
Algorithmic Techniques for Graph Matching and
Their Recent Comparison Study

Bogdan Savchynskyy

24/09/2022

(Weighted) graph matching problem

2

Related work and contribution

3

 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision

Related work and contribution

4

 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision

We limit our exposition to:

 Computer vision applications
 Ready cost matrix, no modeling/learning aspects
 Arbitrary costs (Lawler form)
 Open source code

[Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]

https://vislearn.github.io/gmbench/

https://vislearn.github.io/gmbench/

Most popular datasets for evaluation

5

hotel | house-dense | house-sparse
|V| = 30
Density: 13% | 13% | 1.5 %
#instances: 105

car
|V|= 19-49
Density: 2.9%
#instances: 30

motor(bike)
|V|= 15-52
Density: 3.8%
#instances: 20

Most popular algorithmic baselines

6

M. Leordeanu, M. Hebert, 2005. A spectral technique for
correspondence problems using pairwise constraints.

 Graduated assignment (ga)

 Spectral matching (sm)

S. Gold, A. Rangarajan, 1996. A graduated assignment
algorithm for graph matching.

M. Leordeanu, M. Hebert, R. Sukthankar, 2009. An
integer projected fixed point method for graph matching
and MAP inference

 Integer projected fixed
point (ipfp-u/s)

T. Cour, P. Srinivasan, J. Shi, 2007. Balanced graph
matching

 Spectral matching with
affine constraints (smac)

F. Zhou, F. de la Torre, 2016. Factorized Graph Matching Factorized graph
matching (ipfp-u/s)

M. Cho, J. Lee, K. Mu Lee, 2010. Reweighted random
walks for graph matching

 Reweighted random
walks matching (rrwm)

B. Jiang, J. Tang, C. Ding, B. Luo, 2015. A local sparse
model for matching problem

 Local sparse model (lsm)

Our findings

7

Most popular datasets are easy to solve (exactly, < 1 sec)
Most popular algorithmic baselines are very weak
Even large problems can be solved fast:

V > 500, L > 1300, t < 1 sec

Outline

8

 Empirical evaluation
Design of the best performing methods

9

Empirical evaluation

What additional datasets are in our benchmark

10

Additional small instances: |V| < 120

opengm
|V| = 19-20
Density: 75%
#instances: 4

caltech-small
|V| = 9-117
Density: 1%
#instances: 21

What datasets are in our benchmark

11

flow
|V| = 48-126
Density: 0.4%
#instances: 6

caltech-large
|V| = 36-219
Density: 0.55%
#instances: 9

worms (atlas)
|V|/ |L| = 558/1300
Density: 0.00038%
#instances: 30

(worm) pairs
|V| = 511-565
Density: 0.0019%
#instances: 16

Additional large instances: |V| > 120

What datasets are in our benchmark

12

flow
|V| = 48-126
Density: 0.4%
#instances: 6

caltech-large
|V| = 36-219
Density: 0.55%
#instances: 9

worms (atlas)
|V|/ |L| = 558/1300
Density: 0.00038%
#instances: 30

(worm) pairs
|V| = 511-565
Density: 0.0019%
#instances: 16

Additional large instances: |V| > 120

11 datasets, 451 problem instances in total

What algorithms we evaluate

13

20 algorithms

P
ri

m
al

 m
et

h
o

d
s

D
u

al
it

y-
b

as
ed

Most popular
baselines

What are the results of evaluation

14

What are the results of evaluation

15

P
ri

m
al

 m
et

h
o

d
s

D
u

al
it

y-
b

as
ed

Most efficient
methods

Evaluation peculiarities

16

 t = 1, 10, 100, 300 sec.
 Methods iteratively output current results.

 Evaluation criteria: # optima (opt), E (obj), dual bound, accuracy (acc)

 Optimal solutions obtained with Gurobi or E=dual bound:
 Optimum found: 416 instances
 Optimum unknown: 35 instances

Most popular datasets

17

Max. run-time: 1 sec, fgmd – 300 sec

hotel house-dense house-sparse cars motor

opt % acc % opt % acc % opt % acc % opt % acc % opt % acc %

fm-bca 100 100 100 100 100 100 93 92 100 97

dd-ls0 100 100 100 100 100 100 97 91 100 97

fgmd 96 98 77 89 100 100 83 89 85 97

All solved in < 1 sec!

hotel | house-dense | house-sparse cars motor

Small datasets

18

opengm caltech-small

opt % obj opt % obj acc %

fm 100 -171 57 -9040 62

fm-bca 100 -171 43 -8943 62

fgmd 75 -166 43 - -

ipfps 0 -95 19 -8983 67

opengm caltech-small

Max. run-time: 10 sec, fgmd – 300 sec

Large datasets

20

Max. run-time: 10 sec, ga – 300 sec

flow worms

opt % obj opt % acc %

fm 100 -2840 93 89

fm-bca 100 -2840 93 89

ga 0 -2469 0 0

33 out of 36 instances optimally solved in < 1 sec!

flow Worms, |V|/ |L| = 558/1300

Large datasets

21

Max. run-time: 10 sec

caltech-large pairs

obj acc % obj acc %

fm-bca -34039 51 -65913 58

fm -34117 51.6 -65625 54

ipfpu -34216 52 -35666 7

caltech-large pairs

Empirical conclusions

22

 Popular datasets are insufficient to show efficiency of new algorithms

 Popular algorithms are insufficient as baselines

 The most efficient methods are duality-based ones (e.g. fm-bca,dd-ls0,mp-fw)
equipped with powerful primal heuristics

 Even large problem instances with |V|>200-500 can often be solved in < 1 sec

Ready to deep-learn in large scale?

flow worms

opt % obj opt % acc %

ga 0 -2469 0 0

23

Design of the best performing methods

Design of the best performing methods

24

1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph
matching

Message passing (mp-XXX) P. Swoboda et al. 2017, A study of Lagrangean
decompositions and dual ascent solvers for graph
matching

 Dual decomposition(dd-lsX) L. Torresani et al. 2013, A dual decomposition approach
to feature correspondence

25

Strong primal heuristic

3. Strong primal heuristic: Fusion moves

26

1. Generate proposal solutions
2. Fuse/merge/recombine/crossover it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph
matching

27

Fusion operation

3. Strong primal heuristic: 2) Fusion operation

28

3. Strong primal heuristic: 2) Fusion operation

29

3. Strong primal heuristic: 2) Fusion operation

30

31

Proposal generation

3. Strong primal heuristic: 1) Proposal generation

32

Proposal generation

Desired properties:

 Diverse
 Low objective value

3. Strong primal heuristic: 1) Proposal generation

33

Proposal generation

Desired properties:

 Diverse
 Low objective value

Randomized
greedy
heuristic

Randomized greedy heuristic

34

Randomized greedy heuristic

35

Randomized greedy heuristic

36

Randomized greedy heuristic

37

Randomized greedy heuristic

38

Randomized greedy heuristic

39

Randomized greedy heuristic

40

Randomized greedy heuristic

41

Randomized greedy heuristic

42

Randomized greedy heuristic

43

Randomized greedy heuristic

44

Randomized greedy heuristic

45

Randomized greedy heuristic

46

3. Strong primal heuristic: Fusion moves

47

1. Generate proposal solutions
2. Fuse it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph
matching

Design of the best performing methods

48

1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca)

49

Integer linear program representation

1. ILP representation

50

Integer quadratic program (IQP)

1. ILP representation

51

Integer linear
program (ILP)

 Well-studied, efficient off-the-shelf solvers (e.g. Gurobi)
 Powerful relaxations/approximative techniques exist

Integer quadratic program (IQP)

1. ILP representation: Variables lifting

52

Integer linear
program (ILP)

Non-linear constraint:

1. ILP representation: Variables lifting

53

Integer linear
program (ILP)

Non-linear constraint:

Lifted variables / problem

1. ILP representation: Variables lifting

54

Integer linear
program (ILP)

Non-linear constraint:

Should hold only for
binary variables:

1. ILP representation: Variables lifting

55

Integer linear
program (ILP)

Non-linear constraint:

Linear constraints
sufficient for binary
variables:

Should hold only for
binary variables:

1. ILP representation: Variables lifting

56

Integer linear
program (ILP)

Integer linear
program (ILP)

1. ILP representation: Variables lifting

57

Integer linear
program (ILP)

Integer linear
program (ILP)

Different ILP representations/lifted constraints exist

58

2. Lagrange relaxation: Definition and meaning

2. Lagrange relaxation: Definition and meaning

59

2. Lagrange relaxation: Definition and meaning

60

2. Lagrange relaxation: Definition and meaning

61

2. Lagrange relaxation: Definition and meaning

62

2. Lagrange relaxation: Definition and meaning

63

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

64

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

65

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

66

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

67

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

68

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

69

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

70

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

71

Simple!

Reduced/reparametrized costs

2. Lagrange relaxation: Definition and meaning

72

Simple!

Reduced/reparametrized costs

Reduced costs simplify the problem!

2. Lagrange relaxation: How to solve

73

2. Lagrange relaxation: How to solve

74

Large-scale => first-order methods:

• Sub-gradient [Shor 197X]
dd-lsX Dual decomposition [Torresani et al., 2013]

• Bundle [Kiwiel, Lemarechal 198X]
• Proximal [e.g. Parikh, Boyd 2013]
• Block-coordinate ascent (BCA) [196X]

fm-bca Fusion Moves + BCA [Hutschenreiter et al., 2021]
mp-XXX Message passing [Swoboda et al. 2017]

• Smoothing + BCA/accelerated gradient [Nesterov 200X]

Putting all together

75

1. Consider ILP representation

2. Optimize Lagrange dual and
simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

What expects us in future?

76

Learning of the large-scaled models

Large matching problem instances
with small modeling bias

Fast and accurate,
GPU-parallelizable algorithms

