
k′,i′

αkiαk
′i′ xkixk

′i′︸ ︷︷ ︸
K(xki,xk′i′ )

/(2λ) =
1

2λ
αTKα

and changing sign and min to max we receive a dual objective:

min
α

1

2λ
αTKα−

∑
k,i

αki∆ki (4.18)

∑
k

αki = 1, i = 1, . . . ,m (4.19)

α ≥ 0 . (4.20)

Both primal and dual are QP. Number of constraints of the primal is equal to the number
of vars of the dual - one can switch between them to achieve the best optimization efficiency.
The dual is representable in terms of kernel K, hence the kernel trick can be applied as in
the case of a perceptron.
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4.7.2 `1-Regularizer

We denote | · | an `1-norm.

λ|w|+
m∑
i=1

ξi (4.21)〈
w, xki

〉
> ∆ki − ξi, k ∈ K, i = 1, . . . ,m (4.22)

Let us show that this is an LP-problem. Let w = a− b and a > 0 and b > 0:

λ(a+ b) +

m∑
i=1

ξi (4.23)〈
a− b, xki

〉
> ∆ki − ξi, k ∈ K, i = 1, . . . ,m (4.24)

a ≥ 0, b ≥ 0 (4.25)

Similar considerations lead to the dual:

max
∑
k,i

αki∆ki (4.26)

λI−
∑
k,i

αkixki ≥ 0 (4.27)

λI +
∑
k,i

αkixki ≥ 0 (4.28)

∑
k

αik = 0 (4.29)

The dual is not representable through a kernel :(. But the parameters vector w is typically
more sparse then in `2-case.

4.7.3 Forcing Dual Sparsity (ν-SVM)

For computational reasons (computing with kernels) one would like to get a sparse dual solu-
tion - only small amount of coordinates of α are non-zero. Recall (4.16): w =

∑
k,i α

kixki/λ.
Plug it in to constraints of (4.13) and select an `1-regularizer for dual variables:

minλ|α|+
m∑
i=1

ξi (4.30)

∑
i′,k′

αki
〈
xk
′i′ , xki

〉
︸ ︷︷ ︸
κ(xk′i′ ,xki)

≥ ∆ki − ξi, k ∈ K, i = 1, . . . ,m (4.31)

α ≥ 0 (4.32)

- again an LP problem. However, it does not possess a primal variable w sparseness
property anymore.
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Chapter 5

Hidden Markov Models
(Acyclic)

Let X̄ = X 1 ×X 2 . . .Xn 3 x̄ be the observation set, x̄-observed sequence.
Let K̄ = K1×K2 . . .Kn 3 k̄ the set of objects states (labelings, sequences of latent variables),
k̄-sequence of hidden (latent) variables or labeling.

p(x̄, k̄) = p0(k0)

n∏
i=1

pi(xi, ki|ki−1) (5.1)

– joint probability distribution.

Remark 5.0.3.1. If X̄ or infinite, then p(x̄, k̄) is a density of a probability distribution. The
set K̄ is considered to be finite here.

For the sake of notation (and without loss of generality) we will suppose that X i = X j = X
and Ki = Kj = K.

Example 5.0.3.1. Medical diagnistics: i - time, xi - results of analysis, ki - patient state.

Example 5.0.3.2. Recognition of a sequence of character images. K - set of characters, alpha-
bet, X - set of charactes templates, p(x|k) - distribution of the image x given character k, i.e.
template images plus some kind of noise. pi(xi, ki|ki) = pi(xi, ki|ki) = p(xi|ki)p(ki|ki−1).

Example 5.0.3.3. Voice recognition: K - set of phonems, X - set of corresponding acoustic
signals. In this case, however such factorization pi(xi, ki|ki) = p(xi|ki)p(ki|ki−1) is not valid
(acoustic signal of a given phoneme depends on the previous phoneme) as well.

Example 5.0.3.4. License plates recognition. X and K similar to the one in Example 5.0.3.2,
but pi(ki|ki) is dependent on the currect position i.

23



24 CHAPTER 5. HIDDEN MARKOV MODELS (ACYCLIC)

5.1 Inference For HMM(A)

5.1.1 Maximum A Posteriory Estimation of the Sequence of Hidden
States (MAP-Inference)

Let D = K̄ and the loss function be W (k̄, k̄∗) =

{
0, k̄ = k̄∗

1, k̄ 6= k̄∗
. Then average risk mini-

mization problem is MAP problem, i.e.:

k̄∗ = arg max
k̄∈K̄

p(k̄|x̄) = arg max
k̄∈K̄

p(x̄, k̄)

p(x̄)
= arg max

k̄∈K̄
p(x̄, k̄) (5.2)

= arg max
k̄∈K̄

p0(k0)

n∏
i=1

pi(xi, ki|ki−1) = arg max
k̄∈K̄

q0(k0) +

n∑
i=1

qi(ki, ki−1) , (5.3)

where q0(k0) = log p0(k0) and qi(ki, ki−1) = log pi(xi, ki|ki−1).
Lets use associative, distributive and commutative properties of operations max and +:

k̄∗ = arg max
kn,...,k1


n∑
i=2

qi(ki, ki−1) + max
k0∈K

(q1(k1, k0) + q0(k0)))︸ ︷︷ ︸
Q1(k1)

 (5.4)

= arg max
kn,...,k2


n∑
i=3

qi(ki, ki−1) + max
k1∈K

(q2(k2, k1) +Q1(k1)))︸ ︷︷ ︸
Q2(k2)

 (5.5)

. . . (5.6)

Summarizing: we’ve got an iterative algorithm:

1. Q0(k0) = q0(k0)

2. Qi(ki) = maxki−1∈K qi(ki, ki−1) +Qi−1(ki−1).

3. Q = maxkn∈KQn(kn).

Complexity of the algorithm O(nK2).

5.1.2 Recognition of Stochastic Finite Autonomous Automaton, (+,×) al-
gorithm

k0

ki−1

ki

xi

Problem: Given m automata, i.e. pd(x̄, k̄), d ∈ D{1, . . . ,m} – the set of decisions. Find
which of the automata generated an observed sequence x̄.

Example 5.1.2.1. Language recognition (speech, text or image).
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Reasonable loss function is W (d, d′) =

{
0, d = d′

1, d 6= d′
.

A max-probability stategy correspond to such a loss:

k̄∗ = arg max
d∈D

p(d|x̄) = arg max
d∈D

p(x̄, d)

p(x̄)
= arg max

d∈D
p(x̄, d).

p(x̄, d) =
∑
k̄∈K̄

pd(x̄, k̄) .

We will omit the superscript d in pd(x̄, k̄).

=
∑
k̄∈K̄

p(x̄, k̄) =
∑
k̄∈K̄

p0(k0)

n∏
i=1

pi(xi, ki|ki−1) (5.7)

denoting q0(k0) = p0(k0) and qi(ki, ki−1) = pi(xi, ki|ki−1) receive

=
∑
k̄∈K̄

q0(k0) ·
n∏
i=1

qi(ki, ki−1) (5.8)

using associative, distributive and commutative properties of operations
∑

and ×:

= arg
∑

kn,...,k1


n∏
i=2

qi(ki, ki−1) ·
∑
k0∈K

(q1(k1, k0) · q0(k0)))︸ ︷︷ ︸
Q1(k1)

 (5.9)

= arg
∑

kn,...,k2


n∏
i=3

qi(ki, ki−1) ·
∑
k1∈K

(q2(k2, k1) ·Q1(k1)))︸ ︷︷ ︸
Q2(k2)

 (5.10)

. . . (5.11)

Summarizing: we’ve got an iterative algorithm:

1. Q0(k0) = q0(k0)

2. Qi(ki) =
∑
ki−1∈K qi(ki, ki−1) ·Qi−1(ki−1).

3. Q =
∑
kn∈KQn(kn).

5.1.3 Generalized Computational Scheme, (⊕,⊗)
The triple (W,⊕,⊗) of the set W and two operations ⊕ and ⊗ is called a commutative
semiring with one if

1. Operations ⊕ and ⊗ are associative, distributive and commutative.

2. There exist neutral elements (called zero and one) for both operations.
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General iterative scheme:

1. Q0(k0) = q0(k0)

2. Qi(ki) =
⊕

ki−1∈K
qi(ki, ki−1)⊗Qi−1(ki−1).

3. Q =
⊕
kn∈K

Qn(kn).

Important semirings:

1. (R,max,+)

2. (R,min,+)

3. ([0, 1],max,×)

4. (0, 1,∨,∧)

5. (R,max,min)

6. (R,min,max)

Exercise 5.1.3.1. Write down corresponding algorithmic schemes and find out their meaning.
Figure out zero and one elements for each of the semirings.

5.1.4 Locally Additive Penalty, Marginalization Problem

The MAP estimation of the hidden sequence k̄ correspond to typically very non-natural loss,
which penalizes equally ALL incorrect inference results. Let us consider a wide class of widely
usesd loss functions of the form

W (k̄, k̄′) =
n∑
i=0

wi(ki, k
′
i) . (5.12)

The corresponding Bayesian problem reads

k̄∗ = arg min
k̄′∈K̄

∑
k̄∈K

p(k̄|x̄)W (k̄, k̄′) (5.13)

= arg min
k̄′∈K̄

∑
k̄∈K

p(k̄|x̄)

n∑
i=1

wi(ki, k
′
i)

= arg min
k̄′∈K̄

n∑
i=0

∑
ki∈K

wi(ki, k
′
i)

∑
k̄′′∈Ki(ki)

p(k̄′′|x̄)

︸ ︷︷ ︸
pi(ki|x̄)

,
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where Ki(ki) is the set of hidden sequences containing ki at the i-th place. Hence the initial
problem splits into n independent small subproblems given marginal probalities pi(ki|x̄):

k∗i = arg min
k′i∈K

∑
ki∈K

wi(ki, k
′
i)pi(ki|x̄) . (5.14)

The only relatively difficult part is to compute pi(ki|x̄). This problem is commonly nown
as marginalization problem. For our model it can be done solved quite efficiently by the
forward-backward Algorithm 1.

Algorithm 1 Forward-backward (+,×) algorithm

1. Compute QFi using forward variant of the (+,×) algorithm (q0(k0) = p0(k0) and
qi(ki, ki−1) = pi(xi, ki|ki−1) ):

(a) QF0 (k0) = q0(k0)

(b) QFi (ki) =
∑
ki−1∈K qi(ki, ki−1) ·QFi−1(ki−1).

2. Compute QBi using backward variant of the (+,×) algorithm

(a) QBn (k) = 1, k ∈ K
(b) QBi (ki) =

∑
ki+1∈K qi(ki+1, ki) ·QBi+1(ki+1).

(c) QB0 =
∑
k1∈K q0(k0)QB1 (k1).

3. Compute marginals pi(ki|x̄) = QFi (ki) ·QBi (ki).

Exercise 5.1.4.1. Consider generalization of this computational scheme for the case when loss
depends also on pair of neighboring hidden states, i.e.
W (k̄, k̄′) =

∑n
i=0 wi(ki, k

′
i) +

∑n
i=1 wi−1,i(ki−1, ki, k

′
i−1, k

′
i).
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5.2 Discriminative Learning of HMM. Structural SVM

Since we learned already one of the simplest (but indeed quite powerful) structural model
(Hidden Markov Chains) let us consider approaches to learn its parameters.

First we will cooncentrate on a discriminative learning of the MAP classifier. We will
denote X̄ , K̄ sets of observable and hidden sequences as before. The Markovian probabil-
ity distribution p(x̄, k̄;w) is supposed to be known up to a parameter vector w. Denoting
qi(ki, ki−1, xi;w) = log pi(ki, xi|ki−1;w) the MAP estimation problem reads

k̄∗ = arg max
k̄∈K

p(k̄, x̄) = arg max
k̄∈K

q0(k0;w) +

n∑
i=1

qi(ki, ki−1, xi;w)
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for a given sequence x̄. We will assume that qi(ki, ki−1, xi;w) linearly depends on w, thus

q0(k0;w) +

n∑
i=1

qi(ki, ki−1, xi;w) =
〈
w, φ(k̄, x̄)

〉
.

Non-regularized discriminative learning problem Given the learning sample L =
{(k̄j , x̄j), j = 1 . . . ,m} find parameter vector w such that〈

w, φ(k̄j , x̄j)
〉
>
〈
w, φ(k̄, x̄j)

〉
, k̄ ∈ K\{k̄j}, j = 1 . . . ,m .

5.2.1 Structural Perceptron

Our aim is to solve〈
w, φ(k̄j , x̄j)

〉
−
〈
w, φ(k̄, x̄j)

〉
> 0 , k̄ ∈ K\{k̄j}, j = 1 . . . ,m .

Crusial difficulty: extremely (exponentially) large number of inequalities. We know
however, that it is not a problem for the perceptron algorithm as soon as an oracle able to
find a non-satisfied inequality is available.

1. Select initial w0 = 0.

2. Iterate t:

(a) Find unsatisfied inequality:

k̄∗j = arg max
k̄∈K

〈
wt, φ(k̄, x̄j)

〉
, j = 1 . . . ,m. (5.15)

(b) if ∃l ∈ {1 . . . ,m} : k̄∗l 6= k̄l

wt+1 := wt + φ(k̄l, x̄l)− φ(k̄, x̄l)
else Exit.

Remark 5.2.1.1. A convex hull of the set of vector ψ(k̄l, k̄, x̄l) := φ(k̄j , x̄l) − φ(k̄, x̄l), k̄ ∈
K\{k̄j}, l = 1 . . . ,m should not contain an origin (it is called a separable case in literature).

Remark 5.2.1.2. It is not necessary to compute (5.15) for each j = 1 . . . ,m (can be quite
expensive for a large learning sample), it is enough to find a least one l for which k̄∗l 6= k̄l

holds. Number of iterations however can depend on the choice of l a lot.

5.2.2 Structural SVM

The same reasoning as for the non-structural multi-class SVM (Fisher classifier) leads to the
following formulation (`2-regularization):

min
w,ξ

1

2
‖w‖2 +

C

m

m∑
j=1

ξj (5.16)

s.t.
〈
w,ψ(k̄j , k̄, x̄j)

〉
≥ ∆k̄,j − ξj , k̄ ∈ K, j = 1 . . . ,m , (5.17)

where ψ(k̄j , k̄, x̄j) = φ(k̄j , x̄j)− φ(k̄, x̄j) and ∆k̄,j = W (k̄, k̄j) -loss such that W (k̄, k̄′) = 0 if
k̄ = k̄′ and W (k̄, k̄′) > 0 otherwise.

Again the same difficulty as for the structural perceptron: exponentially large number
of inequalities. We will see however, that the overall problem is solvable as soon as an oracle
able to find a non-satisfied inequality is available.
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Let us consider the problem which should be solved by such an oracle:

ξ∗j = max
k̄∈K

(∆k̄,j −
〈
w,ψ(k̄j , k̄, x̄j)

〉
)

= −
〈
w, φ(k̄j , x̄j)

〉
+ max

k̄∈K
(
〈
w, φ(k̄, x̄j)

〉
+ ∆k̄,j)

= −
〈
w, φ(k̄j , x̄j)

〉
+ max

k̄∈K
(q(k̄, x̄j ;w) + ∆k̄,j) (5.18)

If ∆k̄,j = W (k̄, k̄j) =
∑n
i=0 wi(ki, k

′
i) +

∑n
i=1 wi−1,i(ki−1, ki, k

′
i−1, k

′
i)) (locally additive loss)

we can assign qji (ki, ki−1, x̄
j ;w) = qi(ki, ki−1, x̄

j ;w) − wi(ki, k
j
i ) − wi−1,i(ki−1, ki, k

j
i−1, k

j
i )

and solve a usual MAP estimation problem

max
k̄∈K

(qj0(k0;w) +

n∑
i=1

qji (ki, ki−1, x
j
i ;w)) .

In this notation

ξ∗j = −
〈
w, φ(k̄j , x̄j)

〉
+ max

k̄∈K
(qj0(k0;w) +

n∑
i=1

qji (ki, ki−1, x
j
i ;w)) . (5.19)

Hence, the oracle is solvable at least for a locally additive loss.

5.2.3 Cutting Plane Algorithm

1. Select the initial w̃ and the initial constraint sets Ĩj = {(k̄j , j)}, Ĩ = ∪mj=1Ĩj .

2. Optimize (5.16) for a fixed w̃ with respect to ξ, i.e. compute ξ̃ = (ξ̃j) according
to (5.19), i.e.

ξ̃j = −
〈
w̃, φ(k̄j , x̄j)

〉
+ max

k̄∈K
(qj0(k0; w̃) +

n∑
i=1

qji (ki, ki−1, x
j
i ; w̃))

Let also

˜̄kj = arg max
k̄∈K

(qj0(k0; w̃) +

n∑
i=1

qji (ki, ki−1, x
j
i ; w̃))

be the optimal (MAP) sequences corresponding to ξ̃j .

3. Increase a constraint set Ĩj := Ĩj ∪ {(˜̄kj , j)}.

4. Compute a dual to the restricted primal

min
w,ξ

QP (w̃, ξ̃) = min
w,ξ

1

2
‖w‖2 +

C

m

m∑
j=1

ξj (5.20)

s.t.
〈
w,ψ(k̄j , k̄, x̄j)

〉
≥ ∆k̄,j − ξj , k̄ ∈ Ĩj , j = 1 . . . ,m , (5.21)
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Abusing the notation the dual reads:

max
α

QD(α) = max
α

∑
l∈Ĩ

αl∆
l − 1

2

∑
l∈Ĩ

∑
s∈Ĩ

αlαsκls (5.22)

∑
l∈Ĩj

αl =
C

m
, j = 1 . . .m (5.23)

αl ≥ 0, l ∈ Ĩ (selected constraints) (5.24)

Here κls =
〈
ψ(k̄j , k̄, x̄j), ψ(k̄j

′
, k̄′, x̄j

′
)
〉

for l = (k̄, j) and s = (k̄′, j′). Let α̃ be the

solution of (5.22).

5. If
QP (w̃, ξ̃)−QD(α̃) ≤ ε (5.25)

Exit
else
w̃ :=

∑
l∈Ĩ αlψ(k̄j , k̄, j), where l = (k̄, j);

goto step 2.

Remark 5.2.3.1. Condition (5.25) is sufficient to get a precision ε with respect to the primal
objective (5.16) value. This is due to the fact that (w̃, ξ̃) and α̃ are feasible points for
the initial non-restricted primal (5.16) and its dual ((5.22) for Ĩ = I). Let Q∗ be an
optimal objective value of the initial non-restricted problem (5.16). Then QP (w̃, ξ̃) ≥ Q∗,
QD(w̃, ξ̃) ≤ Q∗ and QP (w̃, ξ̃) ≥ QD(α̃). Hence the condition (5.25) means ε ≥ QP (w̃, ξ̃) −
QD(α̃) ≥ QP (w̃, ξ̃)−Q∗.

QP

QP -restricted

QD

QD-restricted

(w̃, ξ̃)

α̃

Remark 5.2.3.2. With `2-regularizer as in (5.16) one can use a kernel trick, as it is clear
from (5.22).

Remark 5.2.3.3. It is not obligatory to switch to the dual at the step 4 of the algorithm, since
we need only optimal value QD(α̃) of the dual restricted problem (5.22) and corresponding
optimal parameter vector w̃. Due to the strong duality both can be achieved by minimizing
the primal restricted problem (5.20).

This remark is especially important for `1-regularization, since in that case it is a non-
trivial procedure of getting w̃ from the dual solution (see lecture about SVM’s and `1 regu-
larization therein).
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5.3 Generative Learning of Hidden Markov Chains

We will denote X̄ , K̄ sets of observable and hidden sequences as before. The Markovian
probability distribution p(x̄, k̄;w) is supposed to be known up to a parameter vector w. We
additionally suppose that

p(x̄, k̄;w) = p0(k0;w)

m∏
i=1

pi(xi, ki|ki−1;w) = p0(k0;w)

m∏
i=1

pi(xi, ki, ki−1;w)∑
x∈X ,k∈K pi(x, k, ki−1;w)

,

where we defined conditional probabilities pi(xi, ki|ki−1;w) via joint probabilities pi(x, k, ki−1;w).
Given the learning sample L = {(k̄j , x̄j), j = 1 . . . ,m} we would like find parameter

vector w maximizing the regularized likelihood of the sample, i.e.:

w∗ = arg max
w

R(w)·
m∏
j=1

p(k̄j , x̄j ;w) = arg max
w

R(w)·
m∏
j=1

p0(kj0;w)

n∏
i=1

pi(x
j
i , k

j
i , k

j
i−1;w)∑

x∈X ,k∈K pi(x, k, k
j
i−1;w)

= arg max
w

λ|w|+
m∑
j=1

log p0(kj0;w) +

n∑
i=1

log
pi(x

j
i , k

j
i , k

j
i−1;w)∑

x∈X ,k∈K pi(x, k, k
j
i−1;w)

(5.26)

Function (5.26) is convex for many important distributions pi(x
j
i , k

j
i , k

j
i−1;w) and thus can

be optimized with convex optimization techniques. We consider several important special
cases when λ = 0. (Case of λ 6= 0 will be considered later on.) Moreover, to simplify
formulas we will always consider w to be consistent of two parts, i.e. w = (w0, w

′), such that
p0(kj0;w) = p0(kj0;w0) and pi(x

j
i , k

j
i , k

j
i−1;w) = pi(x

j
i , k

j
i , k

j
i−1;w′). Thus the problem (5.26)

splits into two independent subproblems

w∗0 = arg max
w0

m∑
j=1

log p0(kj0;w) (5.27)

and

w′
∗

= arg max
w′

m∑
j=1

n∑
i=1

log
pi(x

j
i , k

j
i , k

j
i−1;w′)∑

x∈X ,k∈K pi(x, k, k
j
i−1;w′)

. (5.28)

In what follows we will consider only the second part as typically more difficult to learn.

5.3.1 Time-dependent parameters

Let w = (w0, w1, . . . , wn) and pi(xi, ki, ki−1;w) = pi(xi, ki, ki−1;wi). In this case (5.28) splits
into independent subproblems for each i = 0, . . . , n:

w∗i = arg max
wi

m∑
j=1

log
pi(x

j
i , k

j
i , k

j
i−1;w)∑

x∈X ,k∈K pi(x, k, k
j
i−1;w)

= arg max
wi

∑
x∈X ,k∈K,k′∈K

αi(x, k, k
′) log

pi(x, k, k
′;wi)∑

x′′∈X ,k′′∈K pi(x
′′, k′′, k′;wi)

, (5.29)
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where αi(x, k, k
′) determines how many times the triple (x, k, k′) happen in the training

sample L in the i-th time step.

5.3.2 Non-parametric estimation

Let wi = pi, i.e. one wants to estimate numbers pi(x, k, k
′) for all x ∈ X , k ∈ K, k′ ∈ K. To

compute (5.29) in this case we need the following famous lemma

Lemma 5.3.2.1 (Shannon). For all βi ≥ 0, i = 1, . . . , l such that

l∑
i=1

βi = 1 (5.30)

and all αi ≥ 0, i = 1, . . . , l holds

l∑
i=1

αi log βi ≤
l∑
i=1

αi log
αi∑l
i=1 αi

.

BFunction f(β) =
∑l
i=1 αi log βi is concave (since log is concave and αi ≥ 0), thus it

achieves its global optimum over the convex set defined by constraint (5.30) and βi ≥ 0.
Taking into account condition (5.30) the (partial - without taking into account positivity
constraints βi ≥ 0 ) Lagrangian reads

F (β, γ) =

l∑
i=1

αi log βi + γ(1−
l∑
i=1

βi)

Its partial derivative reads

∂F

∂βi
=
αi
βi
− γ .

Assigning it to zero leads to βi ∝ αi, and since αi ≥ 0 positivity constraint is satisfied,
which means this local minimum correspond to the constrained global one. Applying con-
straint (5.30) results in

βi =
αi∑l
i=1 αi

.

C
Taking into account that

∑
x∈X ,k∈K

pi(x, k, k
′)∑

x′′∈X ,k′′∈K pi(x
′′, k′′, k′)

= 1, k′ ∈ K (these are β’s from Lemma 5.3.2.1)

and applying Lemma 5.3.2.1 to (5.29) we conclude that

pi(x, k, k
′) ∝ αi(x, k, k′)

maximizes (5.29). It means, pi(x, k, k
′) are equal to frequencies of (x, k, k′) in the i-th time

step in the learning sample L.
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5.3.3 Conditionally independent state and observation

Let now pi(x, k|k′) = pi(k|k′)pi(x|k′;wi), i.e. k and x are conditionally independent given
k′ (think about sequence of observable character images corresponding to English words).
In what follows we omit index i and denote pi(k|k′) as pK(k|k′) to distinguish between two
probability distributions pi(k|k′) and pi(x|k′;wi). The latter distribution will be used without
any additional index.

Hence

p(x, k|k′) = pK(k|k′)p(x|k′;w) =
pK(k, k′)∑

k′′∈K pK(k′′, k′)
· p(x|k′;w) .

After plugging this in into (5.29) it reads

(w∗, p∗K) = arg max
w,pK

∑
x∈X ,k∈K,k′∈K

αi(x, k, k
′) log

(
pK(k, k′)∑

k′′∈K pK(k′′, k′)
· p(x|k′;w)

)

= arg max
w,pK

∑
x∈X ,k∈K,k′∈K

αi(x, k, k
′)

(
log

pK(k, k′)∑
k′′∈K pK(k′′, k′)

+ log p(x|k′;w)

)
. (5.31)

The problem (5.31) splits into two independent subproblems for parameters w∗ and p∗K
respectively

w∗ = arg max
w

∑
x∈X ,k∈K,k′∈K

αi(x, k, k
′) log p(x|k′;w) = arg max

w

∑
x∈X ,k′∈K

αi(x, k
′) log p(x|k′;w) ,

(5.32)
(where αi(x, k

′) =
∑
k∈K αi(x, k, k

′)) and

p∗K = arg max
pK

∑
x∈X ,k∈K,k′∈K

αi(x, k, k
′) log

pK(k, k′)∑
k′′∈K pK(k′′, k′)

= arg max
pK

∑
k∈K,k′∈K

αi(k, k
′) log

pK(k, k′)∑
k′′∈K pK(k′′, k′)

. (5.33)

where αi(k, k
′) =

∑
x∈X αi(x, k, k

′). The first equation states a typical maximal likelihood
estimation problem (compare to (3.2)), the second equation has the same form as (5.29)
and thus the approach of the paragraph Non-parametric estimation can be applied here
as well. As a result we receive that the estimate for pK(k, k′) are frequencies of (k, k′)
corresponding to the given time step i.

5.3.4 Time homogeneous case

Let us consider another typical situation when probability distribution pi(xi, ki, ki−1;w) is
the same for all time steps i, i.e.pi(xi, ki, ki−1;w) = p(xi, ki, ki−1;w). In this case

w∗ = arg max
w

m∑
j=1

n∑
i=1

log
p(xji , k

j
i , k

j
i−1;w)∑

x∈X ,k∈K p(x, k, k
j
i−1;w)

= arg max
w

∑
x∈X ,k∈K,k′∈K

α(x, k, k′) log
p(x, k, k′;w)∑

x′′∈X ,k′′∈K p(x
′′, k′′, k′;w)

, (5.34)

where α(x, k, k′) determines how many times the triple (x, k, k′) appeared in the learning
sample L WITHOUT taking into account the time step index i.
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Comparing (5.34) to (5.28) one see that both special cases Non-parametric estimation
and Conditionally independent state and observation can be treated exactly in the
same way as before (for Time-dependent parameters case) with the only difference in
values α(x, k, k′).

5.3.5 Example: Markovian Sequence of Images of Characters. Time
homogeneous case with conditionally independent state and
observation

Let K̄ denotes the set of sequences of English characters corresponding to a natural language.
Let x ∈ X be an image of some character k. The distribution pi(k, k, x;w) = p(k, k′, x;w)
does not depend on i and p(x, k|k′) = p(k|k′)p(x|k′;w). The conditional probability of the
picture x given the corresponding character k depends on the template image wk. The task
is to estimate all such template images w∗ = (w∗k, k ∈ K).

Generative Learning

In this case (5.32) splits to |K| independent subproblems

w∗k = arg max
wk

∑
x∈X ,k∈K

α(x, k) log p(x|k;wk) , (5.35)

Denoting as x(l) the l-th pixel in the image x and under Gaussian noise assumption holds

p(x|k;wk) = C · exp

(
−σ
∑
l

(x(l)− wk(l))2

)
. (5.36)

Let us plug it into (5.35) and obtain

wk(l) =
∑

x∈X ,k∈K

α(x, k)x(l)∑
x′∈X ,k′∈K α(x′, k′)

,

which basically means that we have to average all images from the learning sample L, which
correspond to the character k.

Probabilities pK(k, k′) of neighboring pairs of characters (k, k′) should be taken equal

to the frequencies of corresponding character pairs α(k,k′)∑
k∈K,k′∈K α(k,k′) summed up for all time

steps i.

Discriminative Learning

Given the training set L = {(x̄j , k̄j), j = 1 . . . ,m} find w to fulfill

k̄j = argmaxk̄p(k̄|x̄j ;w) = argmaxk̄
p(x̄j , k̄;w)

p(x̄j)

= argmaxk̄p(x̄
j , k̄;w) = argmaxk̄ log p(x̄j , k̄;w)

= argmaxk̄ log p0(k0) +

n∑
i=1

log p(ki|ki−1) + log p(xi|ki−1;w) . (5.37)
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Here log p0(k0) = α(k0) and log p(ki|ki−1) = β(ki, ki−1) are just numbers which have to
be estimated and assuming (5.36)

log p(x|k;w) = −σ
∑
l

(x(l)− wk(l))2 = −σ
∑
l

x2(l) + w2
k(l)− 2x(l)wk(l)

Term
∑
l x

2(l) does not depends on k̄, hence it does not influence (5.37) and can be
omitted.

Considering −σ
∑
l w

2
k(l) = γ(k) as a separate variable, the objective (5.37) becomes

linear with respect to parameters w = (α(k), β(k, k′), γ(k), wk(l) | k′, k ∈ K, l ∈ I) (I
denotes a set of all pixes in a single image), thus the linear discriminative learning machinery
can be applied.

The problem (5.37) in the new notation reads

k̄j = argmaxk̄
〈
w, φ(k̄)

〉
for a suitably selected vector φ(k̄).

According to discriminative learning paradigm we have to solve the system of linear
inequalities 〈

w, φ(k̄j , x̄j)
〉
>
〈
w, φ(k̄, x̄j)

〉
, k̄ ∈ K̄\k̄j , j = 1 . . .m (5.38)

or a corresponding SVM problem with respect to parameter vector w.
We will consider a perceptron algorithm as applied to (5.38). Let k̄′ = argmaxk̄

〈
w, φ(k̄)

〉
and k̄′ 6= k̄j . Then the following steps have to be performed according to the perceptron
algorithm:

α(kj0) + = 1 α(k′0) − = 1

β(kji , k
j
i−1) + = 1 β(k′i, k

′
i−1) − = 1 i = 1 . . . n

γ(kji ) + = 1 γ(k′i) − = 1 i = 1 . . . n
wkji

(l) + = 2σx(l) wk′i(l) + = 2σx(l) i = 1 . . . n, l ∈ I

(5.39)

Discriminative Learning with Gaussian RBF Kernels

It often happends that approximation (5.36) for distribution p(xi|ki−1;w) does not work
(works very bad) and true distribution is unknown. In this case the Radial Basis Functions
are used as kernels for the kernel-SVM (kernel-perceptron). We already saw that using such
kernels one can approximate very complex surfaces. In this case it is considered that

log p(x|k′;w) =

m∑
j=1

∑
i : k

j
i
=k′

0≤i≤n−1

γ(j, i) exp
∑
l

−σ(x(l)− xji (l))
2 =

m∑
j=1

∑
i : k

j
i
=k′

0≤i≤n−1

γ(j, i)ξ(xji , x) .

Let us use notation T (k′) = {(j, i) : j = 1, . . . ,m, 0 ≤ i ≤ n − 1, kji = k′}. Then we would
like to find out such parameters, that

k̄j = argmaxk̄ log p0(k0) +

n∑
i=1

log p(ki|ki−1) + log p(xi|ki−1;w)

= argmaxk̄α(k0) + β(ki, ki−1) +
∑

(j′,i)∈T (ki−1)

γ(j′, i)ξ(xj
′

i , x
j) , (5.40)

where log p0(k0) = α(k0) and log p(ki|ki−1) = β(ki, ki−1) as in the previous case.
In this case parameter vector has the form w = (α(k), β(k, k′), γ(j, i) | (j, i) ∈ T (k′), k′, k ∈ K}

and perceptron algprithm has a similar form as in (5.39).
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Hybrid approach.

Quite popular (however typically delivering worse results than the previous method) is hy-
brid learning: parameters γ(j, i) are learned independently via non-structural kernel SVM
and probabilities p0(k0) and p(ki|ki−1) are estimated from corresponding frequencies, as in
Generative Learning case.
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5.4 Tree-structured HMM

Let G = (V, E) be a tree. Let X̄ = X 1 × X 2 . . .Xn 3 x̄ be the observation set, x̄-observed
collection.
Let K̄ = K1×K2 . . .Kn 3 k̄ the set of objects states (labelings, collections of latent variables),
k̄- a collection of hidden (latent) variables or labeling.
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Let the joint probability of observations x̄ and hidden k̄ states be equal to

p0(x̄, k̄) = p(k0)
∏

i∈I\{0}

pi(xi,g(i), ki|kg(i)) ,

where 0 is a tree-root, i, g(i) ∈ I, I ∼ V, n : I → V - bijective mapping, (n(i), n(g(i))) ∈ E
and a path from n−1(0) to n−1(i) contains n−1(g(i)). The following algorithm enumerates
tree vertices (constructs n(i)), such that g(i) < i.

An important property of the tree is that there is always at least one leave node ;))), i.e.
node n−1(i∗) ∈ V such, that i∗ 6= g(i), ∀i ∈ I.

Let us consider MAP problem and show how it can be solved by (basically) the same
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Algorithm 2 Algorithm of tree vertices enumeration

• Initialize: select tree root a0 ∈ V, set N = {a0}, N̄ = ∅, i := 0.

• Iterate (for i ≥ 0)

1. Select a ∈ N\N̄ ;

2. n(a) := i

3. N := N ∪ {neighbors(a)}
4. N̄ = N̄ ∪ {a}
5. i:=i+1, goto 1

trick as with sequences.

k̄∗ = arg max
k̄∈K̄

p(k0)
∏

i∈I\{0}

pi(xi,g(i), ki|kg(i))

= arg max
ki, i∈I

∑
i∈I

φi(ki) +
∑

i∈I\{0}

qi(ki, kg(i)) (5.41)

Here we introduced notation

φi(ki) =

{
log p0(k0), i = 0
0, otherwise

and qi(ki, kg(i)) = log pi(xi,g(i), ki|kg(i)).
Let us now select i∗ : i∗ 6= g(i), ∀i ∈ I. We can rewrite (5.41) as

k̄∗ = arg max
ki, i∈I\{i∗}

∑
i∈I\{i∗}

φi(ki) +
∑

i∈I\{0,i∗}

qi(ki, kg(i)) + max
ki∗

φi∗(ki∗) + qi∗(ki∗ , kg(i∗))︸ ︷︷ ︸
φi′ (ki′ ), i

′=g(i∗)

= arg max
ki, i∈I′

∑
i∈I′

φi(ki) +
∑

i∈I′\{0}

qi(ki, kg(i)) , (5.42)

where I ′ = I\{i∗}. Comparing the last equation to (5.41) we see that we’ve got a recursive
rule.

Let us formulate this algorithm in the general (⊕,⊗) semiring. We have to compute⊕
(ki,i∈I)

⊗
i∈I

φi(ki)⊗
⊗

i∈I\{0}

qi(ki, kg(i))
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Algorithm 3 General (⊕,⊗) inference algorithm on tree

repeat
Find i∗ : i∗ 6= g(i), ∀i ∈ I
i′ := g(i∗)
φi′(ki′) :=

⊕
ki∗

φi∗(ki∗)⊗ qi∗(ki∗ , ki′)
I := I\{i∗}

until remains to compute
⊕

k0
φ0(k0)



Chapter 6

Markov Random Fields and
Cyclic Hidden Markov Models

6.1 General Definitions and Properties

In the previous section we considered acyclic models - the underlying neighborhood structure
was a sequence or a tree. From now on we will concentrate on more general case - without
this restriction.

Definition 6.1.0.1. Let G = (V, E) be a graph consisting of the finite set of nodes V and
the set of node pairs E ⊂ V ×V. The set E will be also called a neighborhood structure of the
set V.

Definition 6.1.0.2. The function of the form k̄ : V → K, where K is a finite set will be
called labeling or (sometimes in connection with the word ”Markov”) field. We will denote as
kΩ := k̄

∣∣
Ω

the restriction of k̄ to the set Ω. In particular we will often use notations kv, v ∈ V
and ke = (ku, kv), (u, v) = e ∈ E .

Definition 6.1.0.3. If a probability distribution p of the form p : KV → R is given we will
consider a random labeling to be specified. The probability of the labeling k̄ is equal to p(k̄).

Definition 6.1.0.4. The probability distribution

pΩ(kΩ) =
∑

k̄′∈KΩ(kΩ)

p(k̄′)

will be called marginal with respect to the set Ω ⊂ V . Here KΩ(k′Ω) denotes the set
{k̄ ∈ KV : k̄Ω = k̄′Ω}.

Definition 6.1.0.5. Two probability distributions p and p′ are called equivalent (p ∼ p′)
with respect to the neighborhood structure E if for all e ∈ E and all labellings k̄ corresponding
marginal probabilities are equal, i.e. pe(ke) = p′e(ke).

Definition 6.1.0.6. We will say, that a positive probability distribution p (p(k̄) > 0) defines
a Markov random field (MRF) in the neighborhood structure E if for any other distribution
p′, equivalent to p with respect to E holds∑

k̄∈KV
p(k̄) log p(k̄) <

∑
k̄∈KV

p′(k̄) log p′(k̄) .

39
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(function
∑
i pi log pi is strictly convex, hence the strict inequality holds). In other words

Markovian random field has the largest entropy in its equivalence class.

The following two propositions are the most important in the theory of Markov random
fields.

Proposition 6.1.0.1. Let p be MRF in the neighborhood structure E. Then it can be repre-
sented as

p(k̄) =
1

Z

∏
e∈E

exp(−λe(ke)) =
1

Z
exp(−

∑
e∈E

λe(ke)) (6.1)

for some functions λe : Ke → R.

Distributions of the form (6.1) are called Gibbs distributions.
BProposition claims that numbers p(k̄), k̄ ∈ KV minimize∑

k̄∈KV
p(k̄) log p(k̄)

given

pe(ke) =
∑

k̄′∈Ke(ke)

p(k̄′)-fixed,

∑
k̄∈KV

p(k̄) = 1 (6.2)

and p(k̄) > 0, k̄ ∈ KV .
Corresponding partial (without taking into account p(k̄) > 0, k̄ ∈ KV) Lagrangian reads

Φ(p, λ) =
∑
k̄∈KV

p(k̄) log p(k̄)+λ0

∑
k̄∈KV

p(k̄)− 1

+
∑
e∈E

∑
ke∈Ke

λe(ke)

 ∑
k̄′∈Ke(ke)

p(k̄′)− pe(ke)

 .

Taking derivative with respect to p and assigning them to 0 gives

∂Φ

∂p(k̄)
= 1 + log p(k̄) + λ0 +

∑
e∈E

λe(ke) = 0

Hence
p(k̄) = exp(−(1 + λ0))

∏
e∈E

exp(−λe(ke))

that finalizes our proof. C

Remark 6.1.0.1. Constant Z can be computed from normalization condition (6.2) and thus
it reads

Z =
∑
k̄∈KV

∏
e∈E

exp(−λe(ke))

and is called partition function. One typically talks about log-partition function, equal to
logZ.

Definition 6.1.0.7. Let Ω ⊂ V. We will call the set N(Ω) = {u ∈ V : (u, v) ∈ E , v ∈ Ω} a
neighborhood of Ω.

The following proposition claims that all Gibbs distributions posses Markov property.
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Proposition 6.1.0.2. Let p be Markov in the structure E and Ω be any subset of V. Then
the conditional probability pΩ(kΩ|kV\Ω) depends only on kN(Ω).

BLet us express pΩ(kΩ|kV\Ω) via p(k̄):

pΩ(k′Ω|k′V\Ω) =
p(k̄′)∑

k̄∈KV\Ω(k′V\Ω) p(k̄)
=

1
Z

∏
e∈E exp(−λe(k′e))

1
Z

∑
k̄∈KV\Ω(k′V\Ω)

∏
e∈E exp(−λe(ke))

.

Please note that all terms λe(ke) for e ∩ Ω = ∅ enter all summands in the denominator
and thus cancels with the same terms in the numerator. Taking this into account we obtain

pΩ(k′Ω|k′V\Ω) =

∏
e∈E

e∩Ω 6=∅
exp(−λe(k′e))∑

k̄∈KV\Ω(k′V\Ω)

∏
e∈E

e∩Ω 6=∅
exp(−λe(ke))

,

which finalizes proof of the lemma, since the right-hand side depends only on k′N(Ω). C
Due to the proved proposition Proposition 6.1.0.1 receives an important applied value:

if is enough to define arbitrary functions λe and define distribution in the form (6.1) to
guarantee its Markov property.

In the previous lectures we considered acyclic models (i.e. hidden Markov chains). Ac-
cording to the main consideration the probability distribution p(k̄) was equal to (5.1):

p(k̄) = p0(k0)

n∏
i=1

pi(ki|ki−1) . (6.3)

Such representation (via probabilities pi(ki|kj)) has a very important advantage for learning
algorithms, which we will discuss later. It turns out, however, that if the underlying graph
G for a MRF is acyclic, the Gibbs distribution (6.1) can be represented as a product of
probabilities (6.3). To simplify notations we will prove this for a case when G is a chain,
however the proof only slightly differs for a general acyclic case.

Proposition 6.1.0.3. Let

p(k̄) =
1

Z

n∏
i=1

exp(−λi(ki, ki−1)) =
1

Z

n∏
i=1

fi(ki, ki−1) , (6.4)

where fi(ki, ki−1) > 0, i = 1 . . . n, ki, ki−1 ∈ K. Then p(k̄) can be represented as (6.3).

BWe will use few facts in our proof:

pi(ki|ki−1) =
pi(ki, ki−1)

pi(ki−1)
, (6.5)

representation (6.4) allows us to use the +,× forward-backward Algorithm 1 to compute
marginal probabilities

pi(ki, ki−1) =
∑

k̄′∈Ki(ki,ki−1)

p(k̄′) =
1

Z
QFi−1(ki−1)f(ki, ki−1)QBi (ki), i = 1 . . . , n , (6.6)

pi(ki) =
∑

k̄′∈Ki(ki)

p(k̄′) =
1

Z
QFi (ki)Q

B
i (ki) , (6.7)

where values QFi (k) and QBi (k) are computed by Algorithm 1 from functions qi(ki, ki−1) =
fi(ki, ki−1) and q0(k0) = 1, k0 ∈ K.
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Let us now consider

p0(k0)

n∏
i=1

pi(ki|ki−1)
(6.5)
= p0(k0)

n∏
i=1

pi(ki, ki−1)

pi(ki−1)

(6.7),(6.6)
=

1

Z
QB0 (k0)

∏n
i=1Q

F
i−1(ki−1)f(ki, ki−1)QBi (ki)∏n
i=1Q

F
i (ki−1)QBi (ki−1)

(6.8)

Canceling equal terms in numerator and denominator and taking into account that QBi (kn) =
1, kn ∈ K, we obtain (6.4), which finalizes the proof. C

Remark 6.1.0.2. All constructions remain the same if we consider joint probability of Markov
labeling k̄ ∈ K̄ and (not obligatory Markov) observation x̄ ∈ X̄ , i.e.

p(k̄, x̄) =
1

Z(x̄)

∏
e∈E

exp(−λe(ke, x̄)) (6.9)

it is also typical that λe(ke, x̄) = −λe(ke, xe).
Remark 6.1.0.3. Each function of the form (6.9) can be written also in the form

p(k̄, x̄) =
1

Z(x̄)

∏
v∈V

exp(−λv(kv, x̄))
∏
e∈E

exp(−λe(ke, x̄)) =
1

Z(x̄)
exp

(
−
∑
v∈V

λv(kv, x̄)−
∑
e∈E

λe(ke, x̄)

)
(6.10)

and vice versa. Function

E(k̄|x̄) =
∑
v∈V

λv(kv, x̄) +
∑
e∈E

λe(ke, x̄)

is called (Gibbs) energy and p(k̄, x̄) = 1
Z exp(−E(k̄|x̄)).

Example 6.1.0.1 (Potts model). Let G be a grid and p(k̄) looks as (6.10), where λv(kv) are

arbitrary and λe(ke) = λuv(ku, kv) =

{
0, ku = kv
1, ku 6= kv .

. This can be considered as a discrete

analog of (multilabeling) Total Variation.

6.2 Bayesian Problems for MRF

6.2.1 0/1 loss

As in general case the loss (1.2) leads to the maximum a posteriory decision rule (1.3):

k̄∗ = arg max
k̄∈K̄

p(k̄|x̄) = arg max
k̄∈K̄

p(k̄, x̄)
(6.10)

= arg min
k̄∈K̄

∑
v∈V

λv(kv) +
∑
uv∈E

λuv(ku, kv) . (6.11)

Hence the MAP inference problem ≡ Energy minimization problem.

6.2.2 Locally additive loss

Let the loss has a form analogous to (5.12)

W (k̄, k̄′) =
∑
v∈V

wv(kv, k
′
v) . (6.12)
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Repeating the same transformation as in (5.13) leads to the result analogous to (5.14):

k∗v = arg min
k′v∈Kv

∑
kv∈Kv

wv(kv, k
′
v)pv(kv|x̄)

= arg min
k′v∈Kv

∑
kv∈Kv

wv(kv, k
′
v)
pv(kv, x̄)

p(x̄)
= arg min

k′v∈Kv

∑
kv∈Kv

wv(kv, k
′
v)pv(kv, x̄) , (6.13)

where pv(kv|x̄) denotes a conditional marginal probability

pv(kv|x̄) =
∑

k̄′′∈Kv(kv)

p(k̄′′|x̄)

and pv(kv, x̄) – the corresponding joint marginal probability

pv(kv, x̄) =
∑

k̄′′∈Kv(kv)

p(k̄′′, x̄) =
1

Z(x̄)

∑
k̄′∈Kv(kv)

∏
e∈E

exp(−λe(ke, x̄)) . (6.14)

Computing (6.14) constitutes the main difficulty for solving (6.13) and is called (as in the
case of acyclic HMM) a marginalization inference problem.

6.3 Learning MRF

Let us consider two most important learning problems formulations: discriminative and gen-
erative. In both cases we will suppose that the learning sample L = {(k̄j , x̄j), j = 1, . . . ,m}
is given and the probability distribution p(k̄, x̄;w) depends on parameter(s) w.

6.3.1 Structured Discriminative Learning

Discriminative learning is based on the assumption that MAP inference (6.11) is used. Let
also λc(kc, x̄) =

〈
wc, φc(k̄, x̄)

〉
, c ∈ V ∪ E . Thus as for acyclic HMM case one has essentially

to solve the (exponentially large) system of linear inequalities

E(k̄j |x̄;w) =
〈
w, φ(k̄j , x̄)

〉
<
〈
w, φ(k̄, x̄)

〉
= E(k̄|x̄;w), j = 1 . . . ,m, k̄ ∈ K̄\{k̄j}

as good as possible (φ(k̄j , x̄) essentially is a collection of φc(k̄, x̄) and w is a collection of wc).
In case of perceptron algorithm the key subproblem is finding unfulfilled inequality, which
leads (as in case of acyclic HMM (5.15)) to the MAP inference problem

k̄′ = arg min
k̄∈K̄

〈
w, φ(k̄, x̄j)

〉
= arg min

k̄∈K̄
E(k̄|x̄;w) . (6.15)

The only difference for a Structured SVM is that instead of the energy minimization pure
problem (6.15) one has to solve the loss-augmented energy minimization problem analogous
to (5.18):

k̄′ = arg min
k̄∈K̄

〈
w, φ(k̄, x̄j)

〉
−∆k̄,j = arg min

k̄∈K̄
E(k̄|x̄)−∆k̄,j .

Changing of the sign from + to − comparing to (5.18) is due to changing of max to min.

Summarizing, the MAP inference (energy minimization) problem is the key component
of the discriminative learning of MRFs.
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6.3.2 Generative Learning

As usual parameters w∗ are inferred from the maximum likelihood principle, i.e.

w∗ = arg max
w

m∏
j=1

p(k̄j , x̄j ;w) = arg max
w

m∏
j=1

1

Z(w, x̄j)
exp(−E(k̄j |x̄j ;w))

= arg min
w

m∑
j=1

Z(w, x̄j) + E(k̄j |x̄j ;w) . (6.16)

Regularized learning problem differs in a presence of the regularization term:

w∗ = arg min
w
C‖w‖+

m∑
j=1

Z(w, x̄j) + E(k̄j |x̄j ;w) . (6.17)

As soon as E(k̄j |x̄j ;w) considered to be linear with respect to w (E(k̄|x̄;w) =
〈
w, φ(k̄, x̄)

〉
)

both regularized and non-regularized learning problems are convex and can be solved by
convex optimization techniques as soon as the (sub-)gradient of the objective function and
the function itself can be computed. Gradient of E(k̄|x̄;w) is equal to φ(k̄, x̄) and does not
make any problem for ts computation. The problematic are computation of Z(w, x̄j) and its
gradient.

Since for v ∈ V

p(x̄;w) =
∑
kv∈K

pv(kv, x̄;w) =
1

Z(w, x̄)

∑
kv∈K

∑
k̄′c∈K̄c(kc)

exp(−E(k̄, x̄;w))

thus

Z(w, x̄) =
1

p(x̄;w)

∑
kv∈K

∑
k̄′c∈K̄c(kc)

exp(−E(k̄, x̄;w))

and computing Z(w, x̄) is essentially the marginalization problem.
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