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Graphical models (reminder)
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G(V, E) – basis graph,
i ∈ V – nodes, (i, j) ∈ E – edges
x : V → C – an image,
xi ∈ C – image color at position i
L – label set (e.g. the set of segments)
y : V → L – labeling,
yi ∈ L – a label at position i

There is energy E(x, y) associated with each pair (x, y)
Special case: pairwise models

E(x, y) =
∑
i∈V

φi(x, yi) +
∑

(i,j)∈E
φij(x, yi, yj),

with φi(x) : L→ R and φij(x) : L×L→ R
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Graphical models (reminder)

The posterior probability distribution (consider CRF) is

p(y|x) = 1
Z(x) exp

[
−E(x, y)

]
Inference: observe x, predict y
An “obvious” choice – take the most a-posteriori probable y

y∗ = arg max
y

p(y|x) = arg min
y

E(x, y)

(MAP), i.e. an Energy Minimization problem

Are there alternatives ?
Is MAP reasonable for structured prediction at all ?
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A motivating example

Q1 Q2 . . . Qn

P1 1 0 . . . 1
P2 0 1 . . . 0
. . . . . . . . . . . . . . .
Pm 0 1 . . . 0
“∑” ? ? . . . ?

Consider a “questionnaire”:
m persons answer n questions.
Furthermore, let us assume that
persons are rated – a “reliability”
measure is assigned to each one.
The goal is to find the “right”
answers for all questions.

Strategy 1:
Choose the best person and take all his/her answers.

Strategy 2:
– Consider a particular question
– Look, what all the people say concerning this, do
(weighted) voting
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A motivating example, interpretation

“People” are labelings y,
the “reliability measure” is the posterior p(y|x)
“Questions” are pixels i,
one “elementary answer” is a possible label at this pixel

The “Strategy 1” is MAP

The “Strategy 2” can be derived within Bayesian Decision
Theory using so-called additive cost-functions
(see “Machine Learning” lectures).
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Maximum Marginal Strategy

1. Compute marginal probability distributions of labels

p(yi=l|x) =
∑

y:yi=l

p(y|x)

for each variable i and each label value l

2. Decide for each variable “independently” according to its
marginal probability distribution

y∗i = arg max
l

p(yi=l|x)

There are also other marginal-based strategies depending on
the nature of the label set
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Minimum Marginal Squared Error (MMSE)
Example – stereo, the labels represent depth-values
The strategy is the average

y∗i =
∑

l

l · p(yi=l|x)

MAP MMSE
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Statistical learning (very short)
– Maximum Likelihood:
maximize the probability of the given training sample

– Key observation: the energy can be written as a
dot-product (see “Optimization for Machine Learning”):

E(x, y) = 〈ψ(x, y), w〉

hence, MRF-s are members of the Exponential Family
– See “Machine Learning” again how to learn EF-models

At the end some marginal probability distributions are
necessary for both inference and learning (gradient of the
likelihood). It is a very hard problem :-( . Approximate
solutions: sampling techniques, mean-field approximations,
some upper bounds ...
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Take home messages

Statistical treatment of structured models is extremely
powerful !!!

Inference: large spectrum of different decision strategies for
the same statistical model

The design of an appropriate decision strategy is as important
as the design of the appropriate model

Learning: well founded principles

Both statistical inference and learning are computationally
extremely hard
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