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Abstract. Accurate localization, identification and segmentation of ver-
tebrae is an important task in medical as well as biological image anal-
ysis. The prevailing approach to solve such a task is to first generate
pixel-independent features for each vertebra, e.g. via a random forest
predictor, which are then fed into an MRF-based objective to infer the
optimal MAP solution of a constellation model. We abandon this static,
two-stage approach and mix feature generation with model-based infer-
ence in a new, more flexible, way. We evaluate our method on two data
sets with different objectives. The first is semantic segmentation of a 21-
part developing spine of zebrafish in microscopy images, and the second
is localization and identification of vertebrae in benchmark human CT.

1 Introduction

State-of-the-art approaches for object localization or semantic segmentation typ-
ically employ pixel-wise forest predictors combined with MAP inference on a
graphical constellation model [4,5,13] or a (super-)pixel graph [14,12], respec-
tively. A recent trend in computer vision replaces single-level forest predictors
by deep, cascaded models for feature generation, such as CNNs [8] and Auto-
Context Models [15]. These models play the role of learning a complex non-linear
mapping from images to features that are relevant for the task at hand.

This modeling framework is however static, as it separates feature generation
from inference (i.e., “model fitting”). It has been shown that better features can
be generated by interleaving feature generation with MAP inference [9,11,7].4

In this work we take this idea a step further: Instead of interleaving feature
generation with a pixel-level structured model or model-agnostic smoothing, we

? Shared first authors.
?? Shared last authors.
4 Note that this is conceptually different from the classical “hierarchical” approach

that, purely for the sake of pruning the search space to reduce run-time, performs
feature generation and inference/model fitting multiple times on different scales.
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Fig. 1. Our proposed pipeline for multi-class, semantic segmentation. A stack of feature
images is created by a standard filter bank, and used to train a random forest classifier.
The random forest output is then used in combination with the original image to gener-
ate candidate segmentations for each class, by fitting multiple instances of appearance
models. These candidate segmentations are weighted by means of probabilistic infer-
ence in a constellation model that captures relative locations of classes. The weighted
and fused candidate segmentations are then fed back as additional “smoothed” features
into a new random forest classifier, forming a cascade.

interleave with a global, generative constellation model. We suggest a cascaded
pipeline, as illustrated in Figure 1.

We explore two applications, namely (1) light microscopic images of zebrafish
embryos, where we segment developing vertebrae, called somites, and (2) bench-
mark human spine CTs [4], where we localize and identify vertebrae. Figure 1
(right) and Figure 2 (left) show exemplary zebrafish images with and without
overlaid segmentation of somites, respectively.

The most important aspect of our cascaded pipeline is the question of what
to infer from a constellation model at intermediate stages of the cascade. Options
are the MAP solution or the marginal distributions. Interestingly, marginal dis-
tributions are a winner for the zebrafish application. The reason that uncertainty
is beneficial here is that individual somites are highly ambiguous with respect to
shape, appearance, and importantly also the appearance of surrounding tissue.
Hence only the relative spatial arrangement can disambiguate them. We show
that as opposed to MAP inference, the soft marginals do not commit to a certain
– potentially wrong – solution “at first sight”.

Closely related to our work are (1) Auto Context [15], but they do not per-
form any smoothing between levels of the cascade. (2) Geodesic Forests [7], but
they do not use a structured model for smoothing. (3) Cascaded classifiers in-
terleaved with MAP inference [9,11], but they do not use a (global generative)
constellation model and do not explore marginals for inference. (4) Constellation
models for the widely studied application of human vertebrae localization (see
e.g. [16]) but none of the respective methods runs a Random Forest cascade.

To summarize, our work makes the following main contributions: (1) We
show, for the first time, that probabilistic inference can give a boost in per-
formance in cascaded MRF-Forest-based models. This is compared to standard
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MAP inference (as in e.g. [4,13]) and model-agnostic geodesic smoothing [7]. (2)
We outperform a state-of-the-art method [5] on benchmark human spine CTs of
challenging pathological cases. (3) We are the first to tackle somite detection in
zebrafish, where we achieve an overall average Dice score of 0.82.

2 Method

Background: Random Forests classifiers (RF) [2] are widely used in medical
image analysis for organ localization, particularly for vertebrae [10,4,5]. We use
RFs in a cascaded fashion [15], where the probability maps yielded by an RF
are treated as features that are fed into subsequent RFs, forming a cascade. In
variants of this approach, inference or smoothing operations on these probability
maps are interleaved with the RF prediction, and the “smoothed” probability
maps are then used as features [9,11,7]. For comparison to our proposed model-
based smoothing we explore model-agnostic geodesic smoothing [7]. The ratio-
nale behind geodesic smoothing is that pixels within a small geodesic distance
of each other likely belong to the same class. See [7] for details.

Generating Candidate Segmentations: We train an n-class RF, where n
is the number of object parts (e.g. the number of vertebrae in the human spine),
plus one background class. At test time, an RF generates one probability map
per class. Given an RF-generated probability map for some foreground class, we
first compute its mode via the mean shift algorithm. Second, we fit a learned,
static constellation of landmarks to these centroids, yielding an optimal affine
transformation w.r.t. the sum of squared landmark distances. Third, we sample
a number of candidate locations around these points to get sets of initializations
for the respective classes. Fourth, we fit a class specific appearance model to the
image, multiple times, starting at the initial locations computed in the previous
step. Depending on the application, we either use active appearance models
(AAM) [3], or static average and variance images [5]. Each appearance model
fit results in a binary segmentation, together with a cost for the fit. We denote
the cost for the l-th fit for class v as a(v, l). The cost is the sum of squared
differences between the target and the template image generated by the (active)
appearance model. In case of static appearance models, we weigh the squared
differences by the respective pixel-wise variances stored in the variance image.

Weighting and Fusing Candidate Segmentations: The above method
generates a number of candidate segmentations per class. We assign weights to
these by means of a constellation model in the form of a pairwise CRF. The
nodes v ∈ V of the respective graph G = (V,E) correspond to the classes. The
labels l ∈ L that each node can take correspond to the respective candidate seg-
mentations. The edges E ⊆ V ×V encode the pairs of classes for which we model
relative locations. We employ either a chain model that only connects spatially
neighboring classes, or a fully connected model, depending on the application.

Let Ω denote the image domain. We define unary terms φ(v, l) of the CRF as
a linear combination of the cost of the respective appearance model fit a(v, l) and
the negative logarithm of the RF probability map RFv : Ω → [0, 1] accumulated
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over the foreground of the respective binary segmentation Sv,l : Ω → {0, 1},

φ(v, l) := a(v, l) +
λ

|S−1v,l (1)|

∑
i∈Ω
−log(RFv(i)) · Sv,l(i). (1)

A parameter λ weighs the relative influence of the two terms. We set this param-
eter heuristically. We define pairwise terms to reflect the probability of relative
locations of neighboring proposals. We learn the average distances d(v, w) be-
tween the centroids of any two vertebrae v, w, as well as respective standard
deviations σ(v, w), and assume an according Gaussian distribution. Let c(v, l)
denote the centroid of the l-th candidate segmentation of class v. Our pairwise
terms read

ψ(v, w, k, l) :=
(|c(v, k)− c(w, l)| − d(v, w))

2

σ(v, w)2
. (2)

We compute weights for each proposal and each class by means of inference
in this CRF. We explore two well-known variants of inference, namely MAP
inference and probabilistic inference. MAP inference finds a label lv for each
node such that the energy of the CRF,

E({lv}v∈V ) =
∑
v∈V

φ(v, vl) +
∑

(v,w)∈E

ψ(v, w, lv, lw), (3)

is minimized, thus yielding binary weights w(v, l) ∈ {0, 1} for each proposal.
Probabilistic inference computes the marginal probabilities pv(l) of the respec-
tive Gibbs distribution p({lv}v∈V ) = 1

Z exp (−E({lv}v∈V )), yielding continuous
weights w(v, l) ∈ [0, 1] for each proposal. Wv :=

∑
l∈L pv(l) · Sv,l. We call Wv a

smoothed probability map or smoothed RF output for class v.
For a chain model, both MAP and probabilistic inference can be solved op-

timally by means of dynamic programming. For a fully connected model, the
respective optimization problem is NP hard. However, probabilistic inference by
Loopy Belief Propagation, and approximate MAP inference by TRWS [6] fol-
lowed by Iterated Conditional Modes (ICM) [1], yields good results in practice.

3 Experiments

Zebrafish: We applied our approach to semantic segmentation of 21 somites in
a data set of 32 images of developing zebrafish. All images were automatically
pre-aligned to a reference image by rigid registration. Experts in biology man-
ually created ground truth segmentations of these images. This data set poses
multiple challenges for automated segmentation, due to (1) the similar appear-
ance of neighboring segments, and (2) the small amount of training data. We
train three-level cascades. We compare our approach with Auto-context [15] and
GeoF [7], as well as with state-of-the-art RF-predict-and-MAP. Figure 2 gives
an overview of the different types of inference/smoothing that we evaluate, and
an idea of how the smoothed features look. For all algorithms, we evaluate the
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Fig. 2. Different types of inference/smoothing. Left: Zebrafish embryo. Right: Proba-
bility maps of two exemplary classes. RF probability map; geodesic smoothing (GeoF);
MAP inference in our constellation model; probabilistic inference (MARG).

Dice score averaged over all 21 foreground classes, employing two-fold cross-
validation to obtain scores for all 32 images. Forest parameters are as follows:
16 trees, maximum depth 12, features from a standard filter bank and local
contextual features. We use a chain model as respective MRF.

Spine CT: The data used for experimental evaluation is the publicly avail-
able database of pathological spine CT5. For vertebrae localization in spine CT
images, we use a static appearance model constructed from a mean and variance
image pair as described in [4]. We use a fully connected MRF. Forest parameters
are as follows: 25 trees, maximum depth 24, features from local and contextual
average intensity, as described in [5].

4 Results and Discussion

Zebrafish: Figure 3 shows box plots of the Dice scores obtained from the
smoothed RF output at all three levels of the cascade, for all four methods.
Figure 3a lists the average Dice scores and standard deviations of the RF output
as well as the smoothed RF output for all four methods after the final level of the
cascade. Auto-context returns a final average Dice score of 0.60. Compared to
Auto-context, GeoF generates considerably smoother posteriors, and performs
better at every level of the cascade (green vs. cyan box plots in Figure 3). The
best average score obtained by GeoF is 0.66 after three levels. This increase of
6% w.r.t. Auto-context is comparable to the gains reported in [7] when applying
geodesic smoothing without changing the training objective.

After the first level of the cascade MAP inference performs best among all
approaches (red box plots in Figure 3), with a mean Dice Score of 0.66. This
approach also improves over the cascade, reaching a final Dice score of 0.76 after
three levels. However, probabilistic instead of MAP inference yields the highest
overall average Dice Score of 0.82, outperforming MAP by 6%. Also, the accuracy
increases considerably from level to level (blue box plots in Figure 3).

5 http://research.microsoft.com/spine/

http://research.microsoft.com/spine/
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RF SRF

Auto Context 0.60 (0.20) -
Geodesic 0.63 (0.21) 0.66 (0.22)

MAP 0.71 (0.27) 0.76 (0.27)
Marginals 0.82 (0.16) 0.82 (0.18)

(a)

MAP Marginals
Level FF RF SRF FF RF SRF

1 1 0 0 1 0 0
2 0.16 0.60 0.24 0.11 0.34 0.55
3 0.15 0.60 0.25 0.10 0.43 0.47

(b)

Fig. 3. Evaluation of four methods on 32 zebrafish datasets. Left: Segmentation ac-
curacy as Dice scores after each level of a three-level cascade. RF (green), GeoF
(cyan), MAP (red), marginals (blue). Right: (a) Average Dice Score (over 32x21 val-
ues), and standard deviation (in brackets), for segmentations obtained directly from
RF-generated probability maps (RF), and from respective “smoothed” RF probability
maps (SRF). (b) Variable importance of features, normalized over the three classes:
Filter bank features (FF), RF output (RF) and smoothed RF output (SRF).

Observe that the accuracy of every approach increases over the levels of
the cascade. Furthermore, approaches that employ any kind of smoothing be-
tween levels perform better than auto-context, confirming the power of cascading
with interleaved smoothing. Model-based smoothing performs considerably bet-
ter than model-agnostic geodesic smoothing, likely due to the more specific prior
knowledge induced by the constellation model.

Interestingly, while MAP inference yields the best results after the first level
of our cascade, probabilistic inference undergoes a much more dramatic increase
in the mean Dice score and concurrent reduction in the standard deviation over
the 3 levels of the cascade. We observe that this is due to failure cases that are
“rescued” by our approach, but not by MAP, as shown in Figure 4.

We quantify the relative strength of features generated by probabilistic in-
ference vs. MAP inference by means of their variable importance [2]. Figure 3b
reveals that the features generated by probabilistic inference are significantly
more important for forest performance than the respective MAP features.

Human Spine CT: We evaluate the results of a single-level RF and a two-
level cascade on publicly available data (cf. [5]) in terms of True Positive Rates
(TPR) as listed in Table 1. Note that [5] reports Precision as opposed to TPR on
this data for the sake of comparability to another dataset that is guaranteed to
contain all vertebrae of the spine. This measure neglects false negative detections.
However, the data we evaluate shows arbitrary subsets of vertebrae. This poses
an additional challenge to an automated localisation method, because it has to
decide which vertebrae are present at all. Hence we decided for an error measure
that accounts for false negative detections, namely TPR.

We calculated the TPR for the results of [5] obtained exactly with their
method, which is 63%. Our one-level cascade without inference is a re-implemen-
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Fig. 4. Exemplary failure case that is “rescued” by our approach, but not by MAP
inference. Arrows point to ground truth start and end of spine. After the first level, seg-
mentations are off by one somite. This stays constant for MAP; however, our approach
gradually recovers a correct segmentation.

One Level
Cascade

Level 1 Level 2

None 8.7 / 12.7 (15.7) [0.67] 9.0 / 14.1 (17.7) [0.66] 9.0 / 12.7 (12.0) [0.68]
MAP 7.8 / 10.1 (8.0) [0.73] 8.0 / 10.7 (8.6) [0.69] 7.8 / 10.3 (8.3) [0.74]
Marg - 8.0 / 10.6 (8.6) [0.70] 7.9 / 10.7 (8.5) [0.74]

Table 1. Evaluation of spine localization on pathological CTs. Median / mean distance,
standard deviation (in brackets), True Positive Rate [in square brackets]. Distances are
in mm. Rows: RF output without inference (None), MAP inference, and probabilistic
inference (Marg). First column: One-level RF. Second column: Two level cascade.

tation of [5], with the slight modifications of training deeper trees and limiting
image thresholds to a HU window of [0, 1000]. These modifications improve the
TPR to 67%. Our best result, obtained by cascading and inference, has a TPR
of 74%. Hence we outperform [5] by 11% in terms of TPR. For our best result
we also computed the Precision, which is 79%. The Precision reported by [5] is
70%. Hence, we outperform [5] by 9% in terms of Precision.

Cascading is less powerful for the human spine CT than for the zebrafish, and
MAP and marginals are en par. Potentially this is due to the extreme pathologies
present in many if not most cases in this data set.

5 Conclusion

We have presented cascaded forest predictors interleaved with inference in MRF
constellation models for the task of semantic segmentation and localization of
vertebrae in biomedical applications. In a 21-class semantic segmentation task
on biological data, probabilistic inference in the constellation model yields con-
siderably better segmentation accuracy than the common MAP inference. Here,
marginals of the constellation model allow for maintaining uncertainty in the
predictions and hence help avoid sticking to a (MAP) solution too early in a
cascade. These findings are of impact not only for the many types of constella-
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tion models employed in related work, but also for the recent trend of learning
deep models combined with physically motivated structured models. For ver-
tebrae localization, MAP and marginal inference are en par on a challenging
pathological spine CT dataset, potentially due to the strong pathologies present
in the data. However, our proposed approach of cascading interleaved with in-
ference does improve considerably on state of the art.

Acknowledgments. The authors would like to acknowledge Daniele Soroldoni
and Andrew Oates for kindly supplying the zebrafish images.
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