Solving Large-Scale Submodular Labeling Problems

Overview of I.Kovtun's work

Bogdan Savchynskyy

Heidelberg University, Germany

MRF Energy Minimization

$$\min_{x \in \mathcal{X}} \theta(x) := \min_{x \in \mathcal{X}} \sum_{v \in \mathcal{V}} \theta_v(x_v) + \sum_{uv \in \mathcal{E}} \theta_{uv}(x_u, x_v)$$

Submodular Problems

- Ordering of \mathcal{X}_{v} : $x_{v} \geqslant x'_{v}$
- $\bullet \ \theta_{uv}(x_u, x_v) + \theta_{uv}(x_u', x_v') \leq \theta_{uv}(x_u, x_v') + \theta_{uv}(x_u', x_v)$
- Example: $\theta_{uv} = \phi(x_u x_v)$ and ϕ -convex $(|\cdot|, (\cdot)^2)$
 - $\Rightarrow \mathcal{X}^4$ operations to check submodularity in pairwise case. (can be done in with \mathcal{X}^2 operations, indeed)

Submodular Problems: Generalization

- Ordering of \mathcal{X}_{v} : $x_{v} \geqslant x'_{v}$
- v nodewise maximum
- ^ nodewise minimum
- Works for any $A \subseteq \mathcal{V}$: $x_A \vee x_A'$ or $x_A \wedge x_A'$
- Submodularity: $\theta_{\mathcal{A}}(x_{\mathcal{A}} \vee x_{\mathcal{A}}') + \theta_{\mathcal{A}}(x_{\mathcal{A}} \wedge x_{\mathcal{A}}') \leqslant \theta_{\mathcal{A}}(x_{\mathcal{A}}) + \theta_{\mathcal{A}}(x_{\mathcal{A}}')$
- Sufficient condition: A factors
- Necessary and suffcient A = V.

Submodular Problems: Property Of Solutions

Theorem (Known fact in submodular optimization)

Let x^* and x' be any two minimizers of $\theta(x)$. Then $x^* \vee x'$ and $x^* \wedge x'$ are minimizers as well.

Proof.

By construction:

$$\theta(x^*) \leqslant \theta(x^* \lor x')$$
 and (1)

$$\theta(x') \leqslant \theta(x^* \wedge x'). \tag{2}$$

From (1)+(2):
$$\theta(x^*) + \theta(x') \le \theta(x^* \lor x') + \theta(x^* \land x')$$
 (3)

From submodularity:
$$\theta(x^*) + \theta(x') \ge \theta(x^* \lor x') + \theta(x^* \land x')$$
 (4)

Comparing (3), (4) and using optimality of x^* and x' we get

$$\theta(x^* \vee x') = \theta(x^* \wedge x') = \theta(x^*) = \theta(x')$$

Solving with MinCut/MaxFlow

Number of edges grows as $|V||\mathcal{X}_{\nu}|^2$. For ℓ_1 norm only $|V||\mathcal{X}_{\nu}|$ Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors 2003 Schlesinger, Flach. Transforming an arbitrary MinSum problem into a binary one. 2006

Partial Optimality

Theorem (Kovtun 2005)

Let
$$x' \in \mathcal{X}$$
, $\mathcal{X}^*(x') = \operatorname{Arg\,min}_{x \in \mathcal{X} \atop x \leqslant x'} \theta(x)$ and $\hat{x} = \wedge_{x \in \mathcal{X}^*(x')} x$.

Then for all $x^* = \min_{x \in \mathcal{X}} \theta(x)$ holds $x^* \ge \hat{x}$.

Partial Optimality: Proof

Proof.

Let
$$x^* \geqslant \hat{x}$$
. Then $x^* \land \hat{x} \leqslant \hat{x}$ (1)

From submodularity:
$$\theta(x^*) + \theta(\hat{x}) \ge \theta(x^* \land \hat{x}) + \theta(x^* \lor \hat{x})$$
 (2)

From optimality of
$$x^*$$
: $\theta(x^*) \le \theta(x^* \lor \hat{x})$ (3)

By construction and from (1)
$$\theta(\hat{x}) < \theta(x^* \wedge \hat{x})$$
. (4)

From (3)+(4):
$$\theta(x^*) + \theta(\hat{x}) < \theta(x^* \wedge \hat{x}) + \theta(x^* \vee \hat{x})$$
 - contradicts to (2)

Partial Optimality: Experiment

Size $359 \times 253 \times 21$, ℓ_1 regularization. Needed: 80 Mb, Solved with 10 Mb.

Partial Optimality: Experiment

Size $996 \times 1478 \times 149$, ℓ_1 regularization. Needed: 8 Gb, Solved with 400 Mb.

Coarse-to-Fine Approach

- Max-flow problem size grows as $|\mathcal{V}||\mathcal{X}_{\nu}^2|$
- We addressed |V|
- Let us address \mathcal{X}_{v}
- What if \mathcal{X}_{ν} continuous (e.g. depth)?
- $\bullet \ \tilde{\theta}_w(y_w) = \min_{x_w \in y_w} \theta_w(x_w), \ x_w \in \mathcal{X}_w, \ w \in \mathcal{V} \cup \mathcal{E}$

Theorem (Raphael C. Coarse-to-fine dynamic programming 2001)

If $|y_v| = 1$ for all $v \in \mathcal{V}$ then $y_v * = \arg\min_{y \in \mathcal{Y}} \tilde{\theta}(y)$ is optimal for θ .

Theorem (Kovtun 2005)

If θ is submodular and $\mathcal Y$ is convex coarsening then $\tilde \theta$ is submodular.

[Zach A Principled Approach for Coarse-to-Fine MAP Inference CVPR 2014]

Coarse-to-Fine: Algorithm

Theorem (Raphael C. Coarse-to-fine dynamic programming 2001)

If $|y_v| = 1$ for all $v \in \mathcal{V}$ then $y_v * = \arg\min_{y \in \mathcal{Y}} \tilde{\theta}(y)$ is optimal for θ .

Theorem (Kovtun 2005)

If θ is submodular and $\mathcal Y$ is convex coarsening then $\tilde \theta$ is submodular.

- solve with max-flow:
- split y_v^* into 2 equal parts
- repeat until $|y_{v}^{*}| = 1$ for all $v \in \mathcal{V}$

Coarse-to-Fine: Experiment

Size $359 \times 253 \times 21$, ℓ_2 regularization. Needed: 400 Mb, Solved with 50 Mb.

Generalizations

Everything is directly generalizable to higher order case.

What about Finite Algorithm for Partial Optimality Method?

- Partial Optimality Method works not for all Memory/Problem Connectivity ratio
- No guarantee for a fixed memory size.

ΓE	BVZ-sav	utooth	(20)	80 0g	z I r	DO7 1	ounny-sml	15 60Z	bone.n26c100	6.0%	bone_subxvz.n6c100	6.6%
												0.00,0
E	SVZ- tsu	ıkuba(16)	72.89	% li	ver.n2	26c10	7.1%	bone.n6c10	8.8%	bone_subxyz_subx.n26c10	7.9%
E	3VZ-vei	nus(22))	70.29	% li	ver.n2	26c100	5.3%	bone.n6c100	7.0%	bone_subxyz_subx.n26c100	6.6%
ŀ	Z2-sav	ztooth((20)	85.09	% li	ver.n6	6c10	7.2%	bone_subx.n26c10	6.6%	bone_subxyz_subx.n6c10	8.2%
ŀ	ZZ2-tsu	kuba(1	16)	69.99	% li	ver.n6	6c100	5.3%	bone_subx.n26c100	6.6%	bone_subxyz_subx.n6c100	6.6%
ŀ	Z2-ven	us(22))	75.89	% b	abyfa	ce.n26c10	29.3%	bone_subx.n6c10	6.3%	bone_subxyz_subxy.n26c10	11.3%
E	BL06-ca	mel-lr	g	2.0%	б b	abyfa	ce.n26c100	30.9%	bone_subx.n6c100	6.3%	bone_subxyz_subxy.n26c100	9.5%
E	BL06-ca	mel-m	.ed	2.3%	δ b	abyfa	ce.n6c10	35.4%	bone_subxy.n26c10	6.6%	bone_subxyz_subxy.n6c10	12.7%
E	BL06-ca	mel-sn	nl	4.6%	б b	abyfa	ce.n6c100	33.7%	bone_subxy.n26c100	6.6%	bone_subxyz_subxy.n6c100	9.3%
E	BL06-ga	rgoyle	-lrg	6.0%	6 a	dhead	l.n26c10	0.3%	bone_subxy.n6c10	6.4%	abdomen_long.n6c10	1.7%
E	BL06-ga	rgoyle	-med	2.49	6 a	dhead	l.n26c100	0.3%	bone_subxy.n6c100	6.3%	abdomen_short.n6c10	6.3%
E	BL06-ga	rgoyle	-sml	9.8%	6 a	dhead	l.n6c10	0.2%	bone_subxyz.n26c10	6.6%		
I	-B07-bτ	ınny-lr	g	11.49	% a	dhead	1.n6c100	0.1%	bone_subxyz.n26c100	6.6%		
I	-B07-bτ	inny-m	ned	13.19	% в	one.n	26c10	8.7%	bone_subxyz.n6c10	6.6%		

[Shekhovtsov. A distributed mincut/maxflow algorithm combining path augmentation and push-relabel. IJCV 2012]

Distributed Max-Flow

[Shekhovtsov. A distributed mincut/maxflow algorithm combining path augmentation and push-relabel. IJCV 2012]

- two operating modes:
 - sequential with restricted memory;
 - parallel distributed.
- Kovtun's partial optimality implicitly included.
- Ode is available at http://cmp.felk.cvut.cz/~shekhovt/

References

- Ivan Kovtun. Phd Thesis: Image segmentation based on sufficient conditions for optimality in NP-complete classes of structural labeling problems, In Ukrainian. http://irtc.org.ua/image/people/kovtun
- Ivan Kovtun Sufficient condition for partial optimality for (max,+) labeling problems and its usage, Control Systems and Computers 2011
- Alexander Shekhovtsov. A distributed mincut/maxflow algorithm combining path augmentation and push-relabel. IJCV 2012
- Alexander Shekhovtsov. PhD Thesis Exact and Partial Energy Minimization in Computer Vision, 2013, http://cmp.felk.cvut.cz/~shekhovt/
- Victor Lempitsky and Yuri Boykov Global Optimization for Shape Fitting CVPR 2007