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(Weighted) graph matching problem
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Related work and contribution
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 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision
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 More than 7 000 000 papers
 Hundreds of algorithms
 (At least) two communities: Operations research & Computer Vision
 Different goals: modeling, speed, precision

We limit our exposition to:

 Computer vision applications
 Ready cost matrix, no modeling/learning aspects
 Arbitrary costs (Lawler form)
 Open source code

[Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]

https://vislearn.github.io/gmbench/

https://vislearn.github.io/gmbench/


Most popular datasets for evaluation
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hotel | house-dense | house-sparse
|V| = 30
Density:    13%   |        13%         | 1.5 %
#instances:                   105

car
|V|=            19-49
Density:        2.9%  
#instances:   30

motor(bike)
|V|= 15-52
Density:        3.8%  
#instances:   20



Most popular algorithmic baselines
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M. Leordeanu, M. Hebert, 2005. A spectral technique for 
correspondence problems using pairwise constraints.

 Graduated assignment (ga)

 Spectral matching (sm)

S. Gold, A. Rangarajan, 1996. A graduated assignment 
algorithm for graph matching.

M. Leordeanu, M. Hebert, R. Sukthankar, 2009. An 
integer projected fixed point method for graph matching 
and MAP inference

 Integer projected fixed 
point (ipfp-u/s)

T. Cour, P. Srinivasan, J. Shi, 2007. Balanced graph 
matching

 Spectral matching with 
affine constraints (smac)

F. Zhou, F. de la Torre, 2016. Factorized Graph Matching Factorized graph 
matching (ipfp-u/s)

M. Cho, J. Lee, K. Mu Lee, 2010. Reweighted random 
walks for graph matching

 Reweighted random 
walks matching (rrwm)

B. Jiang, J. Tang, C. Ding, B. Luo, 2015. A local sparse 
model for matching problem

 Local sparse model (lsm)



Our findings
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Most popular datasets are easy to solve (exactly, < 1 sec)
Most popular algorithmic baselines are very weak
Even large problems can be solved fast: 

V > 500, L > 1300, t < 1 sec



Outline
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 Empirical evaluation 
Design of the best performing methods
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What additional datasets are in our benchmark
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Additional small instances: |V| < 120

opengm
|V| = 19-20
Density:        75%  
#instances:   4

caltech-small
|V| = 9-117
Density:        1%  
#instances:   21



What datasets are in our benchmark
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flow
|V| = 48-126
Density:        0.4%  
#instances:   6

caltech-large
|V| = 36-219
Density:        0.55%  
#instances:   9

worms (atlas)
|V|/ |L| =   558/1300
Density:        0.00038%  
#instances:   30

(worm) pairs
|V| =            511-565
Density:        0.0019%  
#instances:   16

Additional large instances: |V| > 120



What datasets are in our benchmark
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flow
|V| = 48-126
Density:        0.4%  
#instances:   6

caltech-large
|V| = 36-219
Density:        0.55%  
#instances:   9

worms (atlas)
|V|/ |L| =   558/1300
Density:        0.00038%  
#instances:   30

(worm) pairs
|V| =            511-565
Density:        0.0019%  
#instances:   16

Additional large instances: |V| > 120

11 datasets, 451 problem instances in total



What algorithms we evaluate
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What are the results of evaluation
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Evaluation peculiarities
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 t = 1, 10, 100, 300 sec. 
 Methods iteratively output current results. 

 Evaluation criteria: # optima (opt), E (obj), dual bound, accuracy (acc)

 Optimal solutions obtained with Gurobi or E=dual bound:
 Optimum found:     416 instances
 Optimum unknown: 35 instances



Most popular datasets
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Max. run-time: 1 sec, fgmd – 300 sec

hotel house-dense house-sparse cars motor

opt % acc % opt % acc % opt % acc % opt % acc % opt % acc %

fm-bca 100 100 100 100 100 100 93 92 100 97

dd-ls0 100 100 100 100 100 100 97 91 100 97

fgmd 96 98 77 89 100 100 83 89 85 97

All solved in < 1 sec!

hotel | house-dense | house-sparse cars motor



Small datasets
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opengm caltech-small

opt % obj opt % obj acc %

fm 100 -171 57 -9040 62

fm-bca 100 -171 43 -8943 62

fgmd 75 -166 43 - -

ipfps 0 -95 19 -8983 67

opengm caltech-small

Max. run-time: 10 sec, fgmd – 300 sec



Large datasets
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Max. run-time: 10 sec, ga – 300 sec

flow worms

opt % obj opt % acc %

fm 100 -2840 93 89

fm-bca 100 -2840 93 89

ga 0 -2469 0 0

33 out of 36 instances optimally solved in < 1 sec!

flow Worms, |V|/ |L| =   558/1300



Large datasets
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Max. run-time: 10 sec

caltech-large pairs

obj acc % obj acc %

fm-bca -34039 51 -65913 58

fm -34117 51.6 -65625 54

ipfpu -34216 52 -35666 7

caltech-large pairs



Empirical conclusions
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 Popular datasets are insufficient to show efficiency of new algorithms

 Popular algorithms are insufficient as  baselines 

 The most efficient methods are duality-based ones (e.g. fm-bca,dd-ls0,mp-fw) 
equipped with powerful primal heuristics

 Even large problem instances with |V|>200-500 can often be solved in < 1 sec

Ready to deep-learn in large scale?

flow worms

opt % obj opt % acc %

ga 0 -2469 0 0
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Design of the best performing methods



Design of the best performing methods
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1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching

Message passing (mp-XXX) P. Swoboda et al. 2017, A study of Lagrangean
decompositions and dual ascent solvers for graph 
matching

 Dual decomposition(dd-lsX) L. Torresani et al. 2013, A dual decomposition approach 
to feature correspondence
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Strong primal heuristic



3. Strong primal heuristic: Fusion moves
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1. Generate proposal solutions
2. Fuse/merge/recombine/crossover it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching
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Fusion operation



3. Strong primal heuristic: 2) Fusion operation
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3. Strong primal heuristic: 2) Fusion operation
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3. Strong primal heuristic: 2) Fusion operation
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Proposal generation



3. Strong primal heuristic: 1) Proposal generation
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Proposal generation

Desired properties:

 Diverse
 Low objective value



3. Strong primal heuristic: 1) Proposal generation
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Proposal generation

Desired properties:

 Diverse
 Low objective value

Randomized 
greedy
heuristic



Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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Randomized greedy heuristic
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3. Strong primal heuristic: Fusion moves

47

1. Generate proposal solutions
2. Fuse it with the current one
3. Update the current solution
4. Goto 1.

 Fusion moves (fm, fm-bca) L. Hutschenreiter et al. 2021, Fusion moves for graph 
matching



Design of the best performing methods

48

1. Based on integer linear program (ILP) representation

2. Optimize Lagrange dual and simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs

 Fusion moves (fm, fm-bca)
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Integer linear program representation



1. ILP representation
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Integer quadratic program (IQP)



1. ILP representation
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Integer linear 
program (ILP)

 Well-studied, efficient off-the-shelf solvers (e.g. Gurobi)
 Powerful relaxations/approximative techniques exist

Integer quadratic program (IQP)



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Lifted variables / problem



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Should hold only for 
binary variables:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Non-linear constraint:

Linear constraints 
sufficient  for binary 
variables:

Should hold only for 
binary variables:



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Integer linear 
program (ILP)



1. ILP representation: Variables lifting
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Integer linear 
program (ILP)

Integer linear 
program (ILP)

Different ILP representations/lifted constraints exist
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2. Lagrange relaxation: Definition and meaning
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2. Lagrange relaxation: Definition and meaning
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Reduced/reparametrized costs
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Reduced/reparametrized costs
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Reduced/reparametrized costs
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Reduced/reparametrized costs
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Reduced/reparametrized costs
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Simple!

Reduced/reparametrized costs



2. Lagrange relaxation: Definition and meaning
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Simple!

Reduced/reparametrized costs

Reduced costs simplify the problem!



2. Lagrange relaxation: How to solve
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2. Lagrange relaxation: How to solve
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Large-scale => first-order methods:

• Sub-gradient [Shor 197X]
dd-lsX Dual decomposition [Torresani et al., 2013]

• Bundle [Kiwiel, Lemarechal 198X]
• Proximal [e.g. Parikh, Boyd 2013]
• Block-coordinate ascent (BCA) [196X] 

fm-bca Fusion Moves + BCA [Hutschenreiter et al., 2021]
mp-XXX Message passing [Swoboda et al. 2017]

• Smoothing + BCA/accelerated gradient [Nesterov 200X]



Putting all together
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1. Consider ILP representation

2. Optimize Lagrange dual and 
simplify the cost structure of the problem

3. Run a strong primal heuristic on the simplified costs



What expects us in future?
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Learning of the large-scaled models

Large matching problem instances
with small modeling bias

Fast and accurate, 
GPU-parallelizable algorithms


