Do's and Dont's in Scientific Talks

Bogdan Savchynskyy

12/12/2022

Motivation

Motivation

- Get credit points
- Learn how to give talks
- Learn about the topic
- Get higher grade for your PhD/Master/Bachelor
- Get feedback to you work

Motivation

- Get credit points

- Learn how to give talks
- Learn about the topic
- Get higher grade for your PhD/Master/Bachelor
- Get feedback to you work

Each talk is an application talk

Outline

- Slides content (What is allowed on the slides and what isn't)
- Slides order (General structure of a talk)

Outline

- Slides content (What is allowed on the slides and what isn't)
 Slides order (General structure of a talk)

- **Slides order** (General structure of a talk)
- **Slides content** (What is allowed on the slides and what isn't) •

Slides Order

General structure of a talk

Typical talk outline?

- 1. Title
- 2. Outline
- 3. Problem description
- 4. Method/Solution
- 5. Experiments
- 6. Conclusions
- 7. Future work

DSAC – Differentiable RANSAC for Camera Localization

Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel, Stefan Gumhold, Carsten Rother

TU Dresden, Microsoft

Outline

- 1. RANSAC
- 2. Camera localization problem
- 3. Learning camera localization
- 4. Our end-to-end learning approach, DSAC
- 5. Experiments
- 6. Conclusions and Outlook

How much do you understand out of it? Is this outline helpful for you?

Typical talk outline

- 1. Title
- 2. Outline
- 3. Problem description
- 4. Method/Solution
- 5. Experiments
- 6. Conclusions
- 7. Future work

- 1. Title
- 2. Problem description

3. Outline

- 4. Method/Solution
- 5. Experiments
- 6. Conclusions
- 7. Future work

Problem description explains the outline.

Typical talk outline

- 1. Title
- 2. Outline
- 3. Problem description
- 4. Method/Solution
- 5. Experiments
- 6. Conclusions
- 7. Future work

- 1. Title
- > 2. Problem decription

3. Outline

- 4. Method/Solution
- 5. Experiments
- 6. Conclusions
- 7. Future work

Problem description explains the outline. You do not need an outline for most short (< 30 mins) talks.

Video: Provide your timing

- 1. Title
- 2. Problem description
- 3. Method/Solution
- 4. Experiments
- 5. Conclusions
- 6. Future work

Example of a talk

YouTube Video: <u>DSAC – Differentiable RANSAC for Camera Localization</u>

Time from the beginning of the talk:

- 1. Title
- 2. Problem description
- 3. Method/Solution
- 4. Experiments
- 5. Conclusions
- 6. Future work

- < 1 min: Thanks, coauthors
- < 5 min
- > 50 % of the talk
- 20-30 % of the talk

The most important part of the talk

- 1. Title
- 2. Problem description
- 3. Method/Solution
- 4. Experiments
- 5. Conclusions
- 6. Future work

The most important part of the talk

- 1. Title
- 2. Problem description
- 3. Method/Solution
- 4. Experiments
- 5. Conclusions
- 6. Future work

Problem description:

- simplified description (top view, clear for broad audience)
- more details (necessary to pose your actual problem)
- existing solutions
- deficiencies you address (problem statement)
- advertisement (short description of your results)

Example of a talk

- 1. RANSAC
- 2. Camera localization problem
- 3. Learning camera localization
- 4. Our end-to-end learning approach, DSAC
- 5. Experiments
- 6. Conclusions and Outlook

When:

- long talk
- involved method

Outline

1. RANSAC

- 2. Camera localization problem
- 3. Learning camera localization
- 4. Our end-to-end learning approach, DSAC
- 5. Experiments
- 6. Conclusions and Outlook

RANSAC

 \bullet \bullet \bullet

Outline

1. RANSAC

2. Camera localization problem

- 3. Learning camera localization
- 4. Our end-to-end learning approach, DSAC
- 5. Experiments
- 6. Conclusions and Outlook

Camera Localization Problem

 \bullet \bullet \bullet

Hint: For complex talks consider conclusions to each part

Outline

- 1. RANSAC
- 2. Camera localization problem
- 3. Learning camera localization
- 4. Our end-to-end learning approach, DSAC
- 5. Experiments
- 6. Conclusions and Outlook

Computer Vision and Learning Lab

Parameterized Discrete-Time Markov Chains & Definition DTMC

is a tuple $(S, \mathbf{P}, AP, \mathcal{L})$.

A discrete-time Markov chain \mathcal{M}

Es Es Es

4/24

PCTL model checking on pDTMCs Lisa Hutschenreiter

The Model Checking Procedure

PCTL model checking on pDTMCs Lisa Hutschenreiter

PCTL model checking on pDTMCs Lisa Hutschenreiter

Slides Content

What is allowed on the slides and what not

Information Representation

Text

A combinatorial optimization problem can be characterized by a mapping $f: \mathbb{R}^m \rightarrow \{0,1\}^n$, where the problem description is mapped to a binary vector representing an optimal problem solution. In case of ILPs the description consists of the coefficients of the objective function and the constraint matrix. Computation of the mapping f has in general a complexity that grows at least as an exponent of m.

Formulas
$$\mathbf{K} = \operatorname{diag}(\operatorname{vec}(\mathbf{K}_p)) + (\mathbf{G}_2 \otimes \mathbf{G}_1) \operatorname{diag}(\operatorname{vec}(\mathbf{K}_q))(\mathbf{H}_2 \otimes \mathbf{H}_1)^\top$$

Images

Text

A combinatorial optimization problem can be characterized by a mapping $f: \mathbb{R}^m \rightarrow \{0,1\}^n$, where the problem description is mapped to a binary vector representing an optimal problem solution. In case of ILPs the description consists of the coefficients of the objective function and the constraint matrix. Computation of the mapping f has in general a complexity that grows at least as an exponent of m.

Text

A combinatorial optimization problem can be characterized by a mapping $f: \mathbb{R}^m \rightarrow \{0,1\}^n$, where the problem description is mapped to a binary vector representing an optimal problem solution. In case of ILPs the description consists of the coefficients of the objective function and the constraint matrix. Computation of the mapping f has in general a complexity that grows at least as an exponent of m.

 $f: \mathbb{R}^m \rightarrow \{0,1\}^n$ - optimization problem, NP-hard

Text

A combinatorial optimization problem can be characterized by a mapping $f: \mathbb{R}^m \rightarrow \{0,1\}^n$, where the problem description is mapped to a binary vector representing an optimal problem solution. In case of ILPs the description consists of the coefficients of the objective function and the constraint matrix. Computation of the mapping f has in general a complexity that grows at least as an exponent of m.

 $f: \mathbb{R}^m \rightarrow \{0,1\}^n$ - optimization problem, NP-hard

Example: $f(A, c) = \underset{\substack{Ax \leq b \\ x \in \{0,1\}^m}}{\arg \min} \langle c, x \rangle$

Text

A combinatorial optimization problem can be charactenzed by a mapping $f: \mathbb{R}^m \rightarrow \{0,1\}^n$, where the problem description is mapped to a binary vector representing an optimal problem solution. In case of ILPs the description consists of the coefficients of the objective function and the constraint matrix. Computation of the mapping f has in general a complexity that grows at least as an exponent of m.

 $f: \mathbb{R}^m \rightarrow \{0,1\}^n$ - optimization problem, NP-hard

Example: $f(A, c) = \underset{x \in \{0,1\}^m}{\operatorname{arg\,min}} \langle c, x \rangle$

Allowed: keywords, names, terminology

Avoid non-standard acronyms! SVM, VAE, ICA, CINN, LAP, PCA, CNN, MRF, CRF, MAP?

Information Representation: Text in Tables

Table 1. Accuracy measured as the percentage of test images where the pose error is below 5cm and 5°. *Complete* denotes the combined set of frames (17000) of all scenes. Numbers in green denote improved accuracy after end-to-end training for SoftAM resp. DSAC compared to componentwise training. Similarly, red numbers denote decreased accuracy. **Bold** numbers indicate the best result for each scene.

	Sparse	Brachmann	Ours: Trained Componentwise			Ours: Trained End-To-End	
	Features [36]	<i>et al</i> . [5]	RANSAC	SoftAM	DSAC	SoftAM	DSAC
Chess	70.7%	94.9%	94.9%	94.8%	94.7%	94.2% -0.6%	94.6% -0.1%
Fire	49.9%	73.5%	75.1%	75.6%	75.3%	76.9% +1.3%	74.3% -1.0%
Heads	67.6%	48.1%	72.5%	74.5%	71.9%	74.0% -0.5%	71.7% -0.2%
Office	36.6%	53.2%	70.4%	71.3%	69.2%	56.6% -14.7%	71.2% +2.0%
Pumpkin	21.3%	54.5%	50.7%	50.6%	50.3%	51.9% +1.3%	53.6% +3.3%
Kitchen	29.8%	42.2%	47.1%	47.8%	46.2%	46.2% -1.6%	51.2% +5.0%
Stairs	9.2%	20.1%	6.2%	6.5%	5.3%	5.5% -1.0%	4.5% -0.8%
Average	40.7%	55.2%	59.5%	60.1%	59.0%	57.9% -2.2%	60.1% +1.1%
Complete	38.6%	55.2%	61.0%	61.6%	60.3%	57.8% -3.8%	62.5% +2.2%

Paper-style table. Make it short enough to explain everything!

Information Representation: Text in Tables

[Sho13] "Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images", Shotton et al., CVPR'13 [Bra16] "Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image", Brachmann et al., CVPR'16 [Bra17] "DSAC - Differentiable RANSAC for Camera Localization", Brachmann et al., CVPR'17

Presentation-style table.

$\mathbf{K} = \operatorname{diag}(\operatorname{vec}(\mathbf{K}_p)) + (\mathbf{G}_2 \otimes \mathbf{G}_1) \operatorname{diag}(\operatorname{vec}(\mathbf{K}_q))(\mathbf{H}_2 \otimes \mathbf{H}_1)^\top$

Factorization I

$\mathbf{K} = \operatorname{diag}(\operatorname{vec}(\mathbf{K}_p)) + (\mathbf{G}_2 \otimes \mathbf{G}_1)\operatorname{diag}(\operatorname{vec}(\mathbf{K}_q))(\mathbf{H}_2 \otimes \mathbf{H}_1)^{\mathsf{T}}.$

Factorization II

$$\mathbf{K} = \operatorname{diag}(\operatorname{vec}(\mathbf{K}_p)) + (\mathbf{G}_2 \otimes \mathbf{G}_1)\operatorname{diag}(\operatorname{vec}((\mathbf{K}_q))(\mathbf{H}_2 \otimes \mathbf{H}_1)^{\mathsf{T}}.$$

$$\mathbf{G}_2 \otimes \mathbf{G}_1 = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \otimes \mathbf{G}_1 = \left(\begin{array}{rrrr} \mathbf{G}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_1 & \mathbf{G}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{G}_1 \end{array}\right)$$

Factorization III

 $\mathbf{K} = \operatorname{diag}(\operatorname{vec}(\mathbf{K}_p)) + (\mathbf{G}_2 \otimes \mathbf{G}_1)\operatorname{diag}(\operatorname{vec}((\mathbf{K}_q))(\mathbf{H}_2 \otimes \mathbf{H}_1)^{\mathsf{T}}.$

$$\begin{array}{c|c} a & 0 & G_1 \operatorname{diag}(\mathsf{k}_{(\mathfrak{a},\mathfrak{b})}^q)\mathsf{H}_1^{\mathsf{T}} & 0 \\ \end{array}$$

$$= \begin{array}{c|c} b & G_1 \operatorname{diag}(\mathsf{k}_{(\mathfrak{b},\mathfrak{a})}^q)\mathsf{H}_1^{\mathsf{T}} & 0 & G_1 \operatorname{diag}(\mathsf{k}_{(\mathfrak{b},\mathfrak{c})}^q)\mathsf{H}_1^{\mathsf{T}} \\ \end{array}$$

$$\begin{array}{c|c} c & 0 & G_1 \operatorname{diag}(\mathsf{k}_{(\mathfrak{c},\mathfrak{b})}^q)\mathsf{H}_1^{\mathsf{T}} & 0 \end{array}$$

Factorized Graph Matching

Linear Assignment Problem

Is everything clear? Can you imagine the problem?

What is the Linear Assignment Problem?

Linear Assignment Problem

Linear Assignment Problem

total value: 0.4 + 0.7 + 0.2 = 1.3

Linear Assignment Problem

total value: 0.7 + 1.2 + 0.2 = 2.1

Information Representation: Images

Linear Assignment Problem

Better now? Graph- or geometry-related problem? – Use images!

Talk vs. paper or lecture notes

Table 1: Characteristics of datasets. For all datasets used for evaluation we state number of instances (*inst.*), number of nodes (*n*), number of labels $(|\mathcal{L}|)$, and graph density in percent (*dens.*).

	inst.	n	$ \mathcal{L} $	dens. (%)
hotel	105	30	= n	100
house	105	30	= n	100
\mathtt{car}^\dagger	30	19 - 49	= n	11 - 27
\texttt{motor}^\dagger	20	15 - 52	= n	10 - 32
flow	6	48 - 126	$\approx n$	45 - 98
opengm	4	19/20	= n	66/100
worms	30	558	$\approx 2.4n$	≈ 1.5
pairs	16	511 - 565	$\approx n$	≈ 20

 † Zero edges were removed. Prior to this, graph density was 100 %.

What is wrong with this slide?

Talk vs. paper or lecture notes

Talk vs. paper or lecture notes

What is wrong with this slide?

Max Mustermann

Seminar on

" Optimization in Machine Learning and Computer Vision"

Heidelberg 2021

What is missing here?

The Best Method to Solve the Universal Problem

Y. Zhang, J. Schmidt, A. Zimmersinger University of Toronto, DeepResearch Ltd.

Presenter: Max Mustermann

Seminar on

"Optimization in Machine Learning and Computer Vision"

Heidelberg 2021

Authors and affiliations!

Do's of an entertaining talk

- Joke (if you feel comfortable with that)
- Advertise (e.g. after problem formulation)
- **Simplify** (give examples)
- Intrigue (e.g. seemingly correct conclusions)

Checklist/Feedback criteria

- 1. Talk structure:
- Is the general structure of the presentation correct, as in Sl. 14?
- Is the Problem description composed as in Sl. 19? Was the timing ok? (<5 min)</p>
- Would you change anything in the structure of the Method/Solution part?
- Useless or missing/insufficient Outline?
- 2. Slide content:
- Too much text?
- Too few explanatory images?
- Difficult formulas with insufficient explanation (did you understand them)?
- Long image/table captions?
- Enumeration of formulas, descriptions starting with **Table**, **Figure**, **Algorithm** etc?
- Are there paper-style slides, tables, algorithms, theorems etc. ?
- Title page ok?
- 3. Presentation and question answering:
- Missing/incorrect/uncertain answers to the questions?
- Intonation/voice modulation: Emphasis on important things?
- Acoustical problems: Too fast/not loud enough/unclear pronunciation etc.?

A good practice applied math presentation

YouTube Video: An explicit analysis of the entropic penalty in linear programming

This is just a kind reminder to submit your slides 2 weeks in advance ③

