# Algorithmic Techniques for Graph Matching and Their Recent Comparison Study

Bogdan Savchynskyy

24/09/2022

## (Weighted) graph matching problem





$$\min_{x \in \{0,1\}^{V \times L}} \sum_{i,j \in V} \sum_{s,l \in L} c_{is,jl} x_{is} x_{jl}$$
  
s.t.: 
$$\sum_{s} x_{is} \leq 1 \ \forall i$$
$$\sum_{i} x_{is} \leq 1 \ \forall s$$

 $c_{is} = c_{is,is}$ 

#### Related work and contribution

- More than 7 000 000 papers
- Hundreds of algorithms
- (At least) two communities: Operations research & Computer Vision
- Different goals: modeling, speed, precision

#### Related work and contribution

- More than 7 000 000 papers
- Hundreds of algorithms
- (At least) two communities: Operations research & Computer Vision
- Different goals: modeling, speed, precision

We limit our exposition to:

- Computer vision applications
- Ready cost matrix, no modeling/learning aspects
- Arbitrary costs (Lawler form)
- Open source code

[Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]

https://vislearn.github.io/gmbench/

#### Most popular datasets for evaluation



|              | hotel | hou | se-dense | house-sparse |
|--------------|-------|-----|----------|--------------|
| <i>V</i>   = |       |     | 30       |              |
| Density:     | 13%   |     | 13%      | 1.5 %        |
| #instance    | es:   |     | 105      |              |



|             | car   |
|-------------|-------|
| <i>V</i>  = | 19-49 |
| Density:    | 2.9%  |
| #instances: | 30    |



|            | motor(bike) |
|------------|-------------|
| V   =      | 15-52       |
| Density:   | 3.8%        |
| instances: | 20          |
|            |             |

## Most popular algorithmic baselines

- Graduated assignment (ga)
- □ Spectral matching (sm)
- Spectral matching with affine constraints (smac)
- Integer projected fixed point (ipfp-u/s)
- Reweighted random walks matching (rrwm)
- □ Local sparse model (Ism)

Factorized graph matching (ipfp-u/s)

- S. Gold, A. Rangarajan, 1996. A graduated assignment algorithm for graph matching.
  - M. Leordeanu, M. Hebert, 2005. A spectral technique for correspondence problems using pairwise constraints.
- T. Cour, P. Srinivasan, J. Shi, 2007. Balanced graph matching
- M. Leordeanu, M. Hebert, R. Sukthankar, 2009. An integer projected fixed point method for graph matching and MAP inference
- M. Cho, J. Lee, K. Mu Lee, 2010. Reweighted random walks for graph matching
- B. Jiang, J. Tang, C. Ding, B. Luo, 2015. A local sparse model for matching problem
- F. Zhou, F. de la Torre, 2016. Factorized Graph Matching

 Most popular datasets are easy to solve (exactly, < 1 sec)</li>
 Most popular algorithmic baselines are very weak
 Even large problems can be solved fast: V > 500, L > 1300, t < 1 sec</li>

#### Empirical evaluation

#### > Design of the best performing methods

#### **Empirical evaluation**

#### What additional datasets are in our benchmark



 opengm

 |V| =
 19-20

 Density:
 75%

 #instances:
 4



# caltech-small |V| = 9-117 Density: 1% #instances: 21

Additional small instances: |V| < 120

### What datasets are in our benchmark



Additional large instances: |V| > 120

#### What datasets are in our benchmark



Additional large instances: |V| > 120

11 datasets, 451 problem instances in total

#### What algorithms we evaluate

|   | method                    |     | QP | LР | oijective | non-pos. | 0-unary | ineariz. | norm | doubly | spectral | discret. | path fol. | fusion | duality | SGA | BCA | Matlab | ŧ    |
|---|---------------------------|-----|----|----|-----------|----------|---------|----------|------|--------|----------|----------|-----------|--------|---------|-----|-----|--------|------|
| Γ | famd [69]                 | -   | +  |    | +         | _        |         | _        | _    | •      | ••       | •        | +         | -      | -       |     | _   | [68]   |      |
|   | fm [31]                   |     |    | +  |           |          |         |          |      |        |          |          |           | +      |         |     |     | []     | [32] |
|   | fw [62]                   |     | +  |    |           |          |         | +        |      | +      |          |          |           |        |         |     |     |        | [56] |
|   | ga [27]                   |     | +  |    | +         |          |         | +        |      | +      |          | +        |           |        |         |     |     | [20]   |      |
|   | ipfps [46]                |     | +  |    | +         | +        |         | +        |      | +      |          | +        |           |        |         |     |     | [44]   |      |
|   | ipfpu [46]                |     | +  |    | +         |          |         | +        |      | +      |          | +        |           |        |         |     |     | [44]   |      |
|   | lsm[33]                   |     | +  |    | +         | +        |         |          | +    |        |          | +        | Mo        | st r   | aod     | ula | ar  | [66]   |      |
|   | mpm [18]                  |     | +  |    | +         | +        |         |          | +    |        |          | +        | h         |        | lin     | ρç  |     | [19]   |      |
|   | pm [65]                   |     | +  |    | +         | +        | +       |          |      | +      |          | +        | D         | use    |         | C3  |     | [68]   |      |
|   | rrwm [17]                 |     | +  |    | +         |          |         | +        |      | +      |          | +        |           |        |         |     |     | [16]   |      |
|   | smac [21]                 |     | +  |    | +         | +        |         |          | +    |        | +        | +        |           |        |         |     |     | [20]   |      |
|   | sm [43]                   |     | +  |    | +         | +        |         |          | +    |        | +        | +        |           |        |         |     |     | [44]   |      |
| Γ | dd-ls(0/3/4)[             | 59] |    | +  |           |          |         |          |      |        |          |          |           |        | +       | +   |     |        | [38] |
|   | fm-bca[ <mark>31</mark> ] |     |    | +  |           |          |         |          |      |        |          |          |           | +      | +       |     | +   |        | [32] |
|   | hbp [67]                  |     |    | +  | +         |          |         |          |      |        |          |          |           |        | +       |     | +   | [66]   |      |
|   | <pre>mp(-mcf/-fw) [</pre> | 57] |    | +  |           |          |         |          |      |        |          |          |           |        | +       |     | +   |        | [56] |

20 algorithms

Duality-based

#### What are the results of evaluation



#### What are the results of evaluation



#### **Evaluation peculiarities**

- ➤ t = 1, 10, 100, 300 sec.
- Methods iteratively output current results.
- Evaluation criteria: # optima (opt), E (obj), dual bound, accuracy (acc)
- > Optimal solutions obtained with Gurobi or *E*=dual bound:
- Optimum found: 416 instances
- Optimum unknown: 35 instances

#### Most popular datasets







hotel | house-dense | house-sparse

cars

motor

|        |       |       |       |        |              |       |       |       | -     |       |
|--------|-------|-------|-------|--------|--------------|-------|-------|-------|-------|-------|
|        | ho    | tel   | house | -dense | house-sparse |       | cars  |       | motor |       |
|        | opt % | acc % | opt % | acc %  | opt %        | acc % | opt % | acc % | opt % | acc % |
| fm-bca | 100   | 100   | 100   | 100    | 100          | 100   | 93    | 92    | 100   | 97    |
| dd-ls0 | 100   | 100   | 100   | 100    | 100          | 100   | 97    | 91    | 100   | 97    |
| fgmd   | 96    | 98    | 77    | 89     | 100          | 100   | 83    | 89    | 85    | 97    |

Max. run-time: 1 sec, fgmd – 300 sec

#### All solved in < 1 sec!

#### Small datasets



caltech-small

opengm

|        | ор    | engm | caltech-small |       |       |  |  |
|--------|-------|------|---------------|-------|-------|--|--|
|        | opt % | obj  | opt %         | obj   | acc % |  |  |
| fm     | 100   | -171 | 57            | -9040 | 62    |  |  |
| fm-bca | 100   | -171 | 43            | -8943 | 62    |  |  |
| fgmd   | 75    | -166 | 43            | -     | -     |  |  |
| ipfps  | 0     | -95  | 19            | -8983 | 67    |  |  |

Max. run-time: 10 sec, fgmd – 300 sec

#### Large datasets







Worms, |V| / |L| = 558/1300

|        | flo   | w     | worms |       |  |
|--------|-------|-------|-------|-------|--|
|        | opt % | obj   | opt % | acc % |  |
| fm     | 100   | -2840 | 93    | 89    |  |
| fm-bca | 100   | -2840 | 93    | 89    |  |
| ga     | 0     | -2469 | 0     | 0     |  |

Max. run-time: 10 sec, ga – 300 sec

33 out of 36 instances optimally solved in < 1 sec!

## Large datasets



caltech-large



pairs

|        | caltec | n-large | pairs  |       |  |
|--------|--------|---------|--------|-------|--|
|        | obj    | acc %   | obj    | acc % |  |
| fm-bca | -34039 | 51      | -65913 | 58    |  |
| fm     | -34117 | 51.6    | -65625 | 54    |  |
| ipfpu  | -34216 | 52      | -35666 | 7     |  |

Max. run-time: 10 sec

#### **Empirical conclusions**

> Popular datasets are insufficient to show efficiency of new algorithms



Popular algorithms are insufficient as baselines

|    | flo   | w     | wo    | rms   |  |
|----|-------|-------|-------|-------|--|
|    | opt % | obj   | opt % | acc % |  |
| ga | 0     | -2469 | 0     | 0     |  |

- The most efficient methods are duality-based ones (e.g. fm-bca,dd-ls0,mp-fw) equipped with powerful primal heuristics
- Even large problem instances with |V|>200-500 can often be solved in < 1 sec</p>



#### Design of the best performing methods

### Design of the best performing methods

- 1. Based on integer linear program (ILP) representation
- 2. Optimize Lagrange dual and simplify the cost structure of the problem
- 3. Run a strong primal heuristic on the simplified costs

**Fusion moves (**fm, fm-bca)

L. Hutschenreiter et al. 2021, Fusion moves for graph matching

Message passing (mp-XXX)

P. Swoboda et al. 2017, A study of Lagrangean decompositions and dual ascent solvers for graph matching

**Dual decomposition**(dd-lsX)

L. Torresani et al. 2013, A dual decomposition approach to feature correspondence

## Strong primal heuristic

#### 3. Strong primal heuristic: Fusion moves

- 1. Generate proposal solutions
- 2. Fuse/merge/recombine/crossover it with the current one
- 3. Update the current solution
- 4. Goto 1.

**Fusion moves (**fm, fm-bca)

L. Hutschenreiter et al. 2021, Fusion moves for graph matching

## **Fusion operation**

#### 3. Strong primal heuristic: 2) Fusion operation







#### 3. Strong primal heuristic: 2) Fusion operation



#### 3. Strong primal heuristic: 2) Fusion operation



## Proposal generation

#### 3. Strong primal heuristic: 1) Proposal generation

# **Proposal generation**

Desired properties:

> Diverse

> Low objective value

#### 3. Strong primal heuristic: 1) Proposal generation

# **Proposal generation**

Desired properties:

- Diverse
- Low objective value

Randomized
 greedy
 heuristic








## Randomized greedy heuristic





## Randomized greedy heuristic













## Randomized greedy heuristic



- 1. Generate proposal solutions
- 2. Fuse it with the current one
- 3. Update the current solution
- 4. Goto 1.

**Fusion moves (**fm, fm-bca)

L. Hutschenreiter et al. 2021, Fusion moves for graph matching

- 1. Based on integer linear program (ILP) representation
- 2. Optimize Lagrange dual and simplify the cost structure of the problem
- 3. Run a strong primal heuristic on the simplified costs

**Fusion moves (**fm, fm-bca)

# Integer linear program representation

## 1. ILP representation



$$\min_{x \in \{0,1\}^{V \times L}} \sum_{i,j \in V} \sum_{s,l \in L} c_{is,jl} x_{is} x_{jl}$$
  
s.t.: 
$$\sum_{s} x_{is} \leq 1 \ \forall i$$
$$\sum_{i} x_{is} \leq 1 \ \forall s$$

Integer quadratic program (IQP)

## 1. ILP representation



$$\min_{x \in \{0,1\}^{V \times L}} \sum_{i,j \in V} \sum_{s,l \in L} c_{is,jl} x_{is} x_{jl}$$
  
s.t.: 
$$\sum_{s} x_{is} \leq 1 \ \forall i$$
$$\sum_{i} x_{is} \leq 1 \ \forall s$$

Integer quadratic program (IQP)

$$\min_{\substack{x \in \{0,1\}^N \\ Ax \le b}} \langle c, x \rangle$$

Integer linear program (ILP)

Well-studied, efficient off-the-shelf solvers (e.g. Gurobi)
 Powerful relaxations/approximative techniques exist



 $\min_{x \in \{0,1\}^N \\ Ax \le b} \langle c, x \rangle$ 

Integer linear program (ILP)





Integer linear program (ILP)





$$\min_{x \in \{0,1\}^N \\ Ax \le b} \langle c, x \rangle$$

Integer linear program (ILP)

$$\min_{x \in \{0,1\}^N} \sum_{i,j \in V} \sum_{s,l \in L} c_{is,jl} x_{is,jl}$$
  
s.t.: 
$$\sum_s x_{is} \leq 1 \ \forall i$$
$$\sum_i x_{is} \leq 1 \ \forall s$$
$$x_{iji'j'} \leq x_{ij}$$
$$x_{iji'j'} \leq x_{ij}$$
$$x_{iji'j'} \leq x_{ij} + x_{i'j'}$$

Integer linear program (ILP)

 $x \in$ 



$$\min_{\{0,1\}^N} \sum_{i,j \in V} \sum_{s,l \in L} c_{is,jl} x_{is,jl}$$
  
s.t.: 
$$\sum_s x_{is} \leq 1 \ \forall i$$
$$\sum_i x_{is} \leq 1 \ \forall s$$
$$x_{iji'j'} \leq x_{ij}$$
$$x_{iji'j'} \leq x_{ij}$$
$$x_{iji'j'} \leq x_{ij} + x_{i'j'}$$

 $\min_{x \in \{0,1\}^N \\ Ax \le b} \langle c, x \rangle$ 

Integer linear program (ILP)

Integer linear program (ILP)

#### Different ILP representations/lifted constraints exist

 $\min_{x \in \{0,1\}^N \\ Ax=0} \left\langle c, x \right\rangle$ 

 $\min_{\substack{x \in \{0,1\}^N \\ Ax = 0}} \langle c, x \rangle \ge \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$ 

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle \qquad \langle \lambda, Ax \rangle = \langle A^\top \lambda, x \rangle$$
$$= \max_{\lambda} \min_{x \in [0,1]^N} \langle c + A^\top \lambda, x \rangle$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle \qquad \langle \lambda, Ax \rangle = \langle A^\top \lambda, x \rangle$$
$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{ concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$

$$\min_{\substack{x \in \{0,1\}^{N} \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^{N}} \langle c, x \rangle + \langle \lambda, Ax \rangle \qquad \langle \lambda, Ax \rangle = \langle A^{\top} \lambda, x \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^{N} \\ \text{concave w.r.t. } \lambda \\ \text{Note: } Ax = 0} \xrightarrow{\text{Reduced/reparametrized costs}}$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax = 0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle \qquad \langle \lambda, Ax \rangle = \langle A^\top \lambda, x \rangle$$
$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda \\ \text{Note: } Ax = 0} \qquad \text{Reduced/reparametrized costs}$$

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax = 0}} \langle c + A^\top \lambda^*, x \rangle$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax = 0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{\substack{x \in \{0,1\}^N \\ x \in [0,1]^N \\ x \in [0,1]^N \\ concave w.r.t. \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{\substack{x \in [0,1]^N \\ concave w.r.t. \lambda \\ Note: Ax = 0} \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{\substack{x \in \{0,1\}^N \\ x \in [0,1]^N \\ x \in [0,1]^N \\ concave w.r.t. \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{\substack{x \in [0,1]^N \\ concave w.r.t. \lambda \\ Note: Ax = 0} \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{x \in [0,1]^N} \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0 \qquad \Longrightarrow \qquad Ax^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{x \in [0,1]^N} \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

if  $\lambda^*$ -optimal:

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0 \qquad \Longrightarrow \qquad Ax^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

if  $x^* \in \{0, 1\}^N$ :

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{\substack{x \in \{0,1\}^N \\ x \in [0,1]^N \\ concave w.r.t. \lambda}}} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ concave w.r.t. \lambda}}} \langle c, x \rangle + \langle \lambda, Ax \rangle$$
Reduced/reparametrized costs
$$\boxed{concave w.r.t. \lambda}}$$
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

if  $\lambda^*$ -optimal:

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0 \qquad \Longrightarrow \qquad Ax^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

if  $x^* \in \{0,1\}^N$ :  $x^* \in \arg\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$ 

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{x \in [0,1]^N} \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0 \implies Ax^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

if 
$$x^* \in \{0,1\}^N$$
:  $x^* \in \arg\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle = \left[\arg\min_{\substack{x \in \{0,1\}^N \\ \mathsf{Simple!}}} \langle c + A^\top \lambda^*, x \rangle \right]$ 

$$\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{x \in \{0,1\}^N} \langle c, x \rangle + \langle \lambda, Ax \rangle$$

$$= \max_{\lambda} \min_{\substack{x \in [0,1]^N \\ \text{concave w.r.t. } \lambda}} \langle c + A^\top \lambda, x \rangle$$
Reduced/reparametrized costs
$$\max_{x \in [0,1]^N} \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$$
Note:  $Ax = 0 \Rightarrow \langle c, x \rangle = \langle c + A^\top \lambda, x \rangle$ 

if  $\lambda^*$ -optimal:

$$\min_{x \in [0,1]^N} \langle c + A^\top \lambda^*, x \rangle = \min_{\substack{x \in [0,1]^N \\ Ax = 0}} \langle c + A^\top \lambda^*, x \rangle$$
$$(c + A^\top \lambda^*)_i < 0 \Rightarrow x_i^* = 1$$
$$(c + A^\top \lambda^*)_i > 0 \Rightarrow x_i^* = 0 \qquad \Longrightarrow \qquad Ax^* = 0$$
$$(c + A^\top \lambda^*)_i = 0 \Rightarrow x_i^* \in [0,1]$$

if  $x^* \in \{0,1\}^N$ :  $x^* \in \arg\min_{\substack{x \in \{0,1\}^N \\ Ax=0}} \langle c + A^\top \lambda^*, x \rangle = \arg\min_{\substack{x \in \{0,1\}^N \\ \mathsf{Simple!}}} \langle c + A^\top \lambda^*, x \rangle$ 

#### Reduced costs simplify the problem!

## 2. Lagrange relaxation: How to solve

$$\min_{\substack{x \in \{0,1\}^{N} \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{\substack{x \in \{0,1\}^{N} \\ x \in \{0,1\}^{N} \\ x \in [0,1]^{N} \\ D, \text{ concave w.r.t. } \lambda}} D_{\lambda}$$
## 2. Lagrange relaxation: How to solve

$$\min_{\substack{x \in \{0,1\}^{N} \\ Ax=0}} \langle c, x \rangle \geq \max_{\lambda} \min_{\substack{x \in \{0,1\}^{N} \\ x \in \{0,1\}^{N} \\ x \in [0,1]^{N} \\ b, \text{ concave}}} \lambda \sum_{\substack{x \in [0,1]^{N} \\ b, \text{ concave, piece-wise linear, large-scale}} \lambda$$

## Large-scale => first-order methods:

• Sub-gradient [Shor 197X]

dd-lsX Dual decomposition [Torresani et al., 2013]

- Bundle [Kiwiel, Lemarechal 198X]
- Proximal [e.g. Parikh, Boyd 2013]
- Block-coordinate ascent (BCA) [196X]

fm-bca *Fusion Moves + BCA* [Hutschenreiter et al., 2021]

mp-XXX *Message passing* [Swoboda et al. 2017]

Smoothing + BCA/accelerated gradient [Nesterov 200X]

## Putting all together

1. Consider ILP representation

2. Optimize Lagrange dual and **simplify the cost structure** of the problem

$$x_{is,jl} := x_{is} x_{jl}$$

$$\min_{\substack{x \in \{0,1\}^N \\ Ax = 0}} \langle c + A^\top \lambda^*, x \rangle$$

3. Run a strong primal heuristic on the simplified costs



## What expects us in future?

