Algorithmic Techniques for Graph Matching and Their Recent Comparison Study

Bogdan Savchynskyy

(Weighted) graph matching problem

$$
\begin{aligned}
\min _{x \in\{0,1\}^{V \times L}} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s} x_{j l} \\
\text { s.t.: } & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

$$
c_{i s}=c_{i s, i s}
$$

Related work and contribution

> More than 7000000 papers
$>$ Hundreds of algorithms
> (At least) two communities: Operations research \& Computer Vision
$>$ Different goals: modeling, speed, precision

Related work and contribution

$>$ More than 7000000 papers
$>$ Hundreds of algorithms
> (At least) two communities: Operations research \& Computer Vision
$>$ Different goals: modeling, speed, precision

We limit our exposition to:
$>$ Computer vision applications
$>$ Ready cost matrix, no modeling/learning aspects
$>$ Arbitrary costs (Lawler form)
> Open source code
[Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]
https://vislearn.github.io/gmbench/

Most popular datasets for evaluation

hotel	house-dense	house-sparse	
$\|V\|=$	30		
Density:	13%	13%	1.5%
\#instances:	105		

car

$|V|=\quad 19-49$
Density: 2.9\%
\#instances: 30

motor(bike)
$|V|=\quad 15-52$
Density: 3.8%
\#instances: 20

Most popular algorithmic baselines

Graduated assignment (ga)
\square Spectral matching (sm)

Spectral matching with affine constraints (smac)
\square Integer projected fixed point (ipfp-u/s)
\square Reweighted random walks matching (rrwm)

Local sparse model (Ism)
\square Factorized graph matching (ipfp-u/s)
S. Gold, A. Rangarajan, 1996. A graduated assignment algorithm for graph matching.
M. Leordeanu, M. Hebert, 2005. A spectral technique for correspondence problems using pairwise constraints.
T. Cour, P. Srinivasan, J. Shi, 2007. Balanced graph matching
M. Leordeanu, M. Hebert, R. Sukthankar, 2009. An integer projected fixed point method for graph matching and MAP inference
M. Cho, J. Lee, K. Mu Lee, 2010. Reweighted random walks for graph matching
B. Jiang, J. Tang, C. Ding, B. Luo, 2015. A local sparse model for matching problem
F. Zhou, F. de la Torre, 2016. Factorized Graph Matching

Our findings

$>$ Most popular datasets are easy to solve (exactly, < 1 sec)
$>$ Most popular algorithmic baselines are very weak
$>$ Even large problems can be solved fast:

$$
V>500, L>1300, \mathrm{t}<1 \mathrm{sec}
$$

Outline

$>$ Empirical evaluation
$>$ Design of the best performing methods

Empirical evaluation

What additional datasets are in our benchmark

	opengm
$\|V\|=$	$19-20$
Density:	75%
\#instances:	4

caltech-small
$|V|=\quad 9-117$
Density: 1%
\#instances: 21

Additional small instances: $|V|<120$

What datasets are in our benchmark

	flow
$\|V\|=$	$48-126$
Density:	0.4%
\#instances:	6
	caltech-large
$\|V\|=$	$36-219$
Density:	0.55%
\#instances:	9
	worms (atlas)
$\|V\| /\|L\|=$	$558 / 1300$
Density:	0.00038%
\#instances:	30
	(worm) pairs
$\|V\|=$	$511-565$
Density:	0.0019%
\#instances:	16

Additional large instances: $|V|>120$

What datasets are in our benchmark

$|V|=\quad \begin{array}{ll} & \text { flow } \\ 48-126\end{array}$
Density: 0.4%
\#instances: 6
caltech-large
$|V|=\quad 36-219$
Density: 0.55\%
\#instances: 9

worms (atlas)
$|V| /|L|=558 / 1300$
Density: 0.00038\%
\#instances: 30
(worm) pairs
$|V|=\quad$ 511-565
Density: 0.0019\%
\#instances: 16
Additional large instances: $|V|>120$

What algorithms we evaluate

20 algorithms

What are the results of evaluation

What are the results of evaluation

Evaluation peculiarities

$>\mathrm{t}=1,10,100,300 \mathrm{sec}$.
> Methods iteratively output current results.
$>$ Evaluation criteria: \# optima (opt), E (obj), dual bound, accuracy (acc)
$>$ Optimal solutions obtained with Gurobi or $E=$ dual bound:
> Optimum found: 416 instances
> Optimum unknown: 35 instances

Most popular datasets

hotel | house-dense | house-sparse

cars

motor

	hotel		house-dense		house-sparse		cars		motor	
	opt \%	acc \%								
fm-bca	$\mathbf{1 0 0}$	93	$\mathbf{9 2}$	$\mathbf{1 0 0}$	$\mathbf{9 7}$					
dd-ls0	$\mathbf{1 0 0}$	$\mathbf{9 7}$	91	$\mathbf{1 0 0}$	$\mathbf{9 7}$					
fgmd	96	98	77	89	100	100	83	89	85	97

Max. run-time: 1 sec, fgmd - 300 sec

All solved in < 1 sec!

Small datasets

opengm

caltech-small

	opengm		caltech-small		
	opt \%	obj	opt \%	obj	acc \%
fm	$\mathbf{1 0 0}$	$\mathbf{- 1 7 1}$	$\mathbf{5 7}$	$\mathbf{- 9 0 4 0}$	62
fm-bca	$\mathbf{1 0 0}$	$\mathbf{- 1 7 1}$	43	-8943	62
fgmd	75	-166	43	-	-
ipfps	0	-95	19	-8983	67

Max. run-time: 10 sec, fgmd - 300 sec

Large datasets

flow

Worms, $|V| /|L|=558 / 1300$

	flow		worms	
	opt \%	obj	opt \%	acc \%
fm	100	-2840	93	89
fm-bca	$\mathbf{1 0 0}$	-2840	93	89
ga	0	-2469	0	0

Max. run-time: 10 sec , ga -300 sec

33 out of 36 instances optimally solved in < 1 sec!

Large datasets

caltech-large

pairs

	caltech-large		pairs	
	obj	acc \%	obj	acc \%
fm-bca	-34039	51	-65913	$\mathbf{5 8}$
fm	-34117	51.6	-65625	54
ipfpu	-34216	52	-35666	7

Max. run-time: 10 sec

Empirical conclusions

> Popular datasets are insufficient to show efficiency of new algorithms

> Popular algorithms are insufficient as baselines

	flow		worms	
	opt \%	obj	opt \%	acc \%
ga	0	-2469	0	0

> The most efficient methods are duality-based ones (e.g. fm-bca,dd-Is0,mp-fw) equipped with powerful primal heuristics
$>$ Even large problem instances with $|\mathrm{V}|>200-500$ can often be solved in $<1 \mathrm{sec}$

Ready to deep-learn in large scale?

Design of the best performing methods

Design of the best performing methods

1. Based on integer linear program (ILP) representation
2. Optimize Lagrange dual and simplify the cost structure of the problem
3. Run a strong primal heuristic on the simplified costs

Fusion moves (fm, fm-bca)
\square Message passing (mp-XXX)
\square Dual decomposition(dd-lsX)
L. Hutschenreiter et al. 2021, Fusion moves for graph matching
P. Swoboda et al. 2017, A study of Lagrangean decompositions and dual ascent solvers for graph matching
L. Torresani et al. 2013, A dual decomposition approach to feature correspondence

Strong primal heuristic

3. Strong primal heuristic: Fusion moves

1. Generate proposal solutions
2. Fuse/merge/recombine/crossover it with the current one
3. Update the current solution
4. Goto 1.
\square Fusion moves ($\mathrm{fm}, \mathrm{fm}-\mathrm{bca}$)
L. Hutschenreiter et al. 2021, Fusion moves for graph matching

Fusion operation

3. Strong primal heuristic: 2) Fusion operation

3. Strong primal heuristic: 2) Fusion operation

3. Strong primal heuristic: 2) Fusion operation

$$
E\left(\theta, x_{\text {fuse }}\right) \leq \min \left[E\left(\theta, x_{1}\right), E\left(\theta, x_{2}\right)\right]
$$

Proposal generation

3. Strong primal heuristic: 1) Proposal generation

Proposal generation

Desired properties:
$>$ Diverse
> Low objective value

3. Strong primal heuristic: 1) Proposal generation

Proposal generation

Desired properties:
$>$ Diverse
> Low objective value

\longrightarrow| Randomized |
| :--- |
| greedy |
| heuristic |

Randomized greedy heuristic

3. Strong primal heuristic: Fusion moves

1. Generate proposal solutions
2. Fuse it with the current one
3. Update the current solution
4. Goto 1.

Fusion moves ($\mathrm{fm}, \mathrm{fm}-\mathrm{bca}$)
L. Hutschenreiter et al. 2021, Fusion moves for graph matching

Design of the best performing methods

1. Based on integer linear program (ILP) representation
2. Optimize Lagrange dual and simplify the cost structure of the problem
3. Run a strong primal heuristic on the simplified costs

Fusion moves (fm, fm-bca)

Integer linear program representation

1. ILP representation

$$
\begin{aligned}
\min _{x \in\{0,1\} V \times L} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s} x_{j l} \\
\text { s.t.: } & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

Integer quadratic program (IQP)

1. ILP representation

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Integer linear
program (ILP)

$$
\begin{aligned}
\min _{x \in\{0,1\} V \times L} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s} x_{j l} \\
\text { s.t.: } & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

Integer quadratic program (IQP)
> Well-studied, efficient off-the-shelf solvers (e.g. Gurobi)
> Powerful relaxations/approximative techniques exist

1. ILP representation: Variables lifting

$$
\begin{aligned}
\min _{x \in\{0,1\}^{N}} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s, j l} \\
\text { s.t. }: & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

Non-linear constraint: $\quad x_{i s, j l}:=x_{i s} x_{j l}$

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Integer linear program (ILP)

1. ILP representation: Variables lifting

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Integer linear program (ILP)

$$
\begin{aligned}
\min _{x \in\{0,1\}^{N}} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s, j l} \\
\text { s.t. } & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

Non-linear constraint: $\quad x_{i s, j l}:=x_{i s} x_{j l}$

Lifted variables / problem

1. ILP representation: Variables lifting

Integer linear program (ILP)

1. ILP representation: Variables lifting

$$
\begin{aligned}
\min _{x \in\{0,1\}^{N}} & \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s, j l} \\
\text { s.t.: } & \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s
\end{aligned}
$$

Non-linear constraint: $\quad x_{i s, j l}:=x_{i s} x_{j l}$

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Should hold only for binary variables:

$x_{i s}$	1	1	0	0
$x_{j l}$	1	0	1	0
$x_{i s, j l}$	1	0	0	0

Integer linear program (ILP)

Linear constraints sufficient for binary variables:

$$
\begin{aligned}
x_{i j i^{\prime} j^{\prime}} & \leq x_{i j} \\
x_{i j i^{\prime} j^{\prime}} & \leq x_{i^{\prime} j^{\prime}} \\
x_{i j i^{\prime} j^{\prime}} & \geq x_{i j}+x_{i^{\prime} j^{\prime}}-1
\end{aligned}
$$

1. ILP representation: Variables lifting

$$
\begin{aligned}
& \min _{x \in\{0,1\}^{N}} \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s, j l} \\
& \text { s.t.: } \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s \\
& x_{i j i^{\prime} j^{\prime}} \leq x_{i j} \\
& x_{i j i^{\prime} j^{\prime}} \leq x_{i^{\prime} j^{\prime}} \\
& x_{i j i^{\prime} j^{\prime}} \geq x_{i j}+x_{i^{\prime} j^{\prime}}-1
\end{aligned}
$$

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Integer linear
program (ILP)

Integer linear program (ILP)

1. ILP representation: Variables lifting

$$
\begin{aligned}
& \min _{x \in\{0,1\}^{N}} \sum_{i, j \in V} \sum_{s, l \in L} c_{i s, j l} x_{i s, j l} \\
& \text { s.t.: } \sum_{s} x_{i s} \leq 1 \forall i \\
& \sum_{i} x_{i s} \leq 1 \forall s \\
& x_{i j i^{\prime} j^{\prime}} \leq x_{i j} \\
& x_{i j i^{\prime} j^{\prime}} \leq x_{i^{\prime} j^{\prime}} \\
& x_{i j i^{\prime} j^{\prime}} \geq x_{i j}+x_{i^{\prime} j^{\prime}}-1
\end{aligned}
$$

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x \leq b}}\langle c, x\rangle
$$

Integer linear
program (ILP)

Integer linear program (ILP)
2. Lagrange relaxation: Definition and meaning

2. Lagrange relaxation: Definition and meaning

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\langle c, x\rangle
$$

2. Lagrange relaxation: Definition and meaning

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\langle c, x\rangle \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \quad\langle\lambda, A x\rangle=\left\langle A^{\top} \lambda, x\right\rangle \\
& =\max _{\lambda} \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
& \min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \quad\langle\lambda, A x\rangle=\left\langle A^{\top} \lambda, x\right\rangle \\
&=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle & \langle\lambda, A x\rangle=\left\langle A^{\top} \lambda, x\right\rangle \\
=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda} & \\
\text { Note: } A x=0 \Rightarrow & \Rightarrow c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle
\end{aligned} \quad \begin{gathered}
\langle\lambda, A x\rangle=\left\langle A^{\top} \lambda, x\right\rangle \\
=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda} \\
\text { Note: } A x=0 \Rightarrow
\end{gathered} \quad \begin{gathered}
\text { Reduced/reparametrized costs } \\
\\
\end{gathered}
$$

if λ^{*}-optimal:

$$
\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\ A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
& \min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
&=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \Rightarrow\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \Rightarrow\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
& \min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
&=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \Rightarrow\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \Rightarrow\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned}
$$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
& \min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
&=\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \quad \Rightarrow \quad\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1] N \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned} \quad \Longrightarrow A x^{*}=00 \text { a }
$$

if $x^{*} \in\{0,1\}^{N}$:

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \Rightarrow\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x \geq 0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned} \quad \Longrightarrow A x^{*}=00 \text { a }
$$

if $x^{*} \in\{0,1\}^{N}: \quad x^{*} \in \arg \min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \quad \Rightarrow \quad\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned}
$$

if $x^{*} \in\{0,1\}^{N}: \quad x^{*} \in \arg \min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\arg \min _{x \in\{0,1\}^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle$

2. Lagrange relaxation: Definition and meaning

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle \quad & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}_{\text {concave w.r.t. } \lambda}
\end{aligned}
$$

Reduced/reparametrized costs

Note: $A x=0 \quad \Rightarrow \quad\langle c, x\rangle=\left\langle c+A^{\top} \lambda, x\right\rangle$
if λ^{*}-optimal:

$$
\begin{aligned}
& \min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\min _{\substack{x \in[0,1]^{N} \\
A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}<0 \Rightarrow x_{i}^{*}=1 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}>0 \Rightarrow x_{i}^{*}=0 \\
& \left(c+A^{\top} \lambda^{*}\right)_{i}=0 \Rightarrow x_{i}^{*} \in[0,1]
\end{aligned}
$$

if $x^{*} \in\{0,1\}^{N}: \quad x^{*} \in \arg \min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle=\arg \min _{x \in\{0,1\}^{N}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle$

2. Lagrange relaxation: How to solve

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\lambda, ~}_{\substack{ \\
\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}} \underbrace{\lambda}
\end{aligned}
$$

concave, piece-wise linear, large-scale

2. Lagrange relaxation: How to solve

$$
\begin{aligned}
\min _{\substack{x \in\{0,1\}^{N} \\
A x=0}}\langle c, x\rangle & \geq \max _{\lambda} \min _{x \in\{0,1\}^{N}}\langle c, x\rangle+\langle\lambda, A x\rangle \\
& =\max _{\lambda} \underbrace{\min _{x \in[0,1]^{N}}\left\langle c+A^{\top} \lambda, x\right\rangle}
\end{aligned}
$$

concave, piece-wise linear, large-scale

Large-scale => first-order methods:

- Sub-gradient [Shor 197X]
dd-IsX Dual decomposition [Torresani et al., 2013]
- Bundle [Kiwiel, Lemarechal 198X]
- Proximal [e.g. Parikh, Boyd 2013]
- Block-coordinate ascent (BCA) [196X]
fm-bca Fusion Moves + BCA [Hutschenreiter et al., 2021]
mp-XXX Message passing [Swoboda et al. 2017]
- Smoothing + BCA/accelerated gradient [Nesterov 200X]

Putting all together

1. Consider ILP representation

$$
x_{i s, j l}:=x_{i s} x_{j l}
$$

2. Optimize Lagrange dual and simplify the cost structure of the problem

$$
\min _{\substack{x \in\{0,1\}^{N} \\ A x=0}}\left\langle c+A^{\top} \lambda^{*}, x\right\rangle
$$

3. Run a strong primal heuristic on the simplified costs

What expects us in future?

