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Motivation

- Get credit points
- Learn how to give talks
- Learn about the topic

Talk material

- Get higher grade for your
PhD/Master/Bachelor
Get feedback to you work

Slides + story

You are judged by your talk:

[ Each talk is an application talk }
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Do’s and Don’ts

Slides Order

General structure of a talk
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Typical talk outline?

Title

Outline

Problem description
Method/Solution
Experiments
Conclusions

Future work

NoOUuEwN R
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Consider an example

DSAC — Differentiable RANSAC
for Camera Localization

Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank
Michel, Stefan Gumhold, Carsten Rother

TU Dresden, Microsoft
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Outline

o Uk whN=

RANSAC

Camera localization problem

Learning camera localization

Our end-to-end learning approach, DSAC
Experiments

Conclusions and Outlook

How much do you understand out of it?
Is this outline helpful for you?
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Typical talk outline

Title I

Outline o
Problem description ><
Method/Solution

Experiments

Conclusions
Future work

N A WDNRE

NoUunhkWNE

Title

Problem description
Outline
Method/Solution
Experiments
Conclusions

Future work

Problem description explains the outline.

| m- Computer Vision
and Learning Lab

12



Typical talk outline

Title I 1. Title
Outline o 2. Problem decription
Problem description 3—Outline

Method/Solution
Experiments
Conclusions
Future work

Method/Solution
Experiments
Conclusions
Future work

N A WDNRE
N o U s

Problem description explains the outline.
You do not need an outline for most short (< 30 mins) talks.
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Video: Provide your timing

o Uk wnhE

Title

Problem description
Method/Solution
Experiments
Conclusions

Future work
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Example of a talk

Scene Coordinate Regression [Shol3)

0 Ammre ol

e Srm— .- . Nno Sose
- B— et N

o B mansAL

YouTube Video: DSAC — Differentiable RANSAC for Camera Localization
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https://www.youtube.com/watch?v=YWSGq7CUSRA

Typical talk timing

Time from the beginning of the talk:

Title < 1 min: Thanks, coauthors
Problem description <5 min

Method/Solution > 50 % of the talk
Experiments ]
Conclusions — 20-30 % of the talk
Future work _

o Uk whN=
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The most important part of the talk

1. Title

2. Problem description

3. Method/Solution ?
4. Experiments o
5. Conclusions

6. Future work
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The most important part of the talk

Title
Problem description
Method/Solution ?
Experiments . o
Conclusions
Future work

o Uk wnhE

attention

Problem description

l Method @_

»

\ Conclusions
time
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Video: The most important part of the talk

Problem description:

- simplified description (top view, clear for broad audience)
- more details (necessary to pose your actual problem)

- existing solutions

- deficiencies you address (problem statement)

- advertisement (short description of your results)

| m- Computer Vision
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Example of a talk

Scene Coordinate Regression [Shol3)

R I L Tl ’ ND Soae
R e “
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Rolling Outline

Learning camera localization

Our end-to-end learning approach, DSAC
Experiments

Conclusions and Outlook

o ulhW

When:
* |long talk
* involved method
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Outline

RANSAC

Camera localization problem

Learning camera localization

Our end-to-end learning approach, DSAC
Experiments

Conclusions and Outlook

ok wnNeE
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RANSAC
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Outline

Camera localization problem

Learning camera localization

Our end-to-end learning approach, DSAC
Experiments

Conclusions and Outlook

O UA WM
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Camera Localization Problem

Hint: For complex talks consider conclusions to each part
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Outline

Learning camera localization

Our end-to-end learning approach, DSAC
Experiments

Conclusions and Outlook

o ulhW
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Creative Rolling Outline: Puzzles

Introduction ¢ Outline of Talk 3/24

Q @)
Q G tLA PCTL model checking on pDTMCs
@) O Lisa Hutschenreiter

Computer Vision
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Creative Rolling Outline: Puzzles

Parameterized Discrete-Time Markov Chains

O O
O~ QuantLA PCTL model checking on pDTMCs
O O Lisa Hutschenreiter
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Creative Rolling Outline: Puzzles

Parameterized Discrete-Time Markov Chains ¢ Definition DTMC 4/24

A discrete-time Markov chain M @é‘@
is a tuple (S, P, AP, [,).

®) O
QO “QuantLA PCTL model checking on pDTMCs
O O Lisa Hutschenreiter
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Creative Rolling Outline: Puzzles

The Model Checking Procedure

QX9
Q QuantLA PCTL model checking on pDTMCs
O

® Lisa Hutschenreiter
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Creative Rolling Outline: Puzzles

The Model Checking Procedure ¢ Assumptions

Input

» PCTL state formula ¢

OO
O QuantLA
Q X 0

9/24

pu=true|a| A |—p | Py (P)
=0

state formula

path formula

PCTL model checking on pDTMCs
Lisa Hutschenreiter
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Do’s and Don’ts

Slides Content

What is allowed on the slides and what not
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Information Representation

Text

Formulas

Images

A combinatorial optimization problem can be
characterized by a mapping f : R™ - {0,1}" , where the
problem description is mapped to a binary vector
representing an optimal problem solution. In case of
ILPs the description consists of the coefficients of the
objective function and the constraint matrix.
Computation of the mapping f has in general a
complexity that grows at least as an exponent of m.

1 1\ 1\ 1
Y Yy Y: Y
@1 01,2 292 02,3 >\%3 03,4 494

— A (yt, vt y3) —As(yi,v2,y3)

_AQ y%: ygayg

_A4(y47 y47 y4)

2
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Y
91 912 MQ 923 kJ93 934 494

K = diag(vec(K,)) + (G2 ® G ) diag(vec(K,))(Hy ® Hy)
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Information Representation: Text

Text

A combinatorial optimization problem can be
characterized by a mapping f : R™ - {0,1}" , where the
problem description is mapped to a binary vector
representing an optimal problem solution. In case of
ILPs the description consists of the coefficients of the
objective function and the constraint matrix.
Computation of the mapping f has in general a
complexity that grows at least as an exponent of m.

QL

Computer Vision
and Learning Lab

34



Information Representation: Text

Text

A combinatorial optimization problem can be
characterized by a mapping f : R™ - {0,1}" , where the
problem description is mapped to a binary vector
representing an optimal problem solution. In case of
ILPs the description consists of the coefficients of the
objective function and the constraint matrix.
Computation of the mapping f has in general a
complexity that grows at least as an exponent of m.

f:R™->{0,1}" - optimization problem, NP-hard
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Information Representation: Text

Text A combinatorial optimization problem can be
characterized by a mapping f : R™ - {0,1}" , where the
problem description is mapped to a binary vector
representing an optimal problem solution. In case of
ILPs the description consists of the coefficients of the
objective function and the constraint matrix.
Computation of the mapping f has in general a
complexity that grows at least as an exponent of m.

f:R™->{0,1}" - optimization problem, NP-hard

Example:  f(A,¢) = argmin{c, x)
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Information Representation: Text

Text

binatorial optimization problem ca
characte by a mapping f: R - {0,1} ere the
problem descrif is mapped binary vector
representing an opti solution. In case of
ILPs the description he coefficients of the
objective  fungi traint matrix.
Computgi of the mapping f has | neral a
exity that grows at least as an exponent o

f:R™->{0,1}" - optimization problem, NP-hard

Example:  f(A,¢) = argmin{c, x)

Allowed: keywords, names, terminology

Avoid non-standard acronyms! SVM, VAE, ICA, CINN, LAP, PCA, CNN, MRF, CRF, MAP?
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and Learning Lab 37



Information Representation: Text in Tables

Table 1. Accuracy measured as the percentage of test images where the pose error is below Scm and 5°. Complete denotes the combined set
of frames (17000) of all scenes. Numbers in green denote improved accuracy after end-to-end training for SoftAM resp. DSAC compared
to componentwise training. Similarly, red numbers denote decreased accuracy. Bold numbers indicate the best result for each scene.

Sparse Brachmann | Ours: Trained Componentwise Ours: Trained End-To-End
Features [36] etal. [5] RANSAC | SoftAM | DSAC SoftAM DSAC
Chess 70.7% 94.9 % 94.9 % 948% | 94.7% | 94.2% -0.6% | 94.6% -0.1%
Fire 49.9% 73.5% 75.1% 75.6% | 753% | 76.9% +1.3% | 74.3% -1.0%
Heads 67.6% 48.1% 72.5% 74.5% | 711.9% | 74.0% -0.5% | 71.7% -0.2%
Office 36.6% 53.2% 70.4% 71.3% | 69.2% | 56.6% -14.7% | 71.2% +2.0%
Pumpkin 21.3% 54.5% 50.7% 50.6% | 503% | 51.9% +1.3% | 53.6% +3.3%
Kitchen 29.8% 42.2% 47.1% 478% | 46.2% | 46.2% -1.6% | 51.2% +5.0%
Stairs 9.2% 20.1% 6.2% 6.5% 5.3% 5.5% -1.0% 4.5% -0.8%
Average 40.7% 55.2% 59.5% 60.1% | 59.0% | 57.9% -2.2% | 60.1% +1.1%
Complete 38.6% 55.2% 61.0% 61.6% | 603% | 57.8% -3.8% | 62.5% +2.2%

Paper-style table.
Make it short enough to explain everything!

| m- Computer Vision
and Learning Lab
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Information Representation: Text in Tables

Accuracy on 7-Scenes [Sho13]

Error < 5cm, 5° m
-4

1/

Sparse Features [Shol3| 38.6%

Brachmann et al. [Bral6] 55.2%

Ours [Bral7]
RANSAC 61.0% (not end-to-end)
Soft argmax 59.6%

DSAC 62.4% M l-m

Latest Results 68.0% £ 00

e —
—_—
—_—
P

[Sho13] “Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images”, Shotton et al., CVPR"13

[Bral6] “Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image”, Brachmann et al.,, CVPR'16

[(Bral7] "DSAC - Differentiable RANSAC for Camera Localization”, Brachmann et al., CVPR'17

Presentation-style table.

| m- Computer Vision
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Information Representation: Formulas

K = diag(vec(K,)) + (G2 @ G1) diag(vec(K,))(Hy ® Hy) |

| m- Computer Vision
and Learning Lab
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Formulas

Information Representation

Factorization |

c(Kp)) + (G2 ® Gp)diag(vec(Kq))(H2 @ Hy)'.

cocooolocooco|looco®
cocooolococoocoloomo
cocooolocoocolocnoo
cocoolococooco|ltooo
cocooclococoon|loocooo
cocooolocoooloocooo
cocoooclomooloocooo
cocooofl-ocoocooloocooco
cocoorHlooooloocooo
cocnoloocoocooloocooo
oS ocooclcoocoloocooo
—“—ooolooocoloocooo
I
8
S
<+ N o
- Moo

9/20

January 22, 2020

Factorized Graph Matching

c 0
S8
w0

o— 00
= £
g £
=
J o
Q.
£
o ¢
U ©
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Information Representation: Formulas

Factorization ||

K = diag(vec(K,)) + _ J

G 0 0 O
G, ® Gy = ® Gy = 0 G G; O
0 0 0 Gy

O O =
o = O
o = O
_ O O

Factorized Graph Matching

Computer Vision
and Learning Lab
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Information Representation: Formulas

Factorization ||

K = diag(vec(Kp,)) + _ J

q
d(K(a,6))
G, 0 0 0 B
0 G [G o
0
0 0 0
0
a b c
a 0 Gldiag(kga,b))l-l{ 0
= b - 0 Gidiag(k? )HT
LB ()7L

Factorized Graph Matching

Computer Vision
and Learning Lab
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Images vs. formulas

Linear Assignment Problem

Goal

maximize E 0§ %ij
(i,5)eA

Restrictions

Y my=1 VieN

{j1(i.j) €A} 0<zy; <1 VY(i,j)€A
Y my=1 VjeN

{il(i.5) €A}

Is everything clear? Can you imagine the problem?
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Images vs. formulas

What is the Linear Assignment Problem?

Goal

match with
maximum value

Restrictions

n persons

* can‘t match every person to every object
* matching happens on a one-to-one basis

n objects

| m- Computer Vision
and Learning Lab
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Images vs. formulas

Linear Assignment Problem
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Images vs. formulas

Linear Assignment Problem

total value: 0.4+ 0.7+ 0.2 = 1.3
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Images vs. formulas

Linear Assignment Problem

total value: 0.7 + 1.2 + 0.2 = 2.1

| m- Computer Vision
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Information Representation: Images

Linear Assignment Problem

personsi € {1,...,n} objectsj € {1,...,n}

07

assignment restrictions value assignments

0.7 e

a;; ERY V(i,j)) €A x;; €{0,1} V(i,j) €A
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Images vs. formulas

Linear Assignment Problem

Goal

maximize E 0§ %ij
(i,5)eA

Restrictions

Y my=1 VieN

{j1(i.j) €A} 0<zy; <1 VY(i,j)€A
Y my=1 VjeN

{il(i.5) €A}

Better now?
Graph- or geometry-related problem? — Use images!
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Talk vs. paper or lecture notes

Table 1: Characteristics of datasets. For all
datasets used for evaluation we state number of in-
stances (inst.), number of nodes (n), number of labels
(|£]), and graph density in percent (dens.).

inst. n 1| dens. (%)

hotel 105 30 =n 100
house 105 30 =n 100
car' 30 19 - 49 =n 11 - 27
motor! 20 15 - 52 =n 10 - 32
flow 6 48 - 126 ~n 45 - 98
opengm 4 19/20 =n 66 /100
worms 30 558 ~ 2.4n ~ 1.5
pairs 16 511 - 565 AN ~ 20

T Zero edges were removed. Prior to this, graph density was 100 %.

What is wrong with this slide?

| m- Computer Vision
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Talk vs. paper or lecture notes

Algorithm 2: Iterative Pruning Arc Consistency

Input: Cost vector f € R, test labeling y € X’;
Output: Strictly improving substitution p;
(Yo € V) Yy := X \{uw s

[—

2 while true

3 Construct verification problem g := (I — [p]) " f with p
defined by (7);

4 Use dual solver to find ¢ such that g¥ is arc consistent;

s | Oulp) :={ied|gft) =0}

6 if (Vv € V) Ou(¢) NY, = & then return p;

7 for v € V do

8 | Pruning of substitutions: ), := V,\O,(¢);

What is wrong with this slide?

QL
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Talk vs. paper or lecture notes

Fig. 2: Dead end elimination / dominance. Variables are shown as
boxes and their possible labels as circles. Label x,, = 1 is substituted
with label x,, = 3. If for any configuration of neighbors zxr(,) the
energy does not increase (only the terms inside {u} UN (u) contribute
to the difference), label z,, = 1 can be eliminated without loss of
optimality.

What is wrong with this slide?

QL

Computer Vision
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Title slide

The Best Method to Solve
the Universal Problem

Max Mustermann

Seminar on
, Optimization in Machine Learning and Computer Vision“

Heidelberg 2021

What is missing here?

| m- Computer Vision
and Learning Lab



Title slide

The Best Method to Solve
the Universal Problem

Y. Zhang, J. Schmidt, A. Zimmersinger

University of Toronto, DeepResearch Ltd.

Presenter: Max Mustermann

Seminar on

,Optimization in Machine Learning and Computer Vision“

Heidelberg 2021

Authors and affiliations!

QL
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Do’s of an entertaining talk

Joke (if you feel comfortable with that)
Advertise (e.g. after problem formulation)
Simplify (give examples)

Intrigue (e.g. seemingly correct conclusions)

| m_ Computer Vision
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Checklist/Feedback criteria

1. Talk structure:

= |s the general structure of the presentation correct, as in Sl. 14?

* |sthe Problem description composed as in SI. 19? Was the timing ok? (<5 min )
= Would you change anything in the structure of the Method/Solution part?

= Useless or missing/insufficient Outline?

2. Slide content:

= Too much text?

= Too few explanatory images?

= Difficult formulas with insufficient explanation (did you understand them)?

* Longimage/table captions?

= Enumeration of formulas, descriptions starting with Table, Figure, Algorithm etc?
= Are there paper-style slides, tables, algorithms, theorems etc. ?

= Title page ok?

3. Presentation and question answering:

Missing/incorrect/uncertain answers to the questions?

Intonation/voice modulation: Emphasis on important things?

Acoustical problems: Too fast/not loud enough/unclear pronunciation etc.?
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A good practice applied math presentation

YouTube Video: An explicit analysis of the entropic penalty in linear programming

| m- Computer Vision
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https://www.youtube.com/watch?v=nCm-S2gHPb8

Thanks you for attention!

This is just a kind reminder to submit
your slides 2 weeks in advance ©

Computer Vision
and Learning Lab
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