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Submodular Problems
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@ Ordering of X,: x, = x/,
o euv(xuaxv) + euv(x/mx(;) < euv(xuax:;) + Huv(xlwxv)
@ Example: 0, = ¢(x, — x,) and ¢-convex (| - |, (+)?)

= X* operations to check submodularity in pairwise case.
(can be done in with X% operations, indeed)
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Submodular Problems: Generalization

V
Xu Xy
/
( = |X,
x A
u ()
u 1%

@ Ordering of X,: x, > x/,

@ v - nodewise maximum

@ A - hodewise minimum

@ Works forany A < V:xa v/, orxg Ax/y

@ Submodularity: 6.4(x4 v x'y) + 0a(xa A xXy) < Oalxa) +0a(xy)
@ Sufficient condition: A - factors

@ Necessary and suffcient A = V.
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¥Submodular Problems: Property Of Solutions

Theorem (Known fact in submodular optimization)

Letx* and x’' be any two minimizers of 6(x). Thenx* v x' and x* n X'

are minimizers as well.

Proof.

By construction:

O(x*) < O(x* v x')and (1)
O(x) < O(x* A X). (2)
From (1)+(2): 0(x*) + 0(X') < 0(x* v X') + 6(x* A X/) (3)
From submodularity: 6(x*) + 6(x') = 6(x* v x) +0(x* AX) (4)
Comparing (3), (4) and using optimality of x* and x’ we get
O(x* v x')=0(x* Ax)=0(x*) =6()
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Solving with MinCut/MaxFlow

4 Cut
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Number of edges grows as |V||X,|>. For ¢, norm only |V||X,|
Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors 2003
Schlesinger, Flach. Transforming an arbitrary MinSum problem into a binary one. 2006
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Partial Optimality

Theorem (Kovtun 2005)
Letx' e X, X*(X) = Argmlnxex 0(x) and x = Ayexs(x)X-
Then for all x* = m1)1(1 0(x) holde > x.
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Partial Optimality: Proof

Proof.

Letx* 2 x. Thenx* A x < x

From submodularity: 6(x*) + 6(x) > 0(x* A x) + 6(x* v X)
From optlmallty of x*: f(x*) < O(x* v X)

N N N S
A WODND =
== —

From (3)+(4): 0(x*) + 0(x) < 6(x* A x) + 0(x* v X) - contradicts to

S

A symmetric theorem v < A holds also
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Partial Optimality: Practical Use
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Partial Optimality: Practical Use
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Partial Optimality: Practical Use
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Partial Optimality: Practical Use
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Partial Optimality: Experiment

Size 359 x 253 x 21, ¢; regularization. Needed: 80 Mb, Solved with 10 Mb.
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Partial Optimality: Experiment

Size 996 x 1478 x 149, ¢, regularization. Needed: 8 Gb, Solved with 400 Mb.
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Coarse-to-Fine Approach

@ Max-flow problem size grows as |V||X?|
@ We addressed |V|

O.Q(k
y

=

®

@ Letus address &, : o
@ What if &, continuous (e.g. depth)? :
o éw(yw) = miny, ey, Ow(Xw), Xy € Xy, weVUE ° o

Theorem (Raphael C. Coarse-to-fine dynamic programming 2001)
Ifly,| = 1 forallve V then y,« = arg minyey 0(y) is optimal for 6.

Theorem (Kovtun 2005)

If 0 is submodular and Y is convex coarsening then 6 is submodular.

v

[Zach A Principled Approach for Coarse-to-Fine MAP Inference CVPR 2014]
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Coarse-to-Fine: Algorithm

Theorem (Raphael C. Coarse-to-fine dynamic programming 2001)
Ifly,| = 1 forallveV theny,« = arg minyey 0(y) is optimal for 6.

Theorem (Kovtun 2005)

If 0 is submodular and Y is convex coarsening then 6 is submodular.

v

@ split y¥ into 2 equal parts
@ repeat until |yf| = 1forallveV

@ solve with max-flow; % E

OCO000)
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Coarse-to-Fine: Experiment

Size 359 x 253 x 21, ¢, regularization. Needed: 400 Mb, Solved with 50 Mb.
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Generalizations

Everything is directly generalizable to higher order case.
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What about Finite Algorithm
for Partial Optimality Method?

@ Partial Optimality Method works not for all
Memory/Problem Connectivity ratio

@ No guarantee for a fixed memory size.

11.4%
13.1%

LBO07-bunny-Irg
LBO07-bunny-med

0.1%

adhead.n6¢100

bone.n26¢10 8.7%

bone_subxyz.n26¢100
bone_subxyz.n6c10

6.6%
6.6%

BVZ-sawtooth(20) 80.0% |LBO7-bunny-sml 15.6% | bone.n26¢100 6.9% | bone_subxyz.n6c100 6.6%
BVZ-tsukuba(16)  72.8% |liver.n26¢10 7.1% |bone.n6c10 8.8% | bone_subxyz_subx.n26¢c10 7.9%
BVZ-venus(22) 70.2% [liver.n26¢100 5.3% | bone.n6¢100 7.0% | bone_subxyz_subx.n26¢100  6.6%
KZ2-sawtooth(20) 85.0% |liver.n6c10 7.2% | bone_subx.n26¢c10 6.6% | bone_subxyz_subx.n6¢c10 8.2%
KZ2-tsukuba(16)  69.9% |liver.n6c100 5.3% |bone_subx.n26¢100  6.6% | bone_subxyz subx.n6c100  6.6%
KZ2-venus(22) 75.8% | babyface.n26¢10  29.3% | bone_subx.n6¢10 6.3% | bone_subxyz_subxy.n26c10 11.3%
BLO6-camel-lrg 2.0% |babyface.n26¢100 30.9% | bone_subx.n6¢100 6.3% | bone_subxyz_subxy.n26¢100 9.5%
BLO06-camel-med 2.3% |babyface.n6cl0  35.4% |bone_subxy.n26c10  6.6% | bone_subxyz_subxy.n6cl0  12.7%
BLO6-camel-sml 4.6% |babyface.n6c100 33.7% | bone_subxy.n26¢100 6.6% | bone_subxyz_subxy.n6¢100  9.3%
BLO6-gargoyle-Irg  6.0% |adhead.n26¢10 R bone_subxy.n6c10 6.4% | abdomen_long.n6c10 1.7%
BLO6-gargoyle-med 2.4% |adhead.n26¢100 bone_subxy.n6¢100  6.3% | abdomen_short.n6c10 6.3%
BLO6-gargoyle-sml  9.8% |adhead.n6c10 bone_subxyz.n26c10  6.6%

[Shekhovtsov. A distributed mincut/maxflow algorithm combining path

augmentation and push-relabel. IJCV 2012]
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Distributed Max-Flow

[Shekhovtsov. A distributed mincut/maxflow algorithm combining path
augmentation and push-relabel. 1IJCV 2012]

@ two operating modes:

» sequential with restricted memory;
» parallel distributed.

@ Kovtun’s partial optimality implicitly included.
© Code is available at http://cmp.felk.cvut.cz/~shekhovt/
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