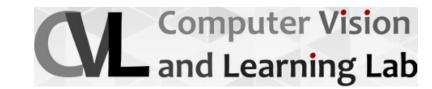
Combinatorial optimization A Primer on the Basics

Bogdan Savchynskyy

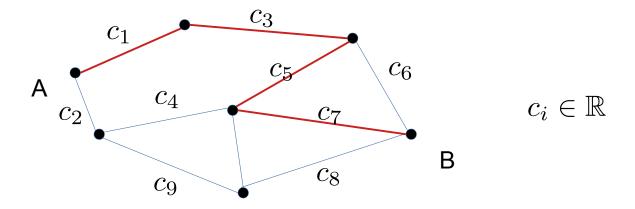
03/07/2025



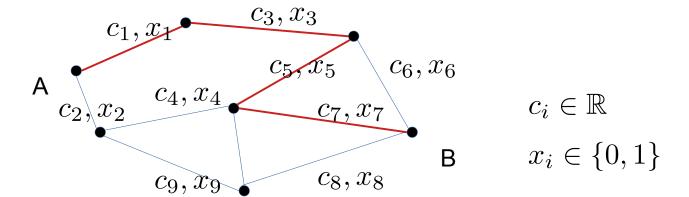
 $\mathbb Z$ - integer numbers

Def.: Combinatorial problem: $\min_{\mathbf{z} \in S \subseteq \mathbb{Z}^n} f(\mathbf{z})$

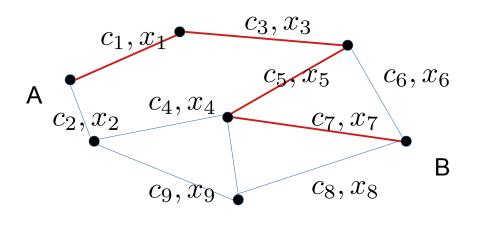
Given a weighted graph, find a **shortest path** between its two nodes



Given a weighted graph, find a **shortest path** between its two nodes



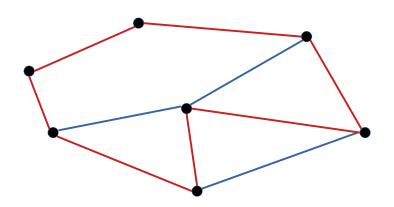
Given a weighted graph, find a shortest path between its two nodes



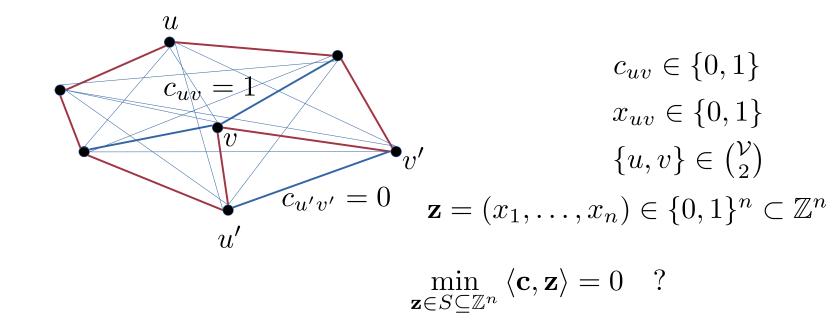
$$\mathbf{z} \in S \subseteq \mathbb{Z}^n$$
 $c_i \in \mathbb{R}$ $c_i \in \{0, 1\}$ $\mathbf{z} = (x_1, \dots, x_n) \in \{0, 1\}^n \subset \mathbb{Z}^n$

 $f(\mathbf{z}) = \langle \mathbf{c}, \mathbf{z} \rangle$

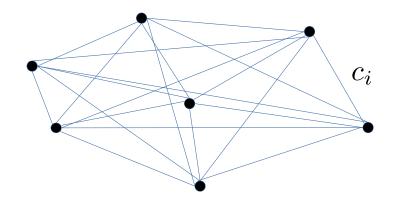
Hamiltonian cycle: Ist there a simple cycle containing all nodes of a given graph?



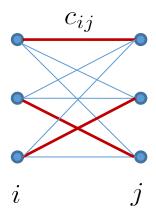
Hamiltonian cycle: Ist there a simple cycle containing all nodes of a given graph?



Traveling salesman: Find a shortest simple cycle containing all nodes in a fully connected graph.



Linear assignment (Weighted bipartite matching):



$$\min_{x \text{ is one-to-one matching}} c(x)$$

Prime factorization:

Given an integer, represent it as a product of prime numbers

$$21 = 7 \cdot 3$$

0/1-Integer linear program:

$$\min_{\substack{\mathbf{x} \in \{0,1\}^n \\ A\mathbf{x} \le \mathbf{b}}} \sum_{i} a_i x_i$$

Integer quadratic program:

$$\min_{\substack{\mathbf{x} \in \{0,1\}^n \\ A\mathbf{x} < \mathbf{b}}} \sum_{i} a_i x_i + \sum_{ij} c_i x_i x_j$$

Quadratic program: Not combinatorial

$$\min_{\substack{x \in [0,1]^n \\ A \mathbf{x} < \mathbf{b}}} \sum_{i} a_i x_i + \sum_{ij} c_i x_i x_j$$

Outline

- Integer linear programming:
 A universal language for combinatorial problems
- How off the shelf ILP solvers work
- What if off the shelf ILP solvers fail?

Universal representation for combinatorial problems

Theorem (Ibaraki'76): For $|S| < \infty$

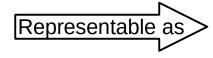
$$\min_{\mathbf{z}\in S\subseteq\mathbb{Z}^n}f(\mathbf{z})$$
 Representable as $\min_{\mathbf{x}\in\mathbb{Z}^n}\langle\mathbf{c},\mathbf{x}
angle$ $\mathrm{s.t.:}\ A\mathbf{x}\leq\mathbf{b}$ $B\mathbf{x}=\mathbf{d}$

Integer linear program (ILP)

Universal representation for combinatorial problems

Theorem (Ibaraki'76): For $|S| < \infty$

$$\min_{\mathbf{z} \in S \subseteq \mathbb{Z}^n} f(\mathbf{z})$$



$$\min_{\mathbf{x} \in \mathbb{Z}^n} \left\langle \mathbf{c}, \mathbf{x} \right\rangle$$

s.t.: $A\mathbf{x} \leq \mathbf{b}$

$$B\mathbf{x} = \mathbf{d}$$

Integer linear program (ILP)

$$\min_{\mathbf{x} \in \{0,1\}^n} \langle \mathbf{c}, \mathbf{x} \rangle$$

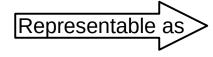
s.t.:
$$A\mathbf{x} \leq \mathbf{b}$$

0/1 Integer linear program

Universal representation for combinatorial problems

Theorem (Ibaraki'76): For $|S| < \infty$

$$\min_{\mathbf{z} \in S \subset \mathbb{Z}^n} f(\mathbf{z})$$



$$\min_{\mathbf{x} \in \mathbb{Z}^n} \left\langle \mathbf{c}, \mathbf{x} \right
angle$$

s.t.: $A\mathbf{x} \leq \mathbf{b}$

$$B\mathbf{x} = \mathbf{d}$$

A For ISIC OO

Integer linear program (ILP)

$$\min_{\mathbf{x} \in \{0,1\}^n} \langle \mathbf{c}, \mathbf{x} \rangle$$

s.t.:
$$A\mathbf{x} < \mathbf{b}$$

0/1 Integer linear program

$$\min_{\substack{\mathbf{x} \in \mathbb{Z}^n \\ \mathbf{y} \in \mathbb{R}^m}} \langle \mathbf{c}_x, \mathbf{x} \rangle + \langle \mathbf{c}_y, \mathbf{y} \rangle$$

s.t.:
$$A\mathbf{x} + B\mathbf{y} \leq \mathbf{b}$$

Mixed Integer linear program (MILP)

Commercial and open-source MILP Solvers

Solving Constraint Integer Programs

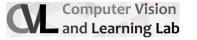
MOSEK

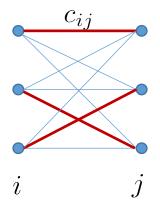
FICO® Xpress Optimization

BARON Solver

The math algorauto prob

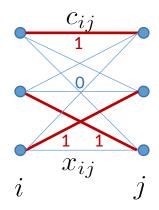
GLPK (GNU Linear Programming Kit)





linear assignment

 c_{ij} - weights

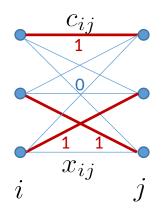


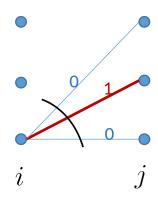
linear assignment

$$c_{ij}$$
 - weights

$$x_{ij} \in \{0,1\}$$
 - indicator variables

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \text{matching weight}$$





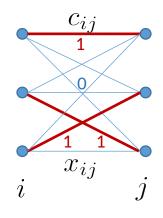
linear assignment

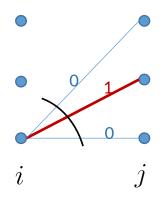
$$i: \sum_{j=1}^{n} x_{ij} = 1$$

 c_{ij} - weights

$$x_{ij} \in \{0,1\}$$
 - indicator variables

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \text{matching weight}$$





linear assignment

$$i: \sum_{j=1}^{n} x_{ij} = 1$$

 c_{ij} - weights

$$x_{ij} \in \{0,1\}$$
 - indicator variables

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \text{matching weight}$$

$$\min_{x \in \{0,1\}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\text{s.t.: } \sum_{j=1}^{n} x_{ij} = 1 \ \forall i$$

$$\sum_{i=1}^{n} x_{ij} = 1 \ \forall j$$

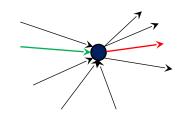
$$\sum_{i} x_i \le 1 \quad \text{- at most one}$$

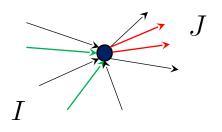
$$\sum_{i} x_i \ge 1$$
 - at least one

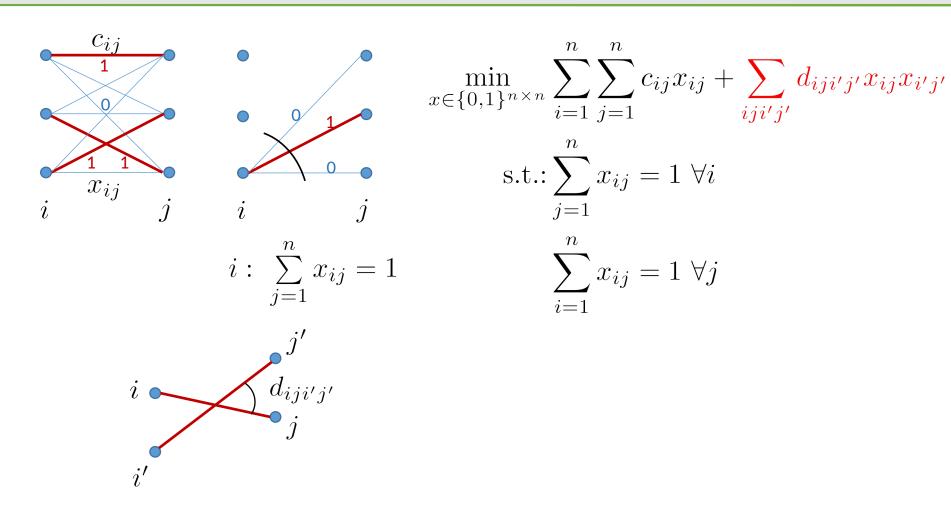
$$\sum_{i} x_i = 1 \quad - \text{ exactly one}$$

$$\sum_{i} x_i = k \quad - \text{ exactly } k$$

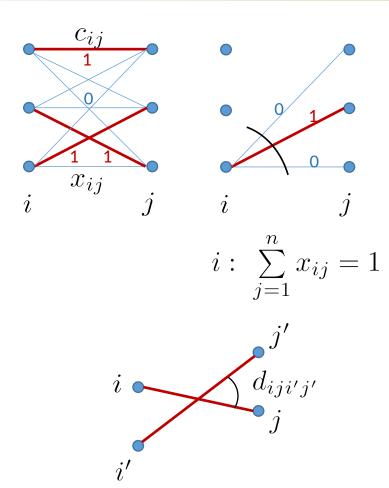
$$\sum_{i \in I} x_i = \sum_{j \in J} x_j \quad \text{- flow conservation}$$







Quadratic assignment



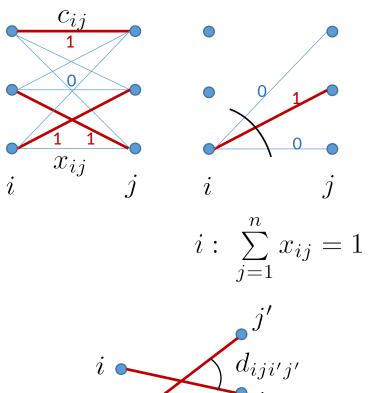
$$\min_{x \in \{0,1\}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{iji'j'} d_{iji'j'} x_{ij} x_{i'j'}$$

$$\text{s.t.:} \sum_{j=1}^{n} x_{ij} = 1 \ \forall i$$

$$\sum_{i=1}^{n} x_{ij} = 1 \ \forall j$$

$$y_{iji'j'} := x_{ij}x_{i'j'}$$

Non-linear constraint!



$$i \qquad \qquad d_{iji'j'}$$

$$i' \qquad \qquad j$$

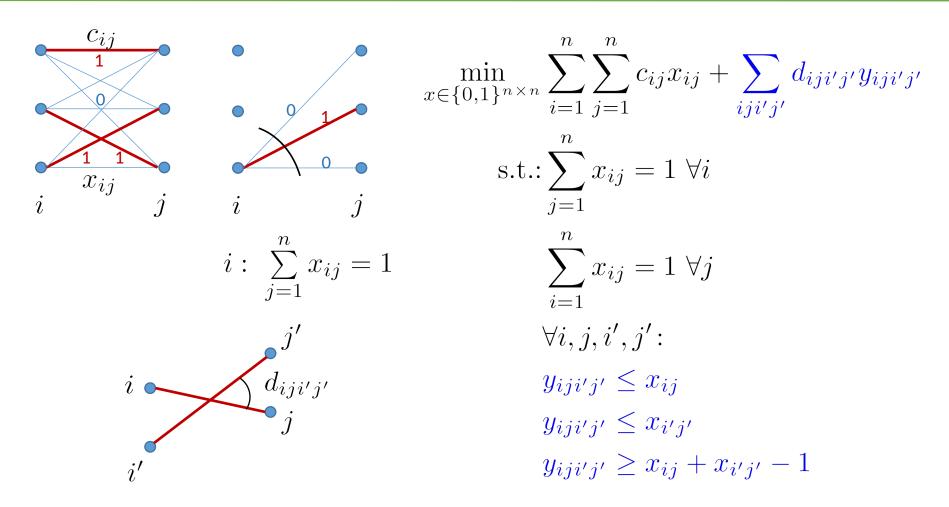
Quadratic assignment

$$\min_{x \in \{0,1\}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{iji'j'} d_{iji'j'} x_{ij} x_{i'j'}$$

$$\text{s.t.: } \sum_{j=1}^{n} x_{ij} = 1 \ \forall i$$

$$\sum_{i=1}^{n} x_{ij} = 1 \ \forall j$$

$$\begin{array}{ll} y_{iji'j'} := x_{ij} x_{i'j'} & y_{iji'j'} \leq x_{ij} \\ & \text{Non-linear} & y_{iji'j'} \leq x_{i'j'} \\ & \text{constraint!} & y_{iji'j'} \geq x_{ij} + x_{i'j'} - 1 \end{array}$$



Quadratic assignment

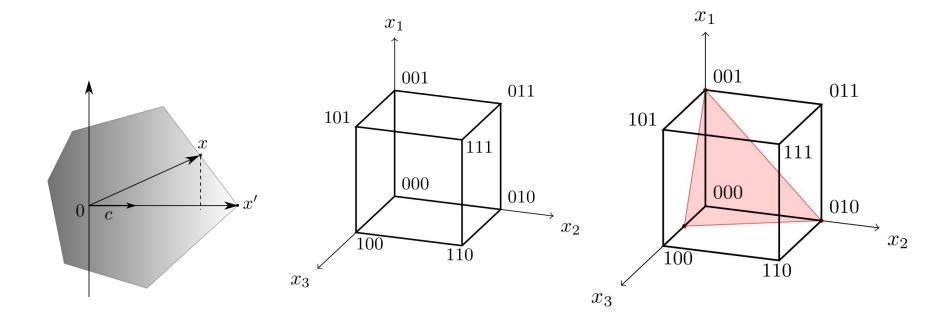
There are better linearizations...

Outline

- Integer linear programming:
 A universal language for combinatorial problems
- How off the shelf ILP solvers work
- What if off the shelf ILP solvers fail?

Geometry of ILP

$$\max_{\mathbf{x} \in \{0,1\}^n} \langle \mathbf{c}, \mathbf{x} \rangle$$
s.t.: $A\mathbf{x} \leq \mathbf{b}$

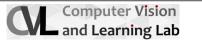


 $A\mathbf{x} \leq \mathbf{b}$

 $\{0,1\}^n$

 $\{\mathbf{x} \in \{0,1\}^n \colon A\mathbf{x} \le \mathbf{b}\}$

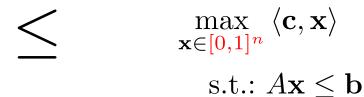
Solution = vertex



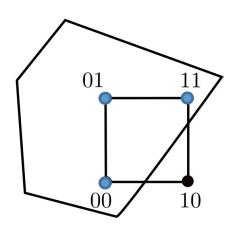
How MILP solvers work: Linear program (LP) relaxation

$$\max_{\mathbf{x} \in \{0,1\}^n} \langle \mathbf{c}, \mathbf{x} \rangle$$
s.t.: $A\mathbf{x} \le \mathbf{b}$

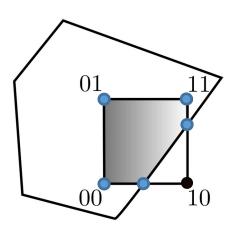
Integer linear program



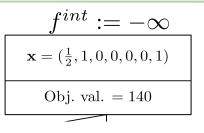
Integer linear program (LP) relaxation



solution = 0/1 vertex

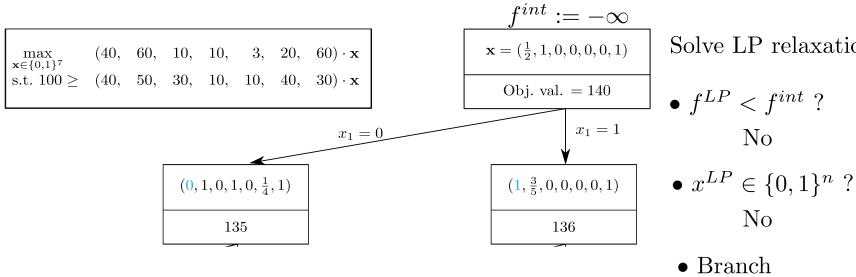


0/1 solution = vertex

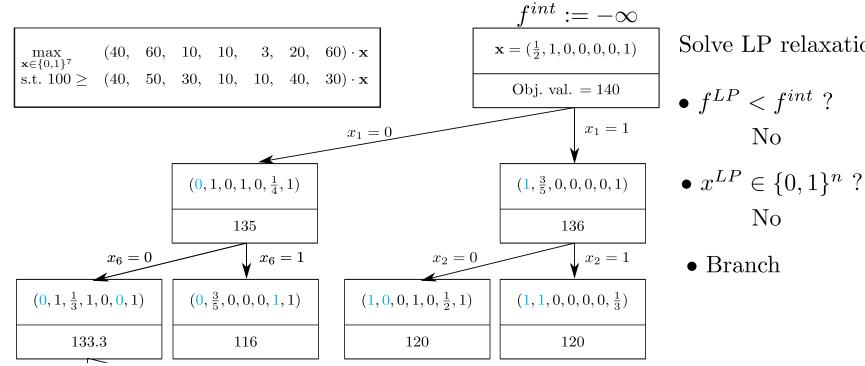


Solve LP relaxation: f^{LP}

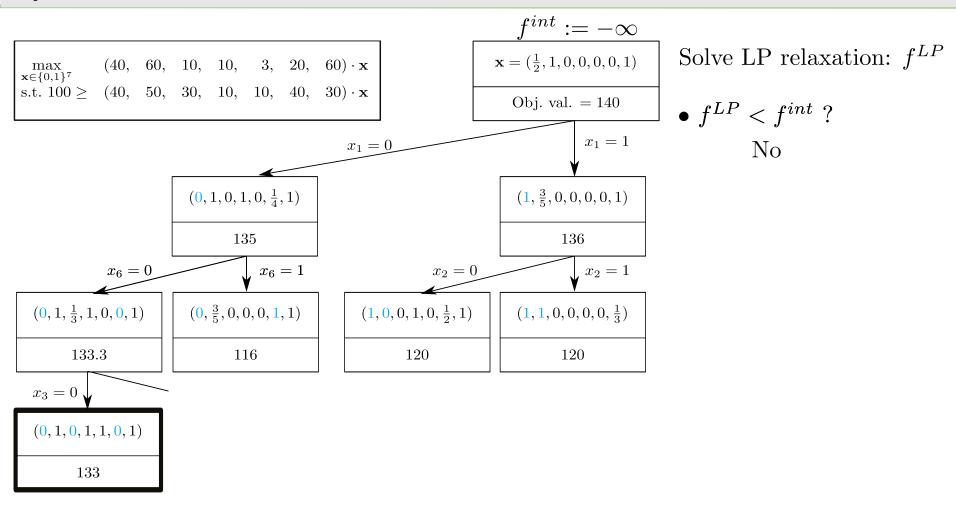
- $f^{LP} < f^{int}$?
- $x^{LP} \in \{0,1\}^n$? No
- Branch

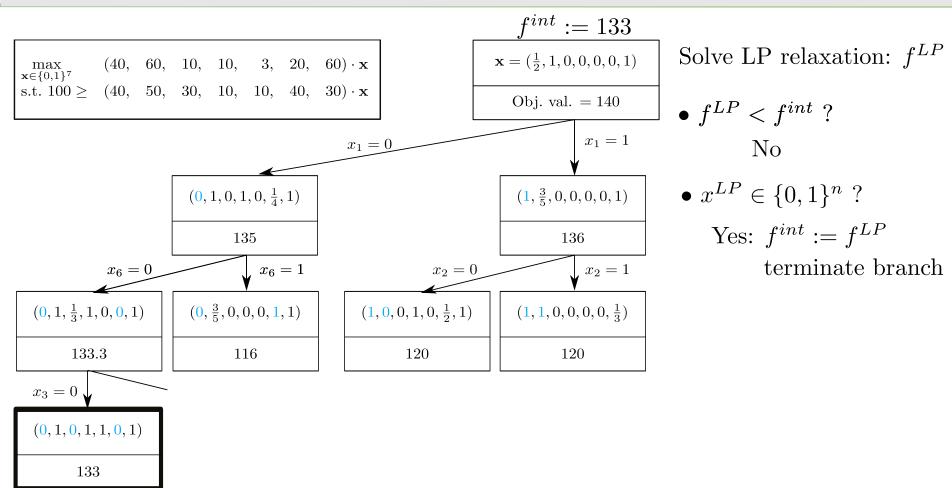


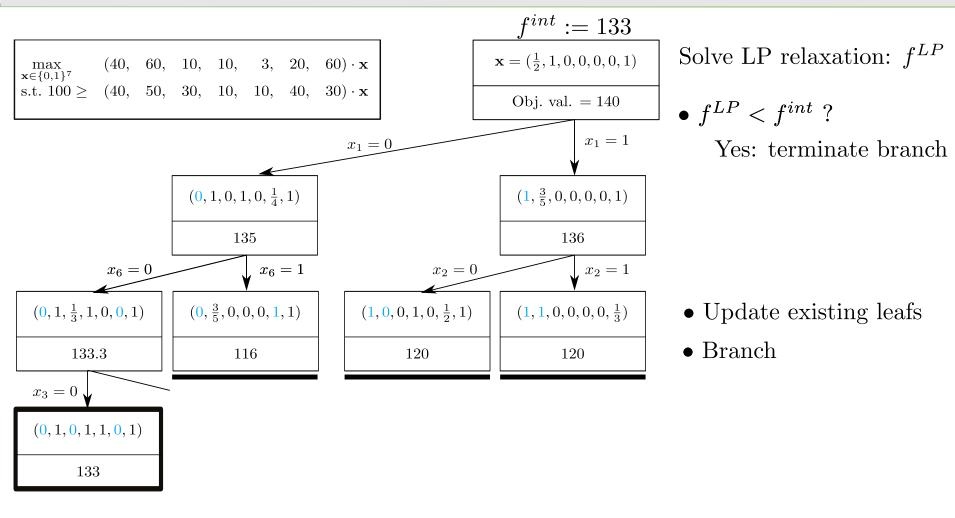
Solve LP relaxation: f^{LP}

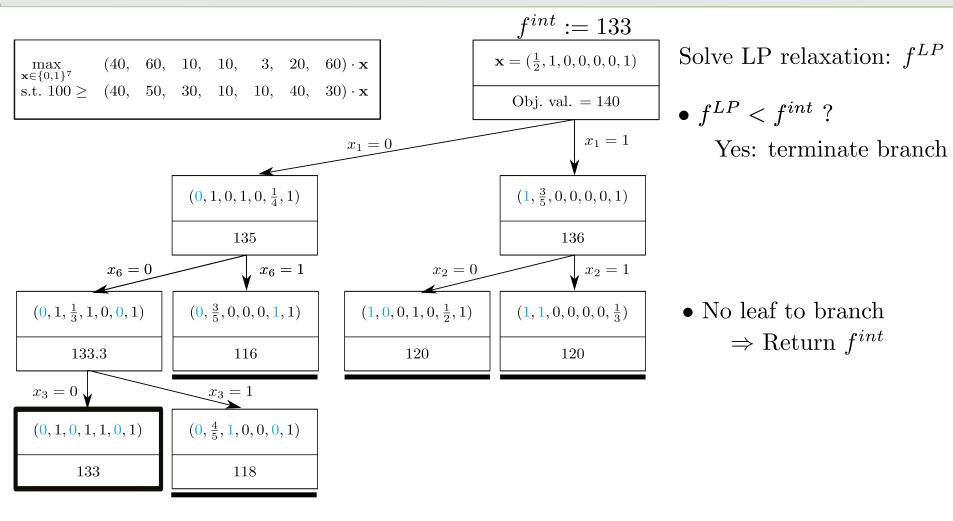


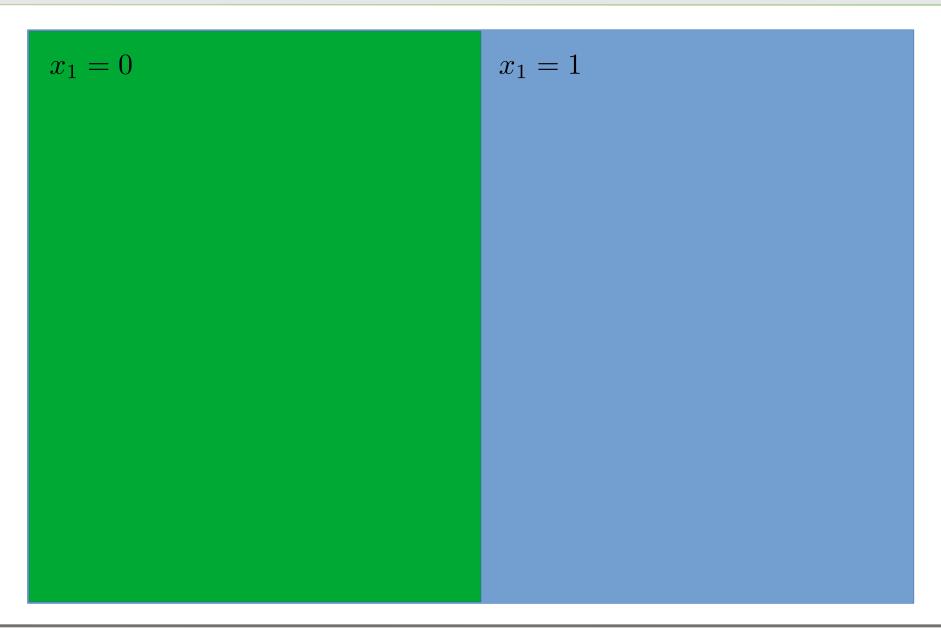
Solve LP relaxation: f^{LP}









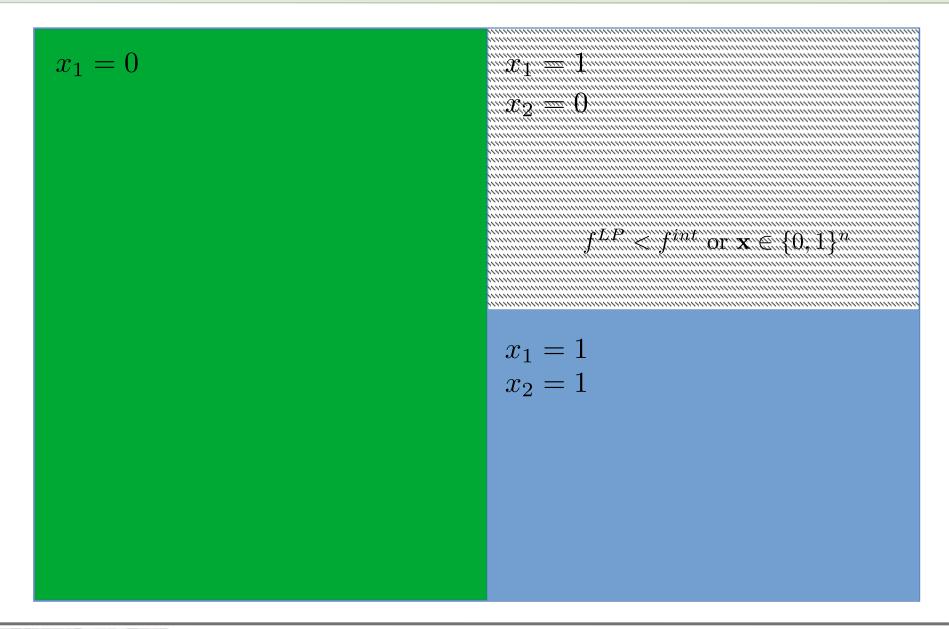


$$x_1 = 0$$

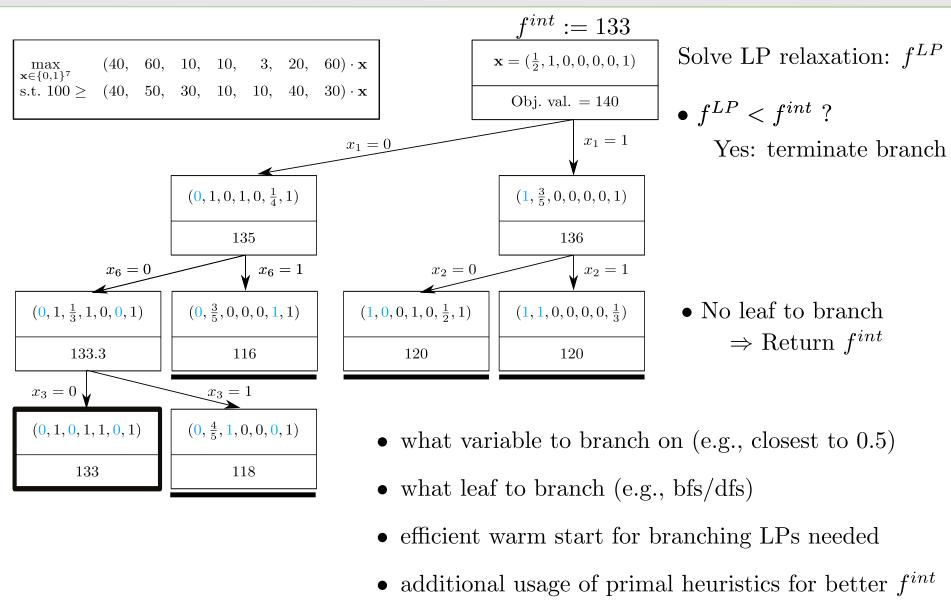
$$x_1 = 1$$
$$x_2 = 0$$

$$x_1 = 1$$

$$x_2 = 1$$



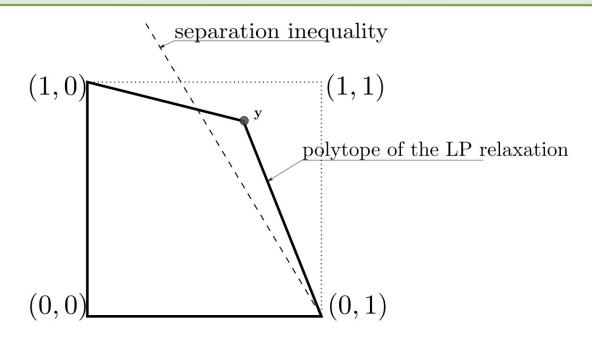
X. (X	<u> </u>
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	X.Z
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
***************************************	$\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma_{\sigma$
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	anning and the second
	<u>~</u>
	$-\lambda 1$ — $1$
	1
	$\gamma_0 \equiv 1$
	$\omega_Z - 1$
	——————————————————————————————————————
	$r_0 \equiv 0$
	$\omega_{\mathcal{A}} = 0$
	-1
	$\sim$ . —
	$J_{\nu}1 - 1$
	- I
	00 1
	$T_{0} = 1$
\$DP\\&\\\$\\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1
minimining ika kaka kata kata kata kata kata kata	$r_2 = 1$
$\mathcal{J}$	$\omega_{\mathcal{A}} = 1$



$$x_i \in \{0, 1\}, \ 2x_1 + 2x_2 \le 1 \quad \Rightarrow \quad 2x_1 + 2x_2 \le \frac{1}{2} \quad \Rightarrow \quad x_1 = x_2 = 0$$

$$x_i \in \{0, 1\}, \ 2x_1 + 2x_2 \le 1 \quad \Rightarrow \quad 2x_1 + 2x_2 \le \frac{1}{2} \quad \Rightarrow \quad x_1 = x_2 = 0$$

- Fixing variables:  $x_i = 0$
- Removing unnecessary constraints
- Identify infeasibilty of constraints:  $f^{LP} < f^{int}$
- Logical implications  $x_1 = 0 \Rightarrow x_2 = 1$
- Constraints tightening



$$6x_1 + 5x_2 + 7x_3 + 4x_4 + 5x_5 \le 15$$

LP solution: 
$$x_1 = 0$$
,  $x_2 = 1$ ,  $x_3 = x_4 = x_5 = 3/4$ 

Note: 
$$7 + 4 + 5 = 16 > 15 \Rightarrow x_3 + x_4 + x_5 \le 2$$

$$3/4 + 3/4 + 3/4 = 9/4 > 2 \Rightarrow LP$$
 solution is cut off

$$(\underbrace{x_1, x_2, \dots, x_{i_1}, \dots, x_{i_2}, \dots, x_{i_3}, \dots, x_n}_{\text{fixed}})$$
 fixed fixed fixed

Optimize over  $x_i$ ,  $i \in I$ :

- $\bullet$  Random I
- Based on  $\geq 2$  solutions: (1, 0, 0, 1)(1, 1, 0, 0)

## MILP Solvers: Art of problem formulation

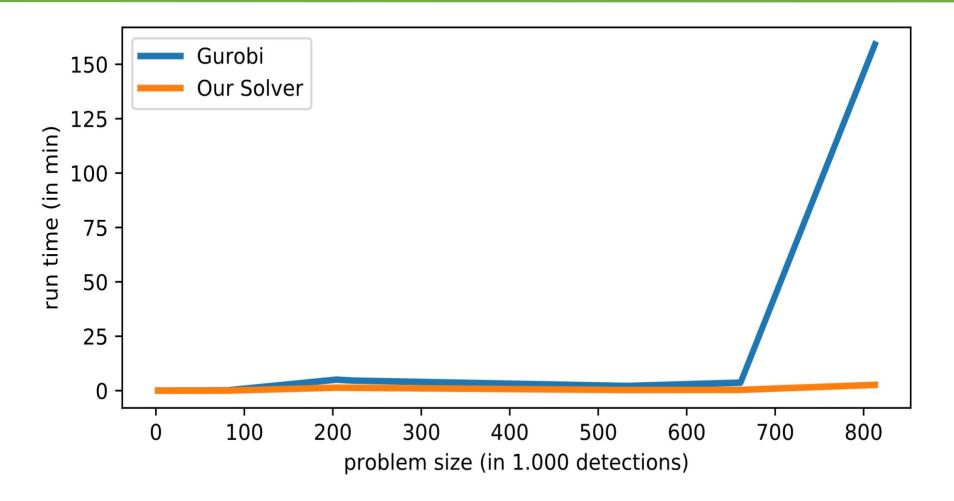
- ILP formulation/ LP relaxation
- LP solver selection (primal/dual simplex, interior point)
- Powerful (facet-defining) cutting planes
- Variable pricing (dual to cutting planes)

However...

#### Outline

- Integer linear programming:
   A universal language for combinatorial problems
- How off the shelf ILP solvers work
- What if off the shelf ILP solvers fail?

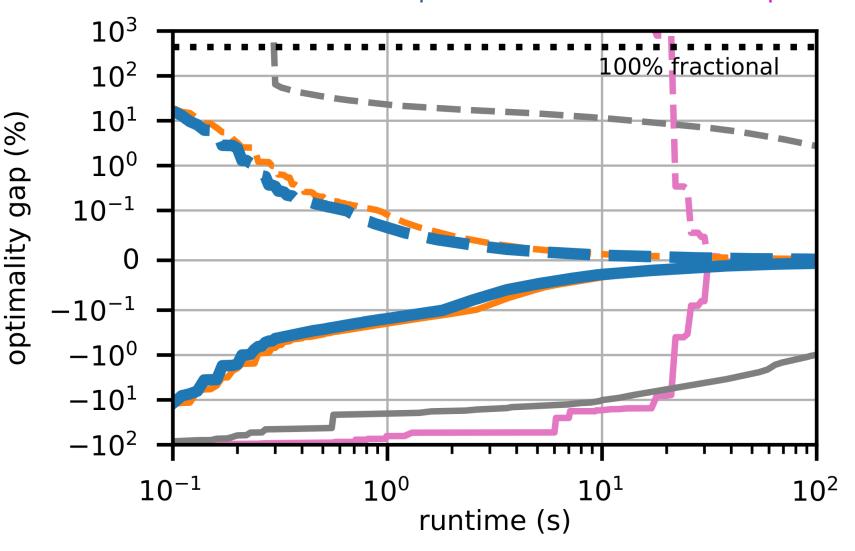
#### MILP Solver too slow: Reasons



- General LP solver too slow
- Branch-end-bound tree too large:
  - primal heuristic too general/weak

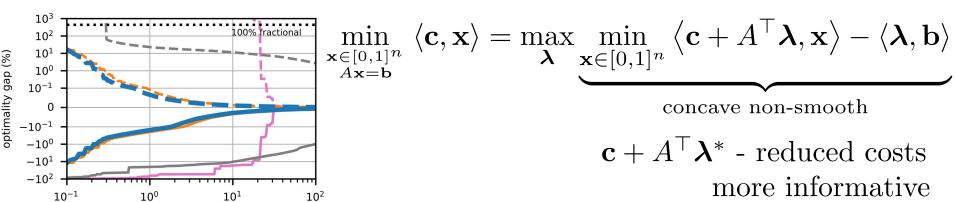


First-order non-smooth convex optimization instead of Interior point/simplex :

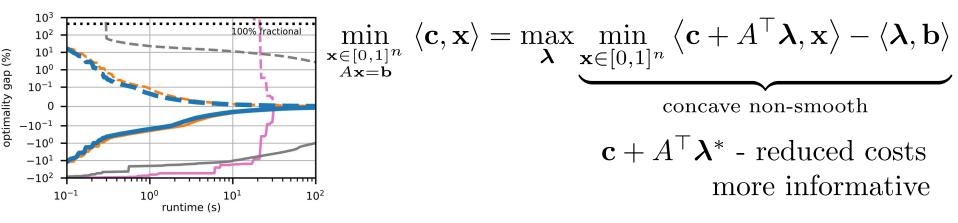


runtime (s)

• First-order non-smooth convex optimization instead of Interior point/simplex :



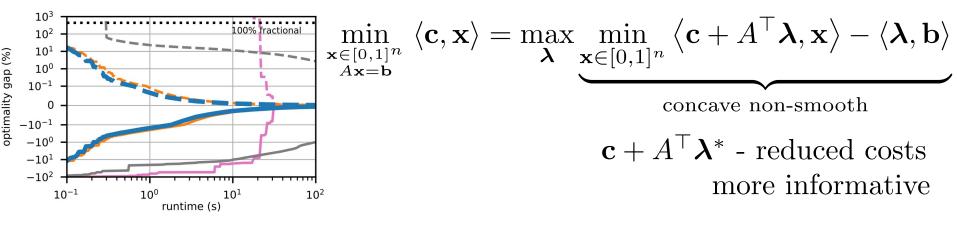
• First-order non-smooth convex optimization instead of Interior point/simplex :



- **Dedicated** primal heuristics:
  - Randomized greedy with reduced costs

$$\mathbf{x}^* pprox \min_{\substack{\mathbf{x} \in \{0,1\}^n \\ A_{\mathbf{x}} - \mathbf{b}}} \left\langle \mathbf{c} + A^{\top} \boldsymbol{\lambda}, \mathbf{x} \right\rangle$$

• First-order non-smooth convex optimization instead of Interior point/simplex :



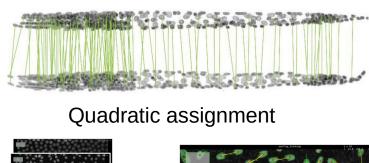
- Dedicated primal heuristics:
  - Randomized greedy with reduced costs

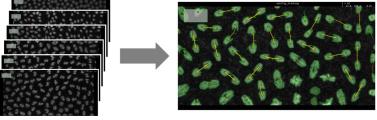
$$\mathbf{x}^* pprox \min_{\mathbf{x} \in \{0,1\}^n} \left\langle \mathbf{c} + A^{\top} \boldsymbol{\lambda}, \mathbf{x} \right\rangle$$

- Local search

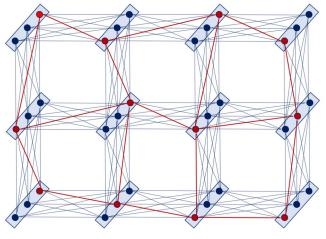
$$\left\langle \mathbf{c}, \mathbf{x}^{t+1} \right\rangle \leq \left\langle \mathbf{c}, \mathbf{x}^{t} \right\rangle$$

#### Specialized combinatorial solvers: Applications

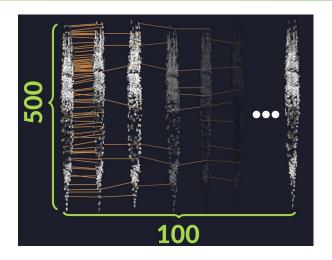




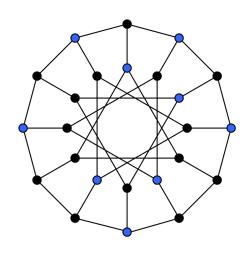
Cell tracking



Discrete labeling



Multi-graph matching



Maximum weight independent set

#### Want to learn more?

Compact course in WiSe 2025:

Sep. 29 – Oct. 10

More information:



https://hci.iwr.uni-heidelberg.de/content/optimization-machine-learning-WiSe25

# **Applied Combinatorial Optimization**

or Combinatorial Optimization for Artificial Intelligence

Bogdan Savchynskyy

Heidelberg University bogdan.savchynskyy@iwr.uni-heidelberg.de

June 6, 2025