# What is Graph- and Multi-Graph Matching and Why we need them

# Bogdan Savchynskyy

27/09/2022

# What is Graph-Matching?





### What is Graph-Matching?



Graph matching, linear/quadratic assignment problem, weighted bipartite matching

# Applications of (Multi-)Graph-Matching in CV



#### Keypoint matching of different objects

#### Image courtesy: [Rolinek et al. 2020]



#### Non-rigid motion estimation

Image courtesy : [Alhaija et al. 2015]



Cell matching and tracking

### **Related work**

| = | Google Scholar              | graph matching                                                                                                                                                                                                                                                                                      |
|---|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Articles                    | About 2.600.000 results 0,08 sec)                                                                                                                                                                                                                                                                   |
|   | Any time                    | Learning graph matching                                                                                                                                                                                                                                                                             |
|   | Since 2022                  | TS Caetano, JJ McAuley, L Cheng IEEE transactions on, 2009 - ieeexplore.ieee.org                                                                                                                                                                                                                    |
|   | Since 2021                  | As a fundamental problem in pattern recognition, graph matching has applications in a variety                                                                                                                                                                                                       |
|   | Since 2018                  | of fields, from computer vision to computational biology. In graph matching, patterns are                                                                                                                                                                                                           |
|   | Custom range                | $ m cm^{2}$ Save $ m bm$ Cite Cited by 544 Related articles All 34 versions Web of Science: 229                                                                                                                                                                                                     |
|   | Sort by relevance           | Thirty years of graph matching in pattern recognition                                                                                                                                                                                                                                               |
|   | Sort by date                | D Conte, P Foggia, C Sansone International journal of, 2004 - World Scientific                                                                                                                                                                                                                      |
|   | Any type<br>Review articles | A recent paper posed the question: " <b>Graph Matching</b> : What are … The first includes almost all the <b>graph matching</b> algorithms … types of common applications of <b>graph</b> -based techniques in … ☆ Save 切 Cite Cited by 1799 Related articles All 16 versions Web of Science: 819 ≫ |
|   | include patents             | интиц The graph matching problem                                                                                                                                                                                                                                                                    |
|   | include citations           | L Livi, A Rizzi - Pattern Analysis and Applications, 2013 - Springer                                                                                                                                                                                                                                |
|   | Create alert                | <b>matching</b> procedures proposed in the technical literature can be classified into two well-defined families, those of exact and inexact <b>matching</b> on inexact <b>graph matching</b> related issues                                                                                        |
|   |                             | $\cancel{k}$ Save $\cancel{50}$ Cite Cited by 182 Related articles All 9 versions Web of Science: 107 $\cancel{50}$                                                                                                                                                                                 |
|   |                             | Recent developments in graph matching                                                                                                                                                                                                                                                               |
|   |                             | H Bunke Conference on Pattern Recognition. ICPR-2000, 2000 - ieeexplore.ieee.org                                                                                                                                                                                                                    |
|   |                             | In this paper we review recent developments in the area of graph matching. Basic concepts                                                                                                                                                                                                           |
|   |                             | Then in Section 3 an overview of graph matching algorithms is given. Recent work in graph                                                                                                                                                                                                           |
|   |                             | ☆ Save  琬 Cite Cited by 251 Related articles  All 6 versions  ≫                                                                                                                                                                                                                                     |



1 2 3 4 5 6 7 8 9 10 Ne

Next

#### **Related work**

| ≡ | Google Scholar    | assignment problem                                                                                                                                                                                                    |
|---|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ٠ | Articles          | About 4.370.000 results 0,24 sec)                                                                                                                                                                                     |
|   | Any time          | The Hungarian method for the assignment problem                                                                                                                                                                       |
|   | Since 2022        | HW Kuhn - Naval research logistics quarterly, 1955 - Wiley Online Library                                                                                                                                             |
|   | Since 2021        | they are qualified in the Simple Assignment Problem associated with an adequate budget,                                                                                                                               |
|   | Since 2018        | to the General Assignment Problem: The largest possible rating sum for any assignment is                                                                                                                              |
|   | Custom range      | $\bigstar$ Save ${\mathfrak W}$ Cite Cited by 12667 Related articles All 23 versions                                                                                                                                  |
|   | Sort by relevance | A new algorithm for the assignment problem                                                                                                                                                                            |
|   | Sort by date      | DP Bertsekas - Mathematical Programming, 1981 - Springer                                                                                                                                                              |
|   |                   | We propose a new algorithm for the classical <b>assignment problem</b> . The algorithm resembles                                                                                                                      |
|   | Review articles   | $\therefore$ The factor of improvement increases with the <b>problem</b> dimension N and reaches an order of $\therefore$ Save $\overline{99}$ Cite Cited by 347 Related articles All 13 versions Web of Science: 143 |
|   | include patents   | [PDF] Program understanding and the concept assignment problem                                                                                                                                                        |
|   |                   | TJ Biggerstaff, BG Mitbander, DE Webster - Communications of the ACM, 1994 - Citeseer                                                                                                                                 |
|   | Create alert      | The <b>problem</b> of discovering these human oriented concepts and assigning them to their<br>a program is the concept <b>assignment problem</b> [4] and we address this <b>problem</b> in this paper                |
|   |                   | $ m cm^{2}$ Save $$ $$ D Cite Cited by 495 Related articles All 12 versions Web of Science: 147 $$ $$ $$ $$ $$ $$                                                                                                     |
|   |                   | The quadratic assignment problem                                                                                                                                                                                      |
|   |                   | EL Lawler - Management science, 1963 - pubsonline.informs.org                                                                                                                                                         |
|   |                   | This paper presents a formulation of the quadratic assignment problem, of which the                                                                                                                                   |
|   |                   | Koopmans-Beckmann formulation is a special case. Various applications for the formulation are $\ldots$                                                                                                                |
|   |                   | m cm Save $$ 59 Cite Cited by 1211 Related articles All 8 versions Web of Science: 475                                                                                                                                |



1 2 3 4 5 6 7 8 9 10 Next

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem
- 1991: Burkard et al. QAPLIB A quadratic assignment problem library

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem
- 1991: Burkard et al. QAPLIB A quadratic assignment problem library
- 1998: Cela. The quadratic assignment problem: Theory and algorithms (295 pages, 232 refs.!)
- 2005: Loiola et al. A survey for the quadratic assignment problem

> 30 exact methods, > 100 heuristic algorithms

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem
- 1991: Burkard et al. QAPLIB A quadratic assignment problem library
- 1998: Cela. The quadratic assignment problem: Theory and algorithms (295 pages, 232 refs.!)
- 2005: Loiola et al. A survey for the quadratic assignment problem

> 30 exact methods, > 100 heuristic algorithms

#### **Computer Vision:**

1988: Umeyama. An eigendecomposition approach to weighted graph matching problems. 1993: Almohamad, Duffuaa. A linear programming approach for the weighted graph matching problem 2005: Leordeanu, Hebert. A spectral technique for correspondence problems

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem
- 1991: Burkard et al. QAPLIB A quadratic assignment problem library
- 1998: Cela. The quadratic assignment problem: Theory and algorithms (295 pages, 232 refs.!)
- 2005: Loiola et al. A survey for the quadratic assignment problem

> 30 exact methods, > 100 heuristic algorithms

#### **Computer Vision:**

1988: Umeyama. An eigendecomposition approach to weighted graph matching problems.
1993: Almohamad, Duffuaa. A linear programming approach for the weighted graph matching problem
2005: Leordeanu, Hebert. A spectral technique for correspondence problems
2018: Zanfir, Sminchisescu. Deep learning of graph matching

- 1955: Kuhn. The Hungarian method for the assignment problem
- 1957: Koopmans and Beckmann. Assignment problems and the location of economic activities
- 1963: Lawler. The quadratic assignment problem
- 1991: Burkard et al. QAPLIB A quadratic assignment problem library
- 1998: Cela. The quadratic assignment problem: Theory and algorithms (295 pages, 232 refs.!)
- 2005: Loiola et al. A survey for the quadratic assignment problem

> 30 exact methods, > 100 heuristic algorithms

#### **Computer Vision:**

1988: Umeyama. An eigendecomposition approach to weighted graph matching problems.
1993: Almohamad, Duffuaa. A linear programming approach for the weighted graph matching problem
2005: Leordeanu, Hebert. A spectral technique for correspondence problems
2018: Zanfir, Sminchisescu. Deep learning of graph matching
2022: Haller et al. A comparative study of graph matching algorithms in computer vision

### What we are going to address in the tutorial

13:30-14:00 What is graph- and multi-graph matching and why we need it

14:00-14:30 **Applications** in computer vision and bio-imaging

14:30-15:00 **Optimization** for graph matching and a recent comparison study

15:00 - 15:30 - Coffee break

15:30-16:15 Deep graph matching: **Learning** to match

ulti-graph matching: Optimization methods and applications











# Outline (of this particular talk)

#### Linear and quadratic assignment problems

- Expressing power
- Integer programs
- Complexity

#### Where the name graph matching comes from?

- Classical formulation
- Koopmans-Beckmann form

#### How different is it in Computer Vision vs. Operations Research?

- Outliers and (in)complete matching
- Speed vs. precision

#### Multigraph matching

Definition and complexity









#### Another name: Weighted bipartite matching











$$\min_{x \in \{0,1\}^{n \times n}} \sum_{i=1}^{n} \sum_{s=1}^{n} c_{is} x_{is}$$
  
s.t.: 
$$\sum_{s=1}^{n} x_{is} = 1 \ \forall i$$
$$\sum_{i=1}^{n} x_{is} = 1 \ \forall s$$

$$= \min_{\substack{x \ge 0}} \sum_{i=1}^{n} \sum_{s=1}^{n} c_{is} x_{is}$$
  
s.t.: 
$$\sum_{s=1}^{n} x_{is} = 1 \quad \forall i$$
$$\sum_{i=1}^{n} x_{is} = 1 \quad \forall s$$





 $c_{is}$  - cost of matching  $i \leftrightarrow s$  $x_{is} \in \{0, 1\}$  - edge selectors  $\sum_{is} c_{is} x_{is}$  - total matching cost

Efficiently solvable e.g. by Hungarian method O(n<sup>3</sup>)

**Python:** scipy.optimize.linear\_sum\_assignment()





appearance cost only, no geometry!



appearance cost only, no geometry!



Very similar appearance, geometry is crucial!





$$c_{is,jl} := (d_{ij} - d_{sl})^2$$



Total matching cost:

$$\sum_{is} c_{is} x_{is} + \sum_{\substack{i \neq j \\ s \neq l}} c_{is,jl} x_{is} x_{jl}$$





$$c_{is,jl} := (d_{ij} - d_{sl})^2$$



Total matching cost:  $\sum_{is} c_{is} x_{is} + \sum_{\substack{i \neq j \\ s \neq l}} c_{is,jl} x_{is} x_{jl}$ 

$$c_{is} := c_{is,is}$$
 - unary costs

$$\min_{x \in \{0,1\}^{n \times n}} \sum_{ijsl} c_{is,jl} x_{is} x_{jl}$$
  
s.t.: 
$$\sum_{s} x_{is} = 1 \ \forall i$$
$$\sum_{i} x_{is} = 1 \ \forall s$$





$$c_{is,jl} := (d_{ij} - d_{sl})^2$$



Total matching cost:  $\sum_{is} c_{is} x_{is} + \sum_{\substack{i \neq j \\ s \neq l}} c_{is,jl} x_{is} x_{jl}$ 

$$j$$
  $c_{is,jl}$   $s$ 

$$c_{is} := c_{is,is}$$
 - unary costs

$$\min_{x \in \{0,1\}^{n \times n}} \sum_{ijsl} c_{is,jl} x_{is} x_{jl}$$
  
s.t.: 
$$\sum_{s} x_{is} = 1 \ \forall i$$
$$\sum_{i} x_{is} = 1 \ \forall s$$

→ NP-hard

$$c_{is,jl} := (d_{ij} - d_{sl})^2$$



Total matching cost:  $\sum_{is} c_{is} x_{is} + \sum_{\substack{i \neq j \\ s \neq l}} c_{is,jl} x_{is} x_{jl}$  $c_{is} := c_{is,is}$  - unary costs  $\min_{x \in \{0,1\}^{n \times n}} \sum_{ijsl} c_{is,jl} x_{is} x_{jl}$  $\min_{x \in P} x^\top C x$ s.t.:  $\sum x_{is} = 1 \ \forall i$  $\sum x_{is} = 1 \ \forall s$ NP-hard





$$c_{is,jl} := (d_{ij} - d_{sl})^2$$





30



"classical" graph matching

Koopmans-Beckmann form



$$c_{is,jl} = \frac{\alpha_{ij}\beta_{sl}}{\beta_{sl}}$$

Lawler form



[Zhou, De La Torre 2012, Factorized Graph Matching]

Factorization into a sum of Koopmans-Beckmann forms

# Do we still need optimization in era of NNs?

(except for learning NNs)

# Yes, we do:

[Vlastelica et al. '19 Differentiation of blackbox combinatorial solvers ]

# State-of the art deep graph matching method



#### **Network Architecture**

[Rolinek et al. '20 Deep graph matching via black-box differentiation of combinatorial solvers ]

### Do we still need optimization in era of NNs?

PASCAL VOC Feature points matching:

| Method                   | *    | ക്   |    | <b>S</b> i | Ð    | ₽    | Mean           | -          |
|--------------------------|------|------|----|------------|------|------|----------------|------------|
| GMN-PL                   | 31.1 | 46.2 | 58 | 3.6        | 83.2 | 88.6 | 57.9           |            |
| PCA-GM [59]              | 40.9 | 55.0 | 65 | 7.5        | 86.7 | 90.9 | 63.8           |            |
| NGM+ [ <mark>60</mark> ] | 50.8 | 64.5 | 59 | 3.3        | 81.4 | 89.6 | 66.1           |            |
| GLMNet [27]              | 52.0 | 67.3 | 63 | 1.9        | 79.3 | 91.3 | 67.5           | LAP Solver |
| CIE <sub>1</sub> -H [61] | 51.2 | 69.2 | 70 | 5.4        | 85.2 | 92.4 | 68.9           |            |
| DGMC* [24]               | 50.4 | 67.6 | 70 | 9.6        | 94.3 | 89.6 | $73.2 \pm 0.5$ | ]          |
| BB-GM                    | 61.5 | 75.0 | 78 | <br>7.5    | 97.7 | 94.4 | $80.1 \pm 0.6$ | QAP Solver |

#### Everyone uses at least a LAP solver!

[Rolinek et al. '20 Deep graph matching via black-box differentiation of combinatorial solvers]

# Bi-Stochastic layer: "Differentiable" linear assignment

$$\min_{x \ge 0} \sum_{i=1}^{n} \sum_{s=1}^{n} c_{is} x_{is} - \rho \mathbf{H}(\mathbf{x})$$
  
s.t.: 
$$\sum_{s=1}^{n} x_{is} = 1 \quad \forall i$$
$$\sum_{i=1}^{n} x_{is} = 1 \quad \forall s$$

# Bi-Stochastic layer: "Differentiable" linear assignment

$$\min_{x \ge 0} \sum_{i=1}^{n} \sum_{s=1}^{n} c_{is} x_{is} - \rho \mathbf{H}(\mathbf{x})$$
  
s.t.: 
$$\sum_{s=1}^{n} x_{is} = 1 \quad \forall i$$
$$\sum_{i=1}^{n} x_{is} = 1 \quad \forall s$$

#### smooth, differentiable

differentiable Sinkhorn algorithm

#### Sinkhorn algorithm:

$$\text{Init } x_{is}^0 := \exp(-c_{is}/T)$$

Iterate:

- 1. Normalize each row
- 2. Normalize each column

$$\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,n} \end{pmatrix} / \sum_{s=1}^{n} x_{2,s} \\ / \sum_{i=1}^{n} x_{i,2}$$

#### **Operations Research:**

# • Koopmans-Beckman form (QAPLIB) $c_{is,jl} = \alpha_{ij}\beta_{sl}$

#### **Computer Vision:**

Lawler form

#### **Operations Research:**

- Koopmans-Beckman form (QAPLIB)  $c_{is,jl} = \alpha_{ij}\beta_{sl}$
- C rather dense

- Lawler form
- C often sparse  $c_{is} = \infty$  and  $c_{is,jl} = 0$

#### **Operations Research:**

- Koopmans-Beckman form (QAPLIB)  $c_{is,jl} = \alpha_{ij}\beta_{sl}$
- C rather dense
- Precision

- Lawler form
- C often sparse  $c_{is} = \infty$  and  $c_{is,jl} = 0$
- Speed

#### **Operations Research:**

- Koopmans-Beckman form (QAPLIB)  $c_{is,jl} = \alpha_{ij}\beta_{sl}$
- C rather dense

- Lawler form
- C often sparse  $c_{is} = \infty$  and  $c_{is,jl} = 0$

- Precision
- Complete assignment

- Speed
- Incomplete assignment



### Incomplete vs. complete assignment



e.g. [Haller et al. 2022. A comparative study of graph matching algorithms in computer vision]















 $[d] = [1, \dots, d] \text{ - set of graphs}$   $C^{[pq]} \text{ - cost matrix for } p \leftrightarrow q \text{ graphs}$   $x^{[pq]}, X^{[pq]} \text{ - } p \leftrightarrow q \text{ assignment}$ 

Recall QAP:  $\min_{x \in P} x^{\top} C x$ 



 $\begin{bmatrix} d \end{bmatrix} = [1, \dots, d] \text{ - set of graphs} \\ C^{[pq]} \text{ - cost matrix for } p \leftrightarrow q \text{ graphs} \\ x^{[pq]}, X^{[pq]} \text{ - } p \leftrightarrow q \text{ assignment}$ 

Recall QAP:  $\min_{x \in P} x^{\top} C x$ 



 $\begin{bmatrix} d \end{bmatrix} = \begin{bmatrix} 1, \dots, d \end{bmatrix} \text{- set of graphs} \\ C^{[pq]} \text{- cost matrix for } p \leftrightarrow q \text{ graphs} \\ x^{[pq]}, X^{[pq]} \text{- } p \leftrightarrow q \text{ assignment}$ 

 $\min_{X \in P} \sum_{p,q \in [d]} (x^{[pq]})^{\top} C^{[pq]} x^{[pq]}$ s.t.  $X^{[pq]} X^{[qr]} \leq X^{[pr]} \quad \forall p,q,r \in [d].$ 

Recall QAP:  $\min_{x \in P} x^{\top} C x$ 



 $[d] = [1, \dots, d] \text{ - set of graphs}$   $C^{[pq]} \text{ - cost matrix for } p \leftrightarrow q \text{ graphs}$   $x^{[pq]}, X^{[pq]} \text{ - } p \leftrightarrow q \text{ assignment}$ 

$$\min_{X \in P} \sum_{p,q \in [d]} (x^{[pq]})^{\top} C^{[pq]} x^{[pq]}$$
  
s.t.  $X^{[pq]} X^{[qr]} \le X^{[pr]} \quad \forall p,q,r \in [d]$ 

# of [pq] pairs -  $O(d^2)$ # of costs  $c_{is,jl}^{[pq]}$  -  $O(d^2n^4)$ # of cycle consistency constraints -  $O(d^3n^3)$ 

54

LAP Solver

# Take home messages

Graph matching = matching finite point sets

Linear assignment – point features only

Quadratic assignment – features related to a pair of points

Optimization is a key component



Mean 57.9 63.8

66.1

67.568.9 $73.2 \pm 0.5$ 

 $80.1 \pm 0.6$ 

is

