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(Weighted) graph matching problem
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Related work and contribution
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 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision
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 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision

We limit our exposition to:

 Computer vision applications
 Ready cost matrix, no modeling/learning aspects
 Arbitrary costs (Lawler form)
 Open source code

[Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]

https://vislearn.github.io/gmbench/

https://vislearn.github.io/gmbench/


Most popular datasets for evaluation
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hotel | house-dense | house-sparse
|V| = 30
Density:    13%   |        13%         | 1.5 %
#instances:                   105

car
|V|=            19-49
Density:        2.9%  
#instances:   30

motor(bike)
|V|= 15-52
Density:        3.8%  
#instances:   20



Most popular algorithmic baselines

6

M. Leordeanu, M. Hebert, 2005. A spectral technique for 
correspondence problems using pairwise constraints.

 Graduated assignment (ga)

 Spectral matching (sm)

S. Gold, A. Rangarajan, 1996. A graduated assignment 
algorithm for graph matching.

M. Leordeanu, M. Hebert, R. Sukthankar, 2009. An 
integer projected fixed point method for graph matching 
and MAP inference

 Integer projected fixed 
point (ipfp-u/s)

T. Cour, P. Srinivasan, J. Shi, 2007. Balanced graph 
matching

 Spectral matching with 
affine constraints (smac)

F. Zhou, F. de la Torre, 2016. Factorized Graph Matching Factorized graph 
matching (ipfp-u/s)

M. Cho, J. Lee, K. Mu Lee, 2010. Reweighted random 
walks for graph matching

 Reweighted random 
walks matching (rrwm)

B. Jiang, J. Tang, C. Ding, B. Luo, 2015. A local sparse 
model for matching problem

 Local sparse model (lsm)



Our findings
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Most popular datasets are easy to solve (exactly, < 1 sec)
Most popular algorithmic baselines are very weak
Even large problems can be solved fast: 

V > 500, L > 1300, t < 1 sec



Outline
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 Empirical evaluation 
Design of the best performing methods
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Empirical evaluation 



What additional datasets are in our benchmark
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Additional small instances: |V| < 120

opengm
|V| = 19-20
Density:        75%  
#instances:   4

caltech-small
|V| = 9-117
Density:        1%  
#instances:   21



What datasets are in our benchmark
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flow
|V| = 48-126
Density:        0.4%  
#instances:   6

caltech-large
|V| = 36-219
Density:        0.55%  
#instances:   9

worms (atlas)
|V|/ |L| =   558/1300
Density:        0.00038%  
#instances:   30

(worm) pairs
|V| =            511-565
Density:        0.0019%  
#instances:   16

Additional large instances: |V| > 120
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flow
|V| = 48-126
Density:        0.4%  
#instances:   6

caltech-large
|V| = 36-219
Density:        0.55%  
#instances:   9

worms (atlas)
|V|/ |L| =   558/1300
Density:        0.00038%  
#instances:   30

(worm) pairs
|V| =            511-565
Density:        0.0019%  
#instances:   16

Additional large instances: |V| > 120

11 datasets, 451 problem instances in total



What algorithms we evaluate
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What are the results of evaluation
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What are the results of evaluation
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Evaluation peculiarities
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 t = 1, 10, 100, 300 sec. 
 Methods iteratively output current results. 

 Evaluation criteria: # optima (opt), E (obj), dual bound, accuracy (acc)

 Optimal solutions obtained with Gurobi or E=dual bound:
 Optimum found:     416 instances
 Optimum unknown: 35 instances



Most popular datasets
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Max. run-time: 1 sec, fgmd – 300 sec

hotel house-dense house-sparse cars motor

opt % acc % opt % acc % opt % acc % opt % acc % opt % acc %

fm-bca 100 100 100 100 100 100 93 92 100 97

dd-ls0 100 100 100 100 100 100 97 91 100 97

fgmd 96 98 77 89 100 100 83 89 85 97

All solved in < 1 sec!

hotel | house-dense | house-sparse cars motor



Small datasets
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opengm caltech-small

opt % obj opt % obj acc %

fm 100 -171 57 -9040 62

fm-bca 100 -171 43 -8943 62

fgmd 75 -166 43 - -

ipfps 0 -95 19 -8983 67

opengm caltech-small

Max. run-time: 10 sec, fgmd – 300 sec



Large datasets
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Max. run-time: 10 sec, ga – 300 sec

flow worms

opt % obj opt % acc %

fm 100 -2840 93 89

fm-bca 100 -2840 93 89

ga 0 -2469 0 0

33 out of 36 instances optimally solved in < 1 sec!

flow Worms, |V|/ |L| =   558/1300



Large datasets
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Max. run-time: 10 sec

caltech-large pairs

obj acc % obj acc %

fm-bca -34039 51 -65913 58

fm -34117 51.6 -65625 54

ipfpu -34216 52 -35666 7

caltech-large pairs



Empirical conclusions
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 Popular datasets are insufficient to show efficiency of new algorithms

 Popular algorithms are insufficient as  baselines 

 The most efficient methods are duality-based ones (e.g. fm-bca,dd-ls0,mp-fw) 
equipped with powerful primal heuristics

 Even large problem instances with |V|>200-500 can often be solved in < 1 sec

Ready to deep-learn in large scale?

flow worms

opt % obj opt % acc %

ga 0 -2469 0 0
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Design of the best performing methods



Design of the best performing methods
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1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching

Message passing (mp-XXX) P. Swoboda et al. 2017, A study of Lagrangean
decompositions and dual ascent solvers for graph 
matching

 Dual decomposition(dd-lsX) L. Torresani et al. 2013, A dual decomposition approach 
to feature correspondence
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Strong primal heuristic



3. Strong primal heuristic: Fusion moves
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1. Generate proposal solutions
2. Fuse/merge/recombine/crossover it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching
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Fusion operation



3. Strong primal heuristic: 2) Fusion operation
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3. Strong primal heuristic: 2) Fusion operation
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3. Strong primal heuristic: 2) Fusion operation
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Proposal generation



3. Strong primal heuristic: 1) Proposal generation
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Proposal generation

Desired properties:

 Diverse
 Low objective value



3. Strong primal heuristic: 1) Proposal generation
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Proposal generation

Desired properties:

 Diverse
 Low objective value

Randomized 
greedy
heuristic



Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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3. Strong primal heuristic: Fusion moves
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1. Generate proposal solutions
2. Fuse it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching



Design of the best performing methods
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1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca)
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Integer linear program representation



1. ILP representation
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Integer quadratic program (IQP)



1. ILP representation
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Integer linear 
program (ILP)

 Well-studied, efficient off-the-shelf solvers (e.g. Gurobi)
 Powerful relaxations/approximative techniques exist

Integer quadratic program (IQP)



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Lifted variables / problem



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Should hold only for 
binary variables:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Linear constraints 
sufficient  for binary 
variables:

Should hold only for 
binary variables:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Integer linear 
program (ILP)



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Integer linear 
program (ILP)

Different ILP representations/lifted constraints exist



58

2. Lagrange relaxation: Definition and meaning
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2. Lagrange relaxation: Definition and meaning
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Reduced/reparametrized costs
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning

65

Reduced/reparametrized costs
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning

67

Reduced/reparametrized costs
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Reduced/reparametrized costs
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Simple!

Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Simple!

Reduced/reparametrized costs

Reduced costs simplify the problem!



2. Lagrange relaxation: How to solve
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2. Lagrange relaxation: How to solve
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Large-scale => first-order methods:

• Sub-gradient [Shor 197X]
dd-lsX Dual decomposition [Torresani et al., 2013]

• Bundle [Kiwiel, Lemarechal 198X]
• Proximal [e.g. Parikh, Boyd 2013]
• Block-coordinate ascent (BCA) [196X] 

fm-bca Fusion Moves + BCA [Hutschenreiter et al., 2021]
mp-XXX Message passing [Swoboda et al. 2017]

• Smoothing + BCA/accelerated gradient [Nesterov 200X]



Putting all together
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1. Consider ILP representation

2. Optimize Lagrange dual and 
simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs



What expects us in future?
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Learning of the large-scaled models

Large matching problem instances
with small modeling bias

Fast and accurate, 
GPU-parallelizable algorithms


