
Computer Vision

Exercise 2: Filtering Techniques

Computer Vision, WS2014, Exercise 2: Filtering Techniques
Dmitrij Schlesinger

27/10/2015

Notations

𝐷 ⊆ ℤ2 – the domain (grid), i, j ∈ 𝐷 is a Pixel

Image is a mapping (function) 𝑓: 𝐷 → 𝐶 (color space)

𝑓(𝑖, 𝑗) is the color of the pixel (at the position) (i, j)

ℎ 𝑘, 𝑙 is the convolution mask (kernel, filter …).

Note: it is also an “image”

Linear Filtering or convolution is an operator 𝑓 ↦ 𝑔:

𝑔 𝑖, 𝑗 =

𝑘,𝑙

𝑓 𝑖 + 𝑘, 𝑗 + 𝑙 ⋅ ℎ(𝑘, 𝑙)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 2

• Replace each pixel by a linear combination of its neighbours and
itself.

• 2D convolution (discrete) 𝑔 = 𝑓 ∗ ℎ

Filtering

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 3

𝑓 𝑖, 𝑗 ℎ 𝑘, 𝑙 g 𝑖, 𝑗

Example – mean filter (1D)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 4

Linear filtering (1D) – a naïve algorithm
One-dimensional signal for simplicity, i.e. the mean filter reads

𝑔𝑖 = 1 2𝑤 + 1 ⋅

𝑖′=𝑖−𝑤

𝑖+𝑤

𝑓𝑖′

A naïve algorithm (according to the formula):

for 𝑖 = 0 to 𝑛

𝑠𝑢𝑚 = 0

for 𝑖′ = 𝑖 − 𝑤 to 𝑖 + 𝑤

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑓𝑖′

𝑔𝑖 = 𝑠𝑢𝑚 (2𝑤 + 1)

Time complexity: 𝑂(𝑛𝑤)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 5

Linear filtering (1D) – a better algorithm

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 6

If the „auxiliary“ sums 𝑓𝑖 are
pre-computed, only one
summation per value are
needed for output !!!

𝑖′=𝑖−𝑤

𝑖+𝑤

𝑓𝑖′ =

𝑖′=0

𝑖+𝑤

𝑓𝑖′ −

𝑖′=0

𝑖−𝑤−1

𝑓𝑖′ = 𝑓𝑖+𝑤 − 𝑓𝑖−𝑤−1

A better algorithm – the idea:

Linear filtering (1D) − a better algorithm

It is indeed very simple to pre-compute 𝑓𝑖 quickly

A better algorithm:

1. Compute 𝑓𝑖 for all 𝑖 :

for 𝑖 = 0 to 𝑛

 𝑓𝑖 = 𝑓𝑖−1 + 𝑓𝑖

2. Compute output 𝑔𝑖 :

for 𝑖 = 0 to 𝑛

𝑔𝑖 = (𝑓𝑖+𝑤 − 𝑓𝑖−𝑤−1) ∕ (2𝑤 + 1)

Time complexity: 𝑂(𝑛)

− does not depend on the window size at all !!!

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 7

Linear filtering (2D) – “Integral Image”

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 8

Generalization to the 2D-case:

1. Compute 𝑓𝑖 for all (𝑖, 𝑗) :
for (𝑖, 𝑗) = (0,0) to (𝑚, 𝑛) (row-vise)

 𝑓(𝑖,𝑗) = 𝑓(𝑖−1,𝑗) + 𝑓(𝑖,𝑗−1) − 𝑓(𝑖−1,𝑗−1) + 𝑓𝑖

2. Compute output 𝑔𝑖 :
for (𝑖, 𝑗) = (0,0) to (𝑚, 𝑛)

𝑔(𝑖,𝑗) ∝ 𝑓(𝑖+𝑤,𝑗+𝑤) − 𝑓 𝑖+𝑤,𝑗−𝑤−1 −

− 𝑓 𝑖−𝑤−1,𝑗+𝑤 + 𝑓 𝑖−𝑤−1,𝑗−𝑤−1

Time complexity: 𝑂(𝑛)
− does not depend on the window size at all !!!

Convolutions

𝑔 = 𝑓 ∗ ℎ 𝑔𝑖 =

𝑖′=−∞

∞

𝑓𝑖−𝑖′ ⋅ ℎ𝑖′

Properties:

• Commutative: 𝑓 ∗ ℎ = ℎ ∗ 𝑓

• Assotiative: 𝑓 ∗ ℎ1 ∗ ℎ2 = 𝑓 ∗ (ℎ1 ∗ ℎ2)

• Distributive with „+“ 𝑓 ∗ ℎ1 + ℎ2 = 𝑓 ∗ ℎ1 + 𝑓 ∗ ℎ2

• Identical convolution ℎ𝐼 has the property 𝑓 ∗ ℎ𝐼 = 𝑓 . It is the
Delta-signal, it does not change the input

• Inverse convolutions fulfill: ℎ ∗ ℎ−1 = ℎ𝐼

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 9

Convolutions

Example for inverse convolutions (𝑖′ = 0 is marked bold):

ℎ𝑑𝑖𝑓𝑓 = [… , 0,0,0,0, 𝟏,−1,0,…] – differential operator

ℎ𝑖𝑛𝑡 = [… , 0,0,0,0, 𝟏, 1,1,…] – intergral operator

Easy to see that ℎ𝑑𝑖𝑓𝑓 ∗ ℎ𝑖𝑛𝑡 = ℎ𝐼 holds

The trick with the integral image is in fact

𝑓 ∗ ℎ = 𝑓 ∗ ℎ𝐼 ∗ ℎ = 𝑓 ∗ ℎ𝑖𝑛𝑡 ∗ ℎ𝑑𝑖𝑓𝑓 ∗ ℎ = 𝑓 ∗ ℎ𝑖𝑛𝑡 ∗ (ℎ𝑑𝑖𝑓𝑓 ∗ ℎ)

Consequences:

• 𝑓 ∗ ℎ𝑖𝑛𝑡 is easy to compute (linear time complexity)

• ℎ ∗ ℎ𝑑𝑖𝑓𝑓 is sparse (a constant number of non-zero elements)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 10

A bit complicated example

Convolve efficiently with the mask (1D)

𝑔𝑖 =

𝑖′=𝑖−𝑤+1

𝑖

𝑤 − 𝑖 + 𝑖′ ⋅ 𝑓𝑖′

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 11

A bit complicated example

Consider, how 𝑔𝑖+1 can be computed efficiently using 𝑔𝑖 .

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 12

𝑔𝑖+1 =

𝑖′=𝑖−𝑤+2

𝑖+1

𝑤 − 𝑖 + 𝑖′ − 1 ⋅ 𝑓𝑖′ =

=

𝑖′=𝑖−𝑤+1

𝑖

𝑤 − 𝑖 + 𝑖′ − 1 ⋅ 𝑓𝑖′ + 𝑤 ⋅ 𝑓𝑖+1 =

= 𝑔𝑖 −

𝑖′=𝑖−𝑤+1

𝑖

𝑓𝑖′ + 𝑤 ⋅ 𝑓𝑖+1 =

= 𝑔𝑖 − 𝑓𝑖 + 𝑤 ⋅ 𝑓𝑖+1

A bit complicated example

If 𝑓𝑖 is known, the next value could be computed in a constant time.

However, 𝑓𝑖 is nothing but a mean filter, i.e. it can be pre-computed
in linear time as well !

The algorithm:

1. Compute the integral signal 𝑓 ;

2. Compute the mean filter 𝑓 ;

3. Compute the output 𝑔 from 𝑓 and 𝑓 .

All steps have the linear complexity

→ the overall time complexity is linear as well.

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 13

A bit complicated example

Explain it by convolutions:

𝑔 = 𝑓 ∗ ℎ

𝑔 ∗ 𝑑 = 𝑓 ∗ ℎ ∗ 𝑑 = 𝑓 ∗ ℎ′ =

= 𝑓 ∗ ℎ1
′ + ℎ2

′ = 𝑓 ∗ ℎ1
′ + 𝑓 ∗ ℎ2

′ =

= 𝑓 ∗ 𝑖 ∗ 𝑑 ∗ ℎ1
′ + 𝑓 ∗ ℎ2

′ =

= 𝑓 ∗ 𝑖 ∗ ℎ′′ + 𝑓 ∗ ℎ2
′

⇓
𝑔 = 𝑓 ∗ 𝑖 ∗ ℎ′′ + 𝑓 ⋅ 𝑤 ∗ 𝑖

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 14

𝑑 – differential operator
𝑖 – integral operator

Some interesting tasks

Implement convolution with (vertical) Sobel-kernel

−1 0 1
−2 0 2
−1 0 1

with only 3 additions per Pixel and no multiplication.

Implement convolution with the exponential mask (for 1D)

𝑔𝑖 = 𝜏 ⋅

𝑖′=−∞

𝑖

exp −𝜏 ⋅ 𝑖 − 𝑖′ ⋅ 𝑓𝑖′

with two multiplications and one addition per pixel.

Hint: Simply consider, how 𝑔𝑖+1 can be obtained from 𝑔𝑖.

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 15

Some interesting tasks (possible assignments)
Let a convolution kernel be given.

1. Try to (automatically) find its representation using differentiation
and integration in order to reduce the time complexity.

2. Try to approximate the mask by “the best possible” separable
one (using SVD-decomposition of the kernel-matrix).

3. Decompose the kernel into a sum of separable filters. Study
approximations.

4. Try to represent the kernel as a convolution of sparse ones.

5. Consider combinations of 1. – 4.

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 16

Morphilogical Filters, Fast minimum in 1D

𝑔𝑖 = min𝑖′=𝑖−𝑤
𝑖+𝑤 𝑓𝑖′

A naïve algorithm (according to the formula):

for each output value enumerate all inputs and take the minimal
one. Time complexity: 𝑂(𝑛𝑤)

The idea:

1. Keep the ordered set of all values

2. For each output one elements should be inserted and one
should me removed

3. Use a data structure that allows to do it fast, i.e. in 𝑂(log 𝑤)

→ The overall time complexity is 𝑂(𝑛 log 𝑤)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 17

Fast minimum in 1D, 2D

Data structire for 8 elements in the set (example):

The number of operation for both insertion and removal is
proportional to the tree depth, i.e. 𝑂 log 𝑤 .

Min-Filter in 2D is separable → the time complexity in 2D is
𝑂(𝑛 log 𝑤) as well !

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 18

Fast Median

Let the set of values be ordered (as before) – so we can update it in
𝑂(log 𝑤) again. But how to pick the median (the middle element)?
It requires 𝑂(𝑤).

Idea – keep two ordered sets: one for all elements that are smaller
or equal to the actual median, the other for all elements that are
grater or equal to the actual median. Keep the maximum value for
the first set and the minimum value for the second one.

If the sets are of the same size, the actual maximum of the first set is
the desired median.

Hint: a suitable container in C++ is „multiset“

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 19

Fast Median

Consider e.g. Insertion of a new element:

1. Look, in which set the new element is to be inserted (compare it
to the „max“), insert it – it takes 𝑂(log 𝑤)

2. If the sets have different sizes, balance them – transfer one
element from the larger set to the other one. For example,
remove the largest value from the first set and insert it into the
second one (of course, update max and min). All operations
take 𝑂(log 𝑤).

→ in 1D the overall time-komplexity is 𝑂(𝑛 log 𝑤). In 2D the overall
time-komplexity is 𝑂 𝑛𝑤 log 𝑤 , where 𝑤 is the filter size (compare
with 𝑂(𝑛𝑤2) for the naive algorithm).

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 20

Assignments
1. Linear Filters:

1. Fast Guided filter (2P) – see the lecture
2. Harris Detector (up to 4P) – see the next lecture
3. Approximations (see slide 16) (up to 4P)
4. Something you like (?P)

2. Morphologic filters – min, max, for colors (channelwise) (1-2P)

3. Fast Median (with 𝑂(𝑛 ⋅ 𝑤 ⋅ log 𝑤)) (up to 3P)

4. Evaluations are appreciated (+1P)

Deadline: 23.11 (please, do not wait until it).

Delivery: per E-Mail an Dmytro.Shlezinger@tu-... , Sources (*.cpp,
*.h, sufficiently commented !!!), input/output images; if applicable –
*.pro, Makefile (compilation advises ...), comments, remarks,
description, evaluation results (tables, diagrams etc.)

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 21

mailto:Dmytro.Shlezinger@tu-

Additional remarks
 Implement it by yourself, use e.g. OpenCV only to read/write

(visualize) images

 Avoid platform-specific code !!!

 Avoid GUI-s

 Avoid complex classes (data structures, templates etc.)

 Test your implementations carefully on many images

Game rules:

There are three exercises.

You can get 1P for the first one (past) and up to 4P for each of 2-4.

Exercises are passed if:

1. There are 8P in total at the end of the semester and

2. There is at least 1P for each 2-4 exercises.

27/10/2015Computer Vision, Exercise 2: Filtering Techniques 22

